土力学与地基基础--典型案例
学习项目8 沉井基础 《土力学与地基基础》教学课件

学习项目8 沉 井 基 础
案例引入
北锚碇要将两根主缆传来的640 MN的拉力传递给沉井和 基础,是一个以承受水平力为主的结构。由于沉井在整个施 工和营运期内的受力不断变化,在这些荷载的作用下,沉井 地基因受到不均匀压力而产生沉降。因此,在主缆架设之前,
5m 待加劲梁架设以后再进行浇筑。设计允许锚块可以向前水平 位移100 mm,但通车至今实际水平位移不到25 mm。
任务8.1 沉井基础概述
3)竹筋混凝土沉井
由于沉井在下沉过程中受力较大因而需 配置钢筋,一旦完工后,它就不需要承受很 大的拉力了。因此,在我国南方产竹地区, 可以采用耐久性差但抗拉力好的竹筋代替部 分钢筋,如南昌赣江大桥等曾用竹筋混凝土 沉井。在竹筋混凝土沉井分节接头处及刃脚 内仍需用钢筋。
任务8.1 沉井基础概述
沉井基础:沉井 经过混凝土封底、填 塞井孔后,便成为桥 梁墩台或其他结构物 的基础。
任务8.1 沉井基础概述
沉井下沉
沉井基础
任务8.1 沉井基础概述
2. 沉井基础的特点
1)沉井基础的优点
(1)埋置深度可 以很大,整体性较 强,稳定性较好, 有较大的承载面积, 能承受较大的垂直 荷载和水平荷载。
(2)在下沉过程 中,沉井作为坑壁 围护结构,起到挡 土、挡水的作用。
江阴大桥主跨为1 385 m,桥塔的高度为190 m,为两根 钢筋混凝土空心塔柱与三道横梁组成的门式框架结构,重力 式锚碇,主梁采用流线型箱梁断面,钢箱梁全宽为36.9 m, 梁高为3 m,桥面宽为29.5 m,双向六车道,两侧各设宽为 1.8 m的风嘴。
学习项目8 沉 井 基 础
案例引入
该桥的北锚碇是大桥的关键部位之一,经浅埋、中埋扩 大基础、群桩基础、地下连续墙多方案比较,最后选用尺寸 为51 m×69 m的沉井基础,沉井内分36个隔仓,沉井高度为
土力学、地基及基础

绪论一、土力学、地基及基础1、土力学:土力学的研究对象是“工程土”。
土是岩石风化的产物,是岩石经风化、剥蚀、搬运、沉积而形成的松散堆积物,颗粒之间没有胶结或弱胶结。
土的形成经历了漫长的地质历史过程,其性质随着形成过程和自然环境的不同而有差异。
因此,在建筑物设计前,必须对建筑场地土的成因、工程性质、不良地质现象、地下水状况和场地的工程地质等进行评判,密切结合土的工程性质进行设计和施工。
否则,会影响工程的经济效益和安全使用。
土力学是工程力学的一个分支,是利用力学原理研究土的应力、应变、强度和稳定性等力学问题的一门应用学科。
由于土的物理、化学和力学性质与一般刚体、弹性固体和流体有所不同,因此,土的工程性质必须通过土工测试技术进行研究。
2、地基:建筑物都是建造在土层或岩层上的,通常把直接承受建筑物荷载的土层或岩层称为地基。
未经人工处理就能满足设计要求的地基称为天然地基;需要对地基进行加固处理才能满足设计要求的地基称为人工地基。
3、基础:建筑物上部结构承受的各种荷载是通过基础传递给地基的,所谓基础是指承受建筑物各种荷载并传递给地基的下部结构。
通常情况下,建筑物基础应埋入地面以下一定深度进入持力层,即基础的埋置深度。
按照基础的埋置深度的不同,基础可分为浅基础和深基础。
在建筑物荷载作用下,地基、基础和上部结构三部分是彼此联系、相互影响和共同作用的,如图1所示。
设计时应根据场地的工程地质条件,综合考虑地基、基础和上部结构三部分的共同作用和施工条件,并通过经济、技术比较,选取安全可靠、经济合理、技术可行的地基基础方案。
二、土力学的发展简史生产的发展和生活的需要,使人类早就懂得了利用土进行建设。
西安半坡村新石器时代的遗址就发现了土台和石础;公元前两世纪修建的万里长城及随后修建的京杭大运河、黄河大堤等都有坚固的地基与基础。
这些都说明我国人民在长期的生产实践中积累了许多土力学方面的知识。
