七年级下数学统计例题及答案
人教版七年级数学下册《10.1统计调查》同步练习题-含有答案

人教版七年级数学下册《10.1统计调查》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.万州区教师进修学院为了督查国家双减政策的落实情况,现调查某校学生每日睡眠时长问题,选用下列哪种方法最恰当()A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查2.某校从800 名学生中随机抽取100 名学生进行百米测试,下列说法正确的是()A.该调查方式是普查B.800 名学生是总体C.样本是100名学生D.每名学生的百米测试成绩是个体3.王老师了解到七年级5个班学生完成课后作业的平均时间分别为(单位:分钟):30,45,40,30,35,获得这组数据的方法()A.直接观察B.测量C.实验D.调查4.以下问题,不适合普查的是()A.了解一批灯泡的使用寿命B.学校招聘教师,对应聘人员的面试C.了解全班学生每周体育锻炼时间D.上飞机前对旅客的安检5.某灯具厂从1万件同批次产品中随机抽称了100件进行质检,发现其中有6件不合格,估计该厂这1万件产品中不合格品的件数大约是()A.6件B.100件C.600件D.10000件6.合肥市农科所在相同条件下经试验发现玉米种子的发芽率为97.1%,该市某种粮大户准备了1000kg玉米种子用来育种,他可能会损失大约()kg.A.971B.129C.1D.297.从某地某一个月中随机抽取5天的中午,记录这5天12时的气温(单位:℃),结果如下:2232251318可估计该地这一个月中午12时的平均气温为()℃.A.13B.22C.25D.328.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是()A.甲B.乙C.丙D.丁6π9π5π5π二、填空题10.为了直观地表示某店今年下半年某款电视的每月的销售额随月份的变化趋势,最适合使用的统计图是.11.在2024年义务教育质量国家监测中,对某校八年级(1)班30名学生语文成绩进行分析,80~100分数段的学生有21人,则这21人所占该班人数的百分比是.12.如图示,是某校四个年级男女生人数的条形统计图,则学生最多的年级是年级.13.某水果店老板为了解甲、乙两品种草莓的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两品种草莓各7份样品,对草莓的品质进行评分(百分制),并对数据进行收集、整理,然后绘制出如下所示的两品种草莓品质得分的调查结果统计图.根据统计图,可知品质相对较好的是______品种.(填甲或乙)、14.学校有一块校园试验田,七年级同学种植青椒、西红柿、茄子三种蔬菜,统计其数量,绘制扇形统计图如图所示,若种植西红柿苗90株,该校七年级同学一共种植蔬菜株.三、解答题15 . 某中学的“爱上阅读”小组成员,于2024年1月28日线上观看了阳城县委宣传部举办的书香润阳城共读共享:“悦读悦心”——“阅读的力量”读书活动(第17期).为了了解学校学生课外阅读情况,他们决定对本校学生每天的课外阅读情况进行调查,他们随机抽取了本校部分学生进行了问卷调查,并将结果分为A,B,C,D四个等级,表、图如下,请根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)若该校共有1200名学生,每天课外阅读时间在2小时以内的学生有多少人?16.初三年级261位学生参加100米跑和推铅球两项体育测试,某班35位学生的100米跑成绩、推铅球成绩与两项总成绩在全年级中的排名情况如图1和图2所示,甲,乙,丙为该班三位学生.(1)计算各季度的销售量,并用一幅合适的统计图表示;(2)计算各季度的销售量在全年销售量中所占的百分比(精确到1%),并用适当的统计图表示;(3)用一幅合适的统计图表示各季度销售量的变化情况.参考答案:1.B2.D3.D4.A5.C6.D7.B8.D9.B10.折线统计图11.70%12.713.甲14.15015.(1)200名(2)(3)36°(4)1080人16.(1)甲(2)推铅球17.(1)第一季度:250件;第二季度:20件;第三季度:10件;第四季度:320件(2)各季度销售量在全年销售量中所占的百分比约为:41.7%、3.3%、1.7%、53.3%.(3)。
初一数学下册综合算式专项练习题统计与概率的计算

初一数学下册综合算式专项练习题统计与概率的计算统计与概率是数学中非常重要的内容,它既有实际应用的意义,也能够增强我们的逻辑思维能力。
在初一数学下册中,我们将会遇到一些关于统计与概率的计算题目。
让我们来看一些例子,帮助我们更好地理解和掌握这部分知识。
1. 题目一某班共有60名学生,其中30名男生和30名女生。
如果从班级中随机选取一名学生,那么他/她是女生的概率是多少?解答:我们可以利用概率的定义来求解这个问题。
在这个班级中,有60名学生,其中30名是女生。
所以,女生的概率可以表示为:女生的人数 / 总人数 = 30 / 60 = 1/2。
所以,选取一名学生是女生的概率是1/2。
2. 题目二一副扑克牌共有52张牌,其中有4个花色(♠️、♥️、♣️和♦️),每个花色下有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。
如果从扑克牌中随机选取一张牌,那么它是红心牌的概率是多少?解答:我们知道一副扑克牌共有52张牌,其中有13张红心牌。
所以,红心牌的概率可以表示为:红心牌的数量 / 总牌数 = 13 / 52 = 1/4。
所以,选取一张牌是红心牌的概率是1/4。
3. 题目三某学校有200名学生,其中150名学生会弹钢琴,50名学生会弹吉他,并且30名学生既会弹钢琴又会弹吉他。
如果从学校中随机选取一名学生,那么他/她会弹钢琴或弹吉他的概率是多少?解答:我们可以利用概率的加法原理来求解这个问题。
在这个学校中,会弹钢琴的学生有150名,会弹吉他的学生有50名,既会弹钢琴又会弹吉他的学生有30名。