十八世纪产业革命以后,随着城市建设、水利工程及道路工程的兴建,推动了土力学的发展。
土力学及地基基础

第一次作业重要提醒:第一次作业截止4月16日1、第25页1-5题1-5、已知土样试验数据:含水量为31%,液限为38%,塑限为20%,求该土样的塑性指数、液性指数,并确定其状态和名称。
解:W=31% WL=38% Wp=20%塑性指数Ip=WL-Wp=38-20=18液性指数IL=(W-Wp)/Ip=(31-20)/18=0.610.25﹤IL=0.61﹤0.75可塑状态17﹤Ip=18属于黏土2、第39页,2-1,2-2,2-3题。
2-1土的压实原理是什么?答:压实的机理:压实使土颗粒重新组合,彼此挤紧,孔隙减少,孔隙水排出,土体的单位重量提高,形成密实的整体。
同时,内摩阻力和粘聚力大大增加,从而使土体强度增加,稳定性增强。
同时,因压实使土体透水性明显降低、毛细水作用减弱,因而其水稳性也大大提高。
因此,对地基土压实并达到规定的密实度,是保证各级道路路基和建筑人工地基获得足够强度和稳定性的根本技术措施之一。
2-2用哪些指标控制路基的填筑质量?答:选择合适填料,制定相应的控制标准、填方机具、分层压实,控制层厚,冲碾补充2-3影响土压实性的因素有哪些?答:土压实性的影响因素主要有含水率、击实功能、土的种类和级配以及粗粒含量等。
3、第52页3-1,3-2,3-3,3-4题3-1试解释起始水力梯度产生的原因?答:起始水力梯度产生的原因是,为了克服薄膜水的抗剪强度Tu(或者说为了克服吸着水的粘滞阻力),使之发生流动所必须具有的临界水力梯度度。
也就是说,只要有水力坡度,薄膜水就会发生运动,只是当实际的水力坡度小于起始水力梯度时,薄膜水的渗透速度V 非常小,只有凭借精密仪器才能观测到。
因此严格的讲,起始水力梯度I,是指薄膜水发生明显渗流时用以克服其抗剪强度T.的水力梯度。
3-2简述影响土的渗透性的主要因素有哪些?答:(1) 土的粒度成分及矿物成分。
土的颗粒大小、形状及级配,影响土中孔隙大小及其形状,因而影响土的渗透性。
土力学及地基基础例题计算

1 2 7 1 0 9 0 . 5 2 7 1 0 . 7 0 4 . 4 5 kP
底面
a 21 h 1 2 zK a 2 2 C K a 2
1 7 2 1 9 3 0 .5 7 2 1 0 .75
3.9 k 6Pa
a 01 za 1 K 1 0 7 0 .3 0 1
(3)计算地下水位以下土层的主动土压力及水压力 因水下土为砂土,采用水土分算法
主动土压力:
顶面 a 1 1 h 1 2 z K a 2 1 8 6 9 0 0 . 3 3 3 . 0 k 6 3 P
底面 a 2 1 h 1 2 z K a 2 1 8 6 9 4 0 . 3 4 8 . 3 0 k3 P
721z????????????????????????????????????????4计算主动土压力ea的作用方向水平作用点距墙基为z则19例题用水土分算法计算图所示的挡土墙上的主动土压力水压力及其合力
解:绘制三相草图,计算三相草图中的各相的物理指标:
质量M(g)
体积V(cm3)
ma mw m
气相 液相
分层总和法计算
F=1440kN
1.确定分层厚度
每水层位厚以度上分hi <两0层.4,b=各1.16.m2m,,地地下下 水位以下按1.6m分层
3.4m d=1m
b=4m
2.计算地基土的自重应力
自重应力从天然地面起算,z 的取值从基底面起算
z(m) 0 1.2 2.4 4.0 5.6 7.2
σc(kPa) 16 35.2 54.4 65.9 77.4 89.0 3.计算基底压力
按分层总和法求得基础最终沉降量为s=Σsi =54.7mm
例题:某砂土地基中夹有一层正常固结的粘土层,如图。粘土孔 隙比e0=1.0,压缩指数Cc=0.36。 问: (1)今在地面大面积堆载q=100kN/m2,粘土层会产生多大的 压缩?(计算不需分层);若粘土的固结系数Cv=3*10-3cm2/s, 则达到80%固结度时粘土层压缩量多少?需多少天?(U=80%时 Tv=0.64)
土力学与地基基础(地基土的变形)

(3)压缩模量(侧限压缩模量)
根据e-p曲线,可以求算另一个压缩性指标——压缩模量。它 的定义是土在完全侧限条件下的竖向附加压应力与相应的应变增量
之比值。土的压缩模量可根据下式计算:
亦称侧限压ES缩模H量pH,1 以1便ae1与一般材料在无侧限条件 下简单拉伸或压缩时的弹性模量相区别。
4MPa
高
Vs(1e0)H0A Vs(1ei)HA (H0si)A
Δsi
i
i
ei
e0
si H0
(1 e 0 )
si
e0 ei 1 e0
H0
ei
e0
si H0
(1
e0 )
si
e0 ei 1 e0
H0
只要测定土样在各级压力作用下的稳定压缩量后,就可按
上式算出相应的孔隙比e,从而绘制土的压缩曲线。
如果不出现直线段,可取s=(0.01~0.015)d所对应的荷载代入上式
进行计算
E0与Es两者有如下关系:
E0 Es
1122 12K0
二、地基变形的类型
(一)地基变形的特征 1、沉降量 定义:单独基础中心点的沉降量 应用范围:单层排架、高层建筑、高耸结构 2、沉降差 定义:相邻单独基础沉降量的差值 应用范围:框架、单层排架结构 3、倾斜 定义:单独基础倾斜方向两端点的沉降差与其距离的比值 应用范围:高层建筑、高耸结构 4、局部倾斜 定义:砌体承重结构沿纵向6~10m内基础两点的沉降差与其距离的比值 应用范围:砌体承重结构 (二)地基变形允许值 确定与各种因素有关。有关经验值可查表 (三)地基基础设计 1、设计等级:甲、乙、丙级 2、设计应符合有关规定 ①均应满足承载力计算 ②甲、乙应进行地基变形验算 ③丙级建筑可不做变形验算(除特殊情况之外) ④稳定性验算(承受水平荷载、斜坡上、边坡附近建筑物以及基坑工程) ⑤抗浮验算(水位埋藏较浅)
土力学与地基基础--典型案例

与土有关的典型工程案例一、与土或土体有关的强度问题1.加拿大特朗斯康谷仓加拿大特朗斯康谷仓,由于地基强度破坏发生整体滑动,是建筑物失稳的典型例子。
(1)概况加拿大特朗斯康谷仓平面呈矩形,长59.44 m,宽23.47 m。
高31.0m。
容积36368 m3。
谷仓为圆筒仓,每排13个圆筒仓,共5排65个圆筒仓组成。
谷仓的基础为钢筋混凝土筏基,厚61cm,基础埋深3.66m。
谷仓于1911年开始施工,1913年秋完工。
谷仓自重20000t,相当于装满谷物后满载总重量的42 5% 。
1913年9月起往谷仓装谷物,仔细地装载,使谷物均匀分布、10月当谷仓装了31822m3谷物时,发现1小时内垂直沉降达30.5cm。
结构物向西倾斜,并在24小时间谷仓倾倒,倾斜度离垂线达26o53ˊ。
谷仓西端下沉7.32m,东端上抬加拿大谷仓地基滑动而倾倒端下沉7 32m,东端上抬1.52m。
1913年10月18日谷仓倾倒后,上部钢筋混凝土筒仓艰如盘石,仅有极少的表面裂缝。
(2)事故原因1913年春事故发生的预兆:当冬季大雪融化,附近由石碴组成高为9 14m的铁路路堤面的粘土下沉1m左右迫使路堤两边的地面成波浪形。
处理这事故,通过打几百根长为18.3m的木桩,穿过石碴,形成一个台面,用以铺设铁轨。
谷仓的地基土事先未进行调查研究。
根据邻近结构物基槽开挖试验结果,计算承载力为352kPa,应用到这个仓库。
谷仓的场地位于冰川湖的盆地中,地基中存在冰河沉积的粘土层,厚12.2m.粘土层上面是更近代沉积层,厚3.0m。
粘土层下面为固结良好的冰川下冰碛层,厚3.0 m.。
这层土支承了这地区很多更重的结构物。
1952年从不扰动的粘土试样测得:粘土层的平均含水量随深度而增加从40%到约60%;无侧限抗压强度qu从118.4kPa减少至70.0kPa平均为100.0kPa;平均液限wl =105%,塑限wp=35%,塑性指数Ip=70。