所以,会弹钢琴或弹吉他的学生数目为:150 + 50 - 30 = 170。
总共有200名学生。
所以,选取一名学生会弹钢琴或弹吉他的概率是170 / 200 = 17/20。
通过以上的例子,我们可以看到,在统计与概率的计算中,我们可以利用基本的计数原理和概率的定义来解决问题。
只要我们理解了这些概念和原理,并能够灵活运用,就可以应对各种各样的统计与概率题目。
人教版七年级数学下册统计调查 典型例题(考点)讲解+练习(含答案)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】统计调查知识讲解责编:杜少波【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3)样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.2.调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释:(1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.(2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.类型二、普查和抽样调查2.(2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况【思路点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【答案】B.【解析】解:A、调查一批电视机的使用寿命情况,调查具有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.【总结升华】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【思路点拨】抽样调查不可能进行全面调查的现象.【答案】A.【解析】解:要了解义乌电视台“同年哥讲新闻”栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用全面调查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用全面调查的方式.故选A.【总结升华】①在具体的问题情境中,要根据需要选择用全面调查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.【答案】(1)采用的是全面调查方式收集数据的;(2)、(3)是采用抽样调查方式收集数据的.类型三、数据的描述4.2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.【思路点拨】依据条形图反映出来的数量作答.【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:故喜欢乒乓球的人数为:200-12-38-80-20=50(人).(2)喜欢收看羽毛球人数为:12=200(人),6%20⨯1800=180(人).200【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.5.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本110元每亩产量130千克油菜籽市场价格3元/千克种植面积500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=8140000000=1.4×10(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.6.某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.【:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图,从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中,每年的国内生产总值不断增长D.这7年中,每年的国内生产总值有增有减【答案】D类型四、综合应用7.(2016•河南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【思路点拨】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【答案与解析】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:(4)1800×=480(名).×360°=48°;答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【总结升华】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.【:统计图练习1】举一反三:【变式1】如果想表示我国从20002010年间国民生产总值的变化情况,最合适的是采用( ).A.条形统计图B.扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.40【答案】D.。
初一数学统计试题