试验表明这层粘土是高胶体高塑性的。
土力学与地基基础设计实例

《土力学与地基基础》课程设计第一部分 墙下条形基础课程设计一、墙下条形基础课程设计任务书(一)设计题目某教学楼采用毛石条形基础,教学楼建筑平面如图4-1所示,试设计该基础。
(二)设计资料⑴工程地质条件如图4-2所示。
杂填土 3K N /m 16=γ粉质粘土 3K N /m 18=γ3.0=b η a M P 10=s E6.1=d η 2KN/m 196=k f淤泥质土a 2M P =s E2KN/m 88=k f⑵室外设计地面-0.6m ,室外设计地面标高同天然地面标高。
图4-1平面图图4-2工程地质剖面图⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,内横墙∑F3K=162.68kN,内纵墙∑F4K=1533.15kN。
⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m。
(三)设计内容⑴荷载计算(包括选计算单元、确定其宽度)。
⑵确定基础埋置深度。
⑶确定地基承载力特征值。
⑷确定基础的宽度和剖面尺寸。
⑸软弱下卧层强度验算。
(四)设计要求⑴计算书要求书写工整、数字准确、图文并茂。
⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。
⑶设计时间五天。
二、墙下条形基础课程设计指导书(一)荷载计算 1.选定计算单元 对有门窗洞口的墙体,取洞口间墙体为计算单元;对无 门窗洞口的墙体,则可取1m 为计算单元(在计算书上应表示出来)。
2.荷载计算 计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。
(二)确定基础埋置深度dGB50007-2002规定d min =Z d -h max 或经验确定d min =Z 0+(100~200)mm 。
式中 Z d ——设计冻深,Z d = Z 0·ψzs ·ψzw ·ψze ; Z 0——标准冻深;ψzs ——土的类别对冻深的影响系数,按规范中表5.1.7-1;ψzw ——土的冻胀性对冻深的影响系数,按规范中表5.1.7-2;ψze ——环境对冻深的影响系数,按规范中表5.1.7-3;(三)确定地基承载力特征值f a)5.0()3(m d b ak a -+-+=d b f f γηγη式中 f a ——修正后的地基承载力特征值(kPa ); f ak ——地基承载力特征值(已知)(kPa);ηb 、ηb ——基础宽度和埋深的地基承载力修正系数(已知);γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m 3);γm ——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m 3); b ——基础底面宽度(m ),当小于3m 按3m 取值,大于6m 按6m 取值;d ——基础埋置深度(m )。
土力学例题

z(m) 0 1.2 2.4 4.0 5.6 7.2
(kPa) (kPa) 16 35.2 54.4 65.9 77.4 89.0 94.0 83.8 57.0 31.6 18.9 12.3
σc
σz
h σc (mm) (kPa) 1200 1200 25.6 44.8
(kPa) 88.9 70.4
解: 求压实后土的孔隙比按式求填土的干密度 ρ d = ρ d max × λ = 1.85×0.95 = 1.76g / cm3 设Vs = 1.0cm3,根据干密度ρ d , 由三相草图求孔隙比e , 根据题意按饱和度Sr=0.9 控制含水量。 Vw =S rVv = 0.9×0.534 = 0.48cm3 因此,水的质量mw = ρ wVw = 0.48g
10
例题分析(要求会做) 【例】厚度H=10m粘土层,上覆透水层,下卧不透水层,
其压缩应力如下图所示。粘土层的初始孔隙比e1=0.8,压 缩系数a=0.00025kPa-1,渗透系数k=0.02m/年。试求: ① 加荷一年后的沉降量St ② 地基固结度达Uz=0.75时所需要的历时t ③ 若将此粘土层下部改为透水层,则Uz=0.75时所需历时t
αc
σz(kPa)σc(kPa) σz /σc
94.0 83.8 57.0 31.6 18.9 12.3 16 35.2 54.4 65.9 77.4 89.0
zn (m)
0.24 0.14
7.2
6.确定沉降计算深度zn 根据σz = 0.2σc的确定原则,由计算结果,取zn=7.2m 7.最终沉降计算 根据e-σ曲线,计算各层的沉降量
z0
pa hKa 2c Ka 11.20(kpa)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与土有关的典型工程案例一、与土或土体有关的强度问题1.加拿大特朗斯康谷仓加拿大特朗斯康谷仓,由于地基强度破坏发生整体滑动,是建筑物失稳的典型例子。
(1)概况加拿大特朗斯康谷仓平面呈矩形,长59.44 m,宽23.47 m。
高31.0m。
容积36368 m3。
谷仓为圆筒仓,每排13个圆筒仓,共5排65个圆筒仓组成。
谷仓的基础为钢筋混凝土筏基,厚61cm,基础埋深3.66m。
谷仓于1911年开始施工,1913年秋完工。
谷仓自重20000t,相当于装满谷物后满载总重量的42 5% 。
1913年9月起往谷仓装谷物,仔细地装载,使谷物均匀分布、10月当谷仓装了31822m3谷物时,发现1小时内垂直沉降达30.5cm。
结构物向西倾斜,并在24小时间谷仓倾倒,倾斜度离垂线达26o53ˊ。
谷仓西端下沉7.32m,东端上抬加拿大谷仓地基滑动而倾倒端下沉7 32m,东端上抬1.52m。
1913年10月18日谷仓倾倒后,上部钢筋混凝土筒仓艰如盘石,仅有极少的表面裂缝。
(2)事故原因1913年春事故发生的预兆:当冬季大雪融化,附近由石碴组成高为9 14m的铁路路堤面的粘土下沉1m左右迫使路堤两边的地面成波浪形。
处理这事故,通过打几百根长为18.3m的木桩,穿过石碴,形成一个台面,用以铺设铁轨。
谷仓的地基土事先未进行调查研究。
根据邻近结构物基槽开挖试验结果,计算承载力为352kPa,应用到这个仓库。
谷仓的场地位于冰川湖的盆地中,地基中存在冰河沉积的粘土层,厚12.2m.粘土层上面是更近代沉积层,厚3.0m。
粘土层下面为固结良好的冰川下冰碛层,厚3.0 m.。
这层土支承了这地区很多更重的结构物。
1952年从不扰动的粘土试样测得:粘土层的平均含水量随深度而增加从40%到约60%;无侧限抗压强度qu从118.4kPa减少至70.0kPa平均为100.0kPa;平均液限wl =105%,塑限wp=35%,塑性指数Ip=70。
试验表明这层粘土是高胶体高塑性的。
按大沙基公式计算承载力,如采用粘土层无侧限抗压强度试验平均值100kPa,则为276 6kPa,已小于破坏发生时的压力3294 kPa值。
如用qumin=70 kPa 计算,则为 193.8kPa,远小于谷仓地基破坏时的实际压力。
地基上加荷的速率对发生事故起一定作用,因为当荷载突然施加的地基承载力要比加荷固结逐渐进行的地基承载力为小。
这个因素对粘性士尤为重要,因为粘性土需要很年时间才能完全固结。
根据资料计算,抗剪强度发展所需时间约为1年,而谷物荷载施加仅45天,几乎相当于突然加荷。
综上听述,加拿大特朗斯康谷仓发生地基滑动强度破坏的主要原因:对谷仓地基土层事先未作勘察、试验与研究,采用的设计荷载超过地基土的抗剪强度,导致这一严重事故。
由于谷仓整体刚度较高,地基破坏后,筒仓仍保持完整,无明显裂缝,因而地基发生强度破坏而整体失稳。