初一数学统计试题1.要了解某地农户用电情况,抽查了部分农户在某地一个月中用电情况:用电15度的有3户,用电20度的有5户,用电30度的有2户,那么平均每户用电 .【答案】20.5度.【解析】平均数的计算方法是求出所有用户的总用电量,然后除以总户数即可:平均每户用电:.【考点】加权平均数.2.在选取样本时,下列说法不正确的是()A.所选样本必须足够大B.所选样本要具有普遍代表性C.所选样本可按自己的爱好抽取D.仅仅增加调查人数不一定能提高调查质量【答案】C【解析】选取样本必须足够大,且要具有普遍代表性,对于总体的估计才准确,所以不正确的是C.3.①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③【答案】A【解析】②不是对全体初中生进行的调查,④不是对全班同学作业完成情况的调查,故②④不是采用的普查方式. ①③采用的是普查方式,所以选A.4.把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A.B.C.D.【答案】D【解析】由图可知,只有封存家中等待处理的属于正确的处理方法,所以对过期药品处理不正确的家庭达到,故选D.5.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙【答案】B【解析】由题图可以得出:八年级共有学生;七年级的达标率为;九年级的达标率为;八年级的达标率为.所以九年级的达标率最高.故乙、丙的说法是正确的,故选B.6.某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.【答案】20【解析】因为某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是.7.近五年来,某校图书拥有量统计表如下:_____册.【答案】【解析】2009年该校图书有册,从2008年到2012年该校图书增加了.8.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有名学生,请估计该校参加“美术”活动项目的人数.【答案】(1)48 (2)90°(3)300【解析】解:(1)因为,所以在这次调查中,一共抽查了名学生.(2)因为.所以参加“音乐”活动项目在扇形统计图中所对扇形的圆心角为.(3)因为,所以该校参加“美术”活动项目的人数约为.9.下列调查中,适合采用全面调查方式的是()A.对宜春秀江水质情况的调查.B.对某班50名同学体重情况的调查.C.对端午节期间市场上粽子质量情况的调查.D.对万载县某类烟花爆竹燃放安全情况的调查.【答案】B【解析】普查具有资料包括的范围全面、详尽、系统的优点,但是普查的工作量大,耗资也多,一般不宜经常举行。
最新七年级下数学统计例题及答案

1、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:小题1:(1)在这次问卷调查中,一共抽查了名学生;小题2:(2)请将上面两幅统计图补充完整;小题3:(3)图中,“踢毽”部分所对应的圆心角为度;小题4:(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?解答:小题1:(1)200;小题2:(2).如图所示:小题3:(3).;小题4:(4).最喜欢球类活动的学生人数是(名)2、实验中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调查各兴趣小组活动情况,为此校学生会委托小容、小易进行一次随机抽样调查.根据采集到的数据,小容绘制的统计图1,小易绘制的统计图2(不完整)如下:请你根据统计图1、2中提供的信息,解答下列问题:小题1:写出2条有价值信息(不包括下面要计算的信息);小题2:这次抽样调查的样本容量是多少?在图2中,请将小易画的统计图中的“体育”部分的图形补充完整;小题3:爱好“书画”的人数占被调查人数的百分数是多少?估计实验中学现有的学生中,有多少人爱好“书画”?解答:小题1:①电脑小组比音乐小组人数多;②音乐小组体育小组比例大;等等小题2:画图,如图所示;小题3:3、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?解答:解:(1)a="80" , b= 10%(2)×100%×360°="108°(3) 80+40+200×10%="140×100%×8000="56004、某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下统计图,其中测试成绩在90~100分为A级,75~89分为B级,60~74分为C级,60分以下为D级。
七年级数学下册数据的收集、整理与描述(统计调查)练习题

七年级数学下册数据的收集、整理与描述(统计调查)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.为了解某校1000名九年级学生的视力情况,调查人员从中抽取了200名学生进行调查.在这个问题中,个体是______.2.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统.是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.在发射前,对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是__________.(填“普查”或“抽样调查”)3.全面调查和抽样调查是收集数据的两种方式._______收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;_______有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.4.“神十”圆满完成载人航天飞行任务后,专家将对返回舱零部件进行检查,应采取的合理的调查方式是____.5.检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.6.要从编号为1~100的总体中随机抽取10个个体组成一个样本.(1)小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,你认为她选取的这个样本_____(填“具有”或“不具有”)代表性;(2)请你随机选取一个含有10个个体的样本,其中个体的编号为___________.二、单选题7.下列说法正确的是()A.为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B.“煮熟的鸭子飞了”是一个随机事件C.一组数据的中位数可能有两个D.为了解我省中学生的睡眠情况,应采用抽样调查的方式8.某校九年级学生共有600名,要了解这些学生每天上网的时间,现采用抽样调查的方式,下列抽取样本数量既可靠又省时、省力的是()A.选取10名学生作样本B.选取50名学生作样本C.选取300名学生作样本D.选取500名学生作样本9.下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量10.为了解某县2021年参加中考的14000名学生的视力情况,抽查了其中1000名学生的视力进行统计分析,下面叙述错误的是()A.14000名学生的视力情况是总体B.样本容量是14000C.1000名学生的视力情况是总体的一个样本D.本次调查是抽样调查11.某校为了了解线上教育对孩子视力的影响情况对该校1200名学生中抽取了120名学生进行了视力下降情况的抽样调查,下列说法正确的是()A.1200名学生是总体B.样本容量是120名学生的视力下降情况C.个体是每名同学的视力下降情况D.此次调查属于普查12.为了解某市5万名学生平均每天完成课后作业的时间,请你运用数学的统计知识将统计的主要步骤进行排序:①得出结论,提出建议;①分析数据;①从5万名学生中随机抽取500名学生,调查他们平均完成课后作业的时间;①利用统计图表将收集的数据整理和表示.合理的排序是()A.①①①①B.①①①①C.①①①①D.①①①①三、解答题13.要调查下面几个问题,你认为应该作全面调查还是抽样调查?(1)了解全班同学每周体育锻炼的时间.(2)调查市场上某种食品的色素含量是否符合国家标准.(3)鞋厂检测生产的鞋底能承受的弯折次数.14.为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).15.调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.参考答案:1.九年级每名学生的视力情况【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】本题考查的对象是为了解某校1000名九年级学生的视力情况,故个体是九年级每名学生的视力情况.故答案为:九年级每名学生的视力情况【点睛】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象,总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.普查【分析】根据抽样调查与普查的特点及被调查的事情的精度与难度,可行性等可得答案.【详解】解:中国自行研制的全球卫星导航系统,对各部件的要求:必须百分百符合要求,所以对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是普查.故答案为:普查.【点睛】本题考查的是抽样调查与普查的含义,掌握选择抽样调查与普查的依据是解题的关键.3.全面调查抽样调查【解析】略4.普查【分析】直接利用普查和抽样调查的特点解题即可【详解】返回舱的每个零部件都非常关键,所以必须得对零部件进行全面普查【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键5.2500件包装食品的质量所抽取的50件包装食品的质量【分析】根据总体是指考查的对象的全体,样本是总体中所抽取的一部分个体即可解答.【详解】解:检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题%=50件包装食品的质量,中,总体是2500件包装食品的质量,样本是抽取的25002故答案为:2500件包装食品的质量;所抽取的50件包装食品的质量.【点睛】本题考查了总体、样本的概念,解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.掌握总体、样本的概念是解题关键.6.不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【分析】根据抽取的样本是否具有广泛性和代表性,即各个方面,各个层次的对象都要有所体现解答即可.【详解】因为小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,不具有随机性,所以这个样本不具有代表性;如可抽取2,14,39,40,43,59,79,85,92,88(答案不唯一).故答案为不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【点睛】本题考查了样本的选取,抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.7.D【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C. 一组数据的中位数只有1个,故该选项不正确,不符合题意;D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D.【点睛】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.B【分析】根据抽样调查的样本容量要适当,可得答案.【详解】解:A样本容量太小,不具代表性,故A不可取;B样本容量适中,省时省力又具代表性,故B可取;C 样本容量太大,费时费力,故C不可取;D 样本容量太大,费时费力,故D不可取;故选:B.【点睛】本意考查了抽样调查的可靠性,注意样本容量太小不具代表性,样本容量太大费时费力.9.B【分析】根据随机事件的定义、全面调查的意义、方差的意义以及样本容量的定义进行判定即可.【详解】解:A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件,故A选项不符合题意;B.要了解小王一家三口的身体健康状况,适合采用全面调查调查,故B选项符合题意;C.一组数据的方差越小,它的波动越小,故C选项不符合题意;D.