(3)处理方法为修复筒仓,在基础下设置了70多个支承于深16m基岩上的混凝土墩,使用了388只kN500的千斤顶,逐渐将倾斜的筒仓纠正。
补救工作是在倾斜谷仓底部水平巷道中进行,新的基础在地表下深10.36m。
经过纠倾处理后,谷仓于1916年起恢复使用。
修复后位置比原来降低了4m。
2、香港宝城滑坡1972年7月某日清晨,香港宝城路附近,两万立方米残积土从山坡上下滑,巨大滑动体正好冲过一幢高层住宅--宝城大厦,顷刻间宝城大厦被冲毁倒塌并砸毁相邻一幢大楼一角约五层住宅。
死亡67人。
原因:山坡上残积土本身强度较低,加之雨水入渗使其强度进一步大大降低,使得土体滑动力超过土的强度,于是山坡土体发生滑动。
3.阪神大地震中地基液化神户码头:地震引起大面积砂土地基液化后产生很大的侧向变形和沉降,大量的建筑物倒塌或遭到严重损伤4.某电站汇合渠3号渡槽进口槽台——(地基承载力不足——导致地基沉降严重)(1)、失事过程回放某电站工程指挥部于1996年10月27日对于已完工的部分工程进行试水。
8:30左右,在黄九坳渠首开闸放水,放水流量为0.8秒立米(黄九坳引水渠设计流量为2.7秒立米;汇合渠设计流量为6.0秒立米)。
10:30左右,水流到达汇合渠的溢流堰,由于溢流堰的冲砂孔直径只有400mm,排水流量小,以至汇合渠水位基本达到设计水位。
14:15左右,值班人员巡查至汇合渠3号渡槽进口槽台时未发现漏水和渗水现象。
15:45分左右,值班人员发现汇合渠3号渡槽进口槽台附近的连段出现裂缝和大量漏水,并立即报告指挥部。
16:00左右,有关人员赶到出事地点,发现连接段距B点1.3m处的E点有一条向上游倾斜的裂缝(见示意图)。
EB段下沉1cm,槽身微微倾斜,在场的技术人员感到情况不妙,立即赶到上游300m左右的冲砂闸,开闸防水,但开闸很不顺利。
17:00左右,有关人员返回3号渡槽时,发现槽台基础已被大量的漏水淘空,情况已十分严重。
17:10分,槽台失稳跌落,槽身一端已跌落在冲刷坑中,另一端仍支在排架上。
17:30分,整段槽身跌落土坑中,从放水至槽台、槽身破坏共历时9个小时左右。
根据各方面的调查和分析,该电站汇合渠3号渡槽进口槽台失事原因如下:(2)失事原因分析1)该槽台地基没有相应的地质资料及相关土工试验资料。
经事后土工试验分析,该地基土质偏软,压缩性大,实际承载力为100~120kPa,地基承载力偏低(地基的设计承载力平均值为116.8 kPa)。
当渡槽通水时,地基的应力达到或接近地基承载力,地基沉降严重,造成整个槽台下沉,致使渡槽连接段断裂,直接引发这次事故。
2)施工单位在地基开挖后没有通知设计、监理人员对地基进行验收。
3)渠道的总体设计有不少缺陷。
如没有设置数量足够与设计合理的放空闸、溢流堰、冲砂闸等。
4)指挥部对这次试水不够重视,没有具体的安排和布置,没有一整套应急方案。
(3)主要经验教训:1)应重视地质堪察和土工试验工作;2)槽台基础要放在坚实的地基上;3)设计要合理;4)相关部门(设计、施工、监理)应作好配合、协调工作;5)主管部门应有实用的应急预案。
二、与土或土体有关的变形问题1、比萨斜塔目前:塔向南倾斜,南北两端沉降差1.80m,塔顶离中心线已达5.27m,倾斜5.5°1360:再复工,至1370年竣工,全塔共8层,高度为55m1272:复工,经6年,至7层,高48m,再停工1178:至4层中,高约29m,因倾斜停工1173:动工1590:伽利略在此塔做落体实验(1)概况比萨市位于意大利中部,而比萨斜塔位于比萨市北部,它是比萨大教堂的一座钟塔,在大教堂东南方向相距约25m。
比萨斜塔是一座独立的建筑,周围空旷,比萨斜塔建造,经历了三个时期:第一期,自1173年9月8日至1178年,建至第4层,高度约29m时,因塔倾斜而停工。
第二期,钟塔施工中断94年后,于1272年复工,至1278年,建完第7层,高48m,再次停工。