样本中个体的数目称为样本容量,故D选项不符合题意.故选:B.【点睛】本题考查统计的相关定义,掌握其定义和意义是解决问题关键.10.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 14000名学生的视力情况是总体,故该选项正确,不符合题意;B. 样本容量是1000,故该选项不正确,符合题意;C. 1000名学生的视力情况是总体的一个样本,故该选项正确,不符合题意;D. 本次调查是抽样调查,故该选项正确,不符合题意故选B【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.11.C【分析】据题意可得1200名学生的视力下降情况,从中抽取了120名学生进行视力调查,这个问题中的总体是1200名学生的视力下降情况,样本是抽取的120名学生进行视力下降情况,个体是每一个学生的视力下降情况,样本容量是120,注意样本容量不能加任何单位,此次调查属于抽样调查.【详解】解:A、总体是1200名学生的视力下降情况,此选项错误;B、样本容量是120,此选项错误;C、个体是每名同学的视力下降情况,此选项正确;D、此次调查属于抽样调查,此选项错误;故选:C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.B【分析】根据统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议即可求解.【详解】解:统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议,故顺序为①①①①.故选:B【点睛】本题考查了统计的一般过程,熟知统计的一般过程是解题关键.13.(1)全面调查;(2)抽样调查;(3)抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:(1)人数不多适合全面调查;(2)数量较多,适合抽样调查;(3)数量较多,且抽查具有破坏性,适合抽样调查.【点睛】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.14.(1)200;(2)90,94;(3)1440名【分析】(1)用D程度人数除以对应百分比即可;(2)用A程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B等级对应百分比,乘以样本容量可得m值;(3)用样本中A、B程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,①该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.15.见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:【点睛】本题主要考查了数据的收集与设计调查表,解题的关键是掌握收集数据的基本方法有调查、实验和查阅资料等,而在问卷设计中最重要的一点就是必须明确调查的内容和目的.。
新人教版数学七年级下《10.1统计调查》课时练习含答案解析
新人教版数学七年级下册第十章第一节统计调查练习一、选择题:1.以下调查中适合做普查的是()A.值日老师调查各班学生的出勤情况B.调查长江水的污染情况C.调查某种钢笔的使用情况D.中央电视台调查某节目的收视率答案:A知识点:全面调查与抽样调查解析:解答:A.工作量小,没有破坏性,适合普查;B、D范围广,工作量大,不宜采取普查,只能采取抽样调查;C调查具有破坏性,适宜抽样调查.分析:有普查得到的调查结果比较准确,但所费人力、物、时间较多;一般来说,对于具有破坏性的调查,或无法进行普查时,应选择抽样调查.2.为了了解某县30~50岁成人的健康状况,采取了抽样调查方式获得结果,下面所采取的抽样合理的是( )A.抽查了该县30~50岁的男性公民B.抽查了该县城区30~50岁的成人20名C.抽查了该县所有30~50岁的工人D.随机抽查了该县所有30~50岁成人400名答案:D知识点:抽样调查的可靠性解析:解答:A、没有抽查到女性公民,不具有普遍性;B、抽查范围小,不具有普遍性;C、只抽查了工人,没有抽查其他职业的劳动者所以不具有普遍性.故选D分析:采取抽样调查时,应保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性的偏差是极小的,样本对总体的代表性是很强的。
3.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用( ):A.条形统计图B.扇形统计图C.折线统计图D.以上都可以答案:B知识点:统计图的选择解析:解答:解:由题意得,想反映某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用扇形统计图.故选B分析:根据扇形统计图表示的是部分在总体中所占的百分比,即可进行选择.4.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频率是()A.20B.0.4C.0.6D.30答案:B知识点:频数(率)分布表解析:解答:解:∵第一、二、三、五组的数据个数分别是2,8,15,5∴第四组的频数=50-(2+8+15+5)=20∴第四组的频率==0.4故选B分析:∵∴根据题意可得,第四组的频数=50-(2+8+15+5)=20,再带入公式即可。
初中数学七年级下统计调查练习题含答案
7.某校为了解本校 名学生的体重情况,从中抽取了 名学生测量体重,下列说法中正确的是()
A.总体是 名学生B.样本容量是
C.该调查方式是普查D.个体是 名学生的体重
8.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均数都是 分,方差分别是: ,则四个人中成绩最稳定的是()
中位数
众数
方差
甲
________
乙
________
得出结论:
包装机分装情况比较好的是________(填甲或乙)(不需要说明理由).
36.课堂上老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高,坐在教室最后面的小强为了争速度,立即就近向他周围的三个同学做调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小强所选用的这种抽样调查的方式你认为合适吗?为什么?
故选 .
2.【Βιβλιοθήκη 案】C【考点】抽样调查的可靠性
【解析】
样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.
【解答】
解:根据样本的选择方法,依次分析选项可得:
、重点中学成绩较好,选择的样本不具有代表性;
、在篮球场的青少年普遍对我国篮球事业的关注程度较高,选择的样本不具有代表性;
(2)为了调查学校的男、女生比例,调查统计了各班男、女生人数;
(3)为了考察同一型号的一批炮弹的杀伤半径,从中任意抽取 枚进行调查分析.
25.小明利用周末去做社会调查,了解美的空调的质量情况.他设计的问题是:你觉得美的空调好吗?你对他设计的问题有何看法,为什么?
26.对下面的问题进行调查:
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查测试题(含答案) (42)
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次抽样调查中,共调查了名学生;(2)补全条形统计图,并求扇形统计图中表示“乒乓球”的扇形的圆心角度数;(3)若全校有1500名同学,估计全校最喜欢篮球的有多少名同学?【答案】(1)200;(2)48;126°;(3)300人.【解析】试题分析:(1)、根据羽毛球的人数和比例求出总人数;(2)、根据总人数减去其他球类的人数得出跳绳的人数,首先求出乒乓球的百分比,然后计算角度;(3)、首先求出样本中篮球的百分比,然后求出总人数.试题解析:(1)、30÷15%=200、200-70-40-30-12=48 70÷200×360°=126°(3)、1500×(40÷200)=300(名)考点:统计图.42.某校为了组织一项球类对抗赛,在本校随机检查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数.【答案】(1)50人,补图见解析;(2)240人【解析】÷=(人),解:本次被调查的学生数1326%50⨯=人,喜爱羽毛球的人数5016%8----=(人),喜爱其他的人数5013101683∴本次被调查的学生人数是50人,正确补全图形:(2)150016%240⨯=(人).故估计该校最喜欢篮球运动的学生有240人.43.某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表分组个人学期绩效工资x(元)频数(人)频率A x≤200018 0.15B2000<x≤4000a bC4000<x≤6000D6000<x≤800024 0.20E x>8000 12 0.10合计c 1.00根据以上图表中信息回答下列问题:(1)直接写出结果a= ;b= ;c= ;并将统计图表补充完整;(2)教师个人的每学期绩效工资的中位数出现在第组;(3)已知该区共有教师5000人,请你估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数.【答案】(1)36,0.36,120;(2)C(3)1500【解析】试题分析:(1)利用A组的频数与频率可计算出调查的总人数C的值,再利用频数分布直方图得到a的值,则用a除以c可得到b的值,然后计算出C 组的频数后补全统计图;(2)根据中位数定义求解;(3)利用样本估计总体,用5000乘以样本中D组和E组的频率和即可.试题解析:(1)c=18÷0.15=120,a=36,b=36÷120=0.30;C组的人数为120﹣18﹣36﹣24﹣12=30(人)如图,(2)教师个人的每学期绩效工资的中位数出现在第C组;(3)5000×(0.20+0.10)=1500,所以估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数为1500人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表;4、中位数44.“古圣先贤孝为宗,万善之门孝为基,礼敬尊亲如活佛,成就生命大意义,父母恩德重如山,知恩报恩不忘本,做人饮水要思源,才不愧对父母恩…”.