第三期,经第二次施工中断82年后,于1360年再复工,至1370年竣工,全塔共八层,高度为55m。
全塔总荷重约为145MN,塔身传递到地基的平均压力约500kPa。
目前塔北侧沉降量约90cm,南侧沉降量约270cm,塔倾斜约5.5°,十分严重。
比萨斜塔向南倾斜,塔顶离开垂直线的水平距离已达5.27m,等于我国虎丘塔倾斜后塔顶离开水平距离的2.3倍。
幸亏比萨斜塔的建筑材料大理石条石质量优,施工精细,尚未发现塔身有裂缝。
比萨斜塔基础底面倾斜值,经计算为0.093,即93%我国国家标准《建筑0,地基基础设计规范》GBJ 7-89中规定:高耸结构基础的倾斜,当建筑物高度Hg 为:50m<H≤100m时,其允许值为0.005,即5%。
目前比萨斜塔基础实际倾斜g值已等于我国国家标准允许值的18倍。
由此可见,比萨斜塔倾斜已达到极危险的状态,随时有可能倒塌。
(2)事故原因分析关于比萨斜塔倾斜的原因,早在18世纪记载当时就有两派不同见解:一派由历史学家兰尼里·克拉西为首,坚持比萨塔有意建成不垂直;另一派由建筑师阿莱山特罗领导,认为比萨塔的倾斜归因于它的地基不均匀沉降。
本世纪以来,一些学者提供了塔的基本资料和地基土的情况。
比萨斜塔地基土的典型剖面由上至下,可分为8层:①表层为耕植土,厚1 60m;②第2层为粉砂,夹粘质粉士透镜体,厚度 5.40m;③第3层为粉土,厚3.0 m;④第4层为上层粘土,厚度10.5m;⑤第5层为中间粘土,厚为5.0m;⑥第6层为砂土,厚为2.0m;⑦第7层为下层粘土,厚度12.5m;⑧第8层为砂土,厚度超过20.0m。
有人将上述8层土合为3大层:①一③层为砂质粉质土;④一⑦层为粘土层;⑧层为砂质土层。
地下水位深1.6m,位于粉砂层。
根据上述资料分析认为比萨钟塔倾斜的原因是:①钟塔基础底面位于第2层粉砂中。
施工不慎,南侧粉砂局部外挤,造成偏心荷载,使塔南侧附加应力大于北侧,导致塔向南倾斜。
②塔基底压力高达500kPa,超过持力层粉砂的承载力,地基产生塑性变形,使塔下沉。
塔南侧接触压力大于北侧,南侧塑性变形必然大于北侧,使塔的倾斜加剧。
③钟塔地基中的粘土层厚达近30m,位于地下水位下,呈饱和状态。
在长期重荷作用下,土体发生蠕变,也是钟塔继续缓慢倾斜的一个原因。
④在比萨平原深层抽水,使地下水位下降,相当于大面积加载,这是钟塔倾斜的重要原因。
在60年代后期与70年代早期,观察地下水位下降,同时钟塔的倾斜率增加。
当天然地下水恢复后,则钟塔的倾斜率也回到常值。
(3)事故处理方法①卸荷处理为了减轻钟塔地基荷重,1838年至1839年,于钟塔周围开挖一个环形基坑。
基坑宽度约3.5m,北侧深0。
9m,南侧深2.7m。
基坑底部位于钟塔基础外伸的三个台阶以下,铺有不规则的块石。
基坑外围用规整的条石垂直向砌筑。
基坑顶面以外地面平坦。
②防水与灌水泥浆为防止雨水下渗,于1933—1935年对环型基坑做防水处理,同时对基础环周用水泥浆加强。
③为防止比萨斜塔散架,于1992年7月开始对塔身加固。
以上处理方法均非根本之计。
其关键应是对地基加固而又不危及塔身安全。
其难度是很大。
此外,比萨斜塔贵在斜,因为1590年伽利略曾在此塔做落体实验,创立了物理学上著名的落体定律。
斜塔成为世界上最珍贵的历史文物,吸引无数国内外游客。
如果把塔扶正,实际破坏了珍贵文物。
因此,比萨斜塔的加固处理难度大,既要保持钟塔的倾斜,又要不扰动地基避免危险,还要加固地基,使斜塔安然无恙。
有志之土如能研究出一个切实可行的方案.则是一大贡献。
处理措施1838-1839:挖环形基坑卸载1933-1935:基坑防水处理基础环灌浆加固1990年1月:封闭1992年7月:加固塔身,用压重法和取土法进行地基处理目前:已向游人开放。
2、虎丘塔(1)工程事故概况虎丘塔位于苏州市西北虎丘公园山顶,原名云岩寺塔,落成于宋太祖建隆二年(公元961年),距今已有1000多年悠久历史。