某实验中学为加强对学生的感恩教育,教学生唱《跪羊图》,并对学生的学习成果进行随机抽查,现对部分学生的成绩(x为整数,满分100分)进行了统计,绘制了如下尚不完整的统计图表.调查结果扇形统计图根据以上信息解答下列问题:(1)统计表中a=________,b=________,c=________;(2)求扇形统计图中D组所在扇形的圆心角的度数;(3)若参加《跪羊图》演唱的同学共有2000人,请估计成绩在90分及以上的学生有多少人?【答案】(1)80,400,0.15;(2)144︒;(3)300人【解析】【分析】(1)用A组的频数与A组所占扇形的百分数相除即可求出总数b,用总数b乘C组的频率即可求出a,用B组的频数除以总数即可求出c;(2)用360°乘D组所占扇形统计图中的百分数即可;(3)用90分以上的频率乘学校参加《跪羊图》演唱的总人数2000即可.【详解】解:(1)400.1400b =÷=,4000.280a =⨯=,604000.15c =÷=.(2)“D ”所对的扇形的圆心角度数为36040%144⨯︒=︒;(3)200015%300⨯=(人).答:估计成绩在90分及以上的学生有300人.【点睛】本题考查了频数频率统计表和扇形统计图,解决本题的关键是正确理解题意,熟练掌握频数频率统计表中各组量与扇形统计图中各组量的对应关系,掌握样本估计总体的方法.错因分析:本题属于中档题.失分原因如下表:45.某校为了了解今年九年级学生的数学学习情况,在中考考前适应性训练测试后,对九年级全体同学的数学成绩作了统计分析,按照成绩高低分为A 、B 、C 、D 四个等级并绘制了如图1和图2的统计图(均不完整),请结合图中所给出的信息解答问题:(1)该校九年级学生共有人.(2)补全条形统计图与扇形统计图.(要求:请将扇形统计图的空白部分按比例分成两部分.)【答案】(1)280;(2)图见解析【解析】【分析】(1)根据统计图中A等级的人数和百分比求出总人数;(2)先求出C等级所占百分比,从而得出D等级的百分比,再根据总人数得出D等级的人数,最后根据数据补全图形即可.【详解】解:(1)∵A等级的人数为42人,所占百分比为15%,则42÷15%=280(人)∴该校九年级学生共有280人.(2)∵C等级的人数为84,84÷280=0.3=30%,∴C等级在扇形统计图里的圆心角为108°,D等级所占比例为20%,在扇形统计图里的圆心角为72°,∴280×20%=56(人),∴条形统计图与扇形统计图如图所示:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.46.如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:(1)这一周访问该网站一共有万人次;(2)周日学生访问该网站有万人次;(3)周六到周日学生访问该网站的日平均增长率为.【答案】(1)10;(2)0.9;(3)44%【解析】【分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次); 故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∵星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%;故答案为44%.考点:折线统计图;条形统计图47.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A 非常了解.B 了解.C 了解较少.D 不了解”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:()1此次共调查了______名学生;()2扇形统计图中D所在的扇形的圆心角为______;()3将条形统计图补充完整;()4若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.【答案】(1)120;(2)54;(3)见解析;(4)200人【解析】【分析】(1)由B类别人数及其所占百分比可得;(2)用总人数乘以D类别人数占总人数的比例即可得;(3)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(4)用总人数乘以样本中A类别的人数所占比例即可得.【详解】(1)本次调查的总人数为4840%120(÷=名),故答案为:120;(2)扇形统计图中D所在的扇形的圆心角为1836054⨯=,120故答案为:54;(3)C 类别人数为12020%24(⨯=人), 则A 类别人数为()12048241830(-++=人), 补全条形图如下:(4)估计对文明城市的了解情况为“非常了解”的学生的人数为30800200120⨯=人. 【点睛】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.48.第十一届“汉语桥”世界中学生中文比赛复赛决赛在云南师范大学开赛.比赛吸引了来自99个国家110个赛区的332名师生来华.某校为了解全校学生对比赛中几类节目的喜爱情况(A :中国歌曲、B :中国民族舞蹈、C :中国曲艺、D :武术、E :其它表演),从全校学生中随机抽取部分学生进行问卷调查,要求每个学生选择一项最喜爱的节目,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;扇形统计图中,B节目所对应的圆心角是多少度;(3)若该校有2400名学生,估计全校学生中喜欢中国民族舞蹈节目的共有多少人?【答案】(1)200人;(2)统计图见解析,90°;(3)600人.【解析】【分析】(1)用中国歌曲的人数40人除以其占总人数的百分比即可求得;(2)根据D节目所占总人数的百分比可先算得D节目人数,然后进一步即可得出B节目人数,随后补充条形统计图即可,然后用B节目人数除以总人数乘以360°即可得出其圆心角度数;(3)先算出调查中喜欢中国民族舞蹈节目占总人数得比例,然后乘以总人数2400名学生即可.【详解】÷=(人),(1)4020%200答:这次被调查的学生共有200人;(2)由题意得:D 节目的人数为20010%20⨯=(人) ∴B 节目的人数为2004030206050----=(人). 补全条形统计图如解图所示;B 节目所对扇形圆心角为5036090200︒︒⨯=; (3)502400600200⨯=(人) 答:估计全校学生中喜欢中国民族舞蹈节目的共有600人. 【点睛】本题主要考查了统计图的运用,熟练掌握相关概念是解题关键.错因分析 容易题.失分原因是:∵对“样本容量=某一项的人数÷相应的百分比”掌握不熟练;∵没掌握计算扇形圆心角的方法:“某项的扇形圆心角度数 其对应的百分比(频率)”;∵没掌握样本估计总体的方法.49.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x 表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了人;(2)请将表格补充完整;(3)这组数据的中位数落在组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是.【答案】(1)200;(2)补图见解析;(3)C;(4)108°.【解析】试题分析:(1)根据圆心角α为36°,求出A组所占的百分比,的出频率,再根据频数是20,即可得出总人数;(2)根据频数、频率之间的关系,分别求出B组的频数、C组的频率、D 组的频数以及频率,填表即可;(3)根据中位数的定义即可得出这组数据的中位数落在C组内;(4)用360°乘以D组的频率即可得出答案.试题解析:(1)∵圆心角α为36°,=0.1,∵A组的频率是:36360∵总人数是20÷0.1=200(人),(2)B组的频数是200×0.35=70;C组的频率是50÷200=0.25;D组的频数是:200-20-70-50=60,频率是60÷200=0.3;填表如下:(3)∵这组数据共有200个数,∵中位数是第100,101个数的平均数,∵这组数据的中位数落在C组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是360°×0.30=108°.考点:1.统计图;2.中位数.50.据2005年5月10日《重庆晨报》报道:我市四月份空气质量优良,高居全国榜首,某校初三年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽查了今年1~4月份中30天空气综合污染指数,统计数据如下:空气综合污染指数:30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)填写频率分布表中未完成的空格:(2)写出统计数据中的中位数、众数;(3)请根据抽样数据,估计我市今年(按360天计算)空气质量是优良.(包括Ⅰ、Ⅰ级的天数)【答案】(1)见解析;(2)中位数是80,众数是45;(3)估计我市今年空气质量是优良的天数有252天.【解析】试题分析:(1)由正字可得第一行的频数为9;第三行的正字笔画=30-9-12-6=3,频数为3,频率为:3÷30=0.1.(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)应先算出前2组的频率之和,再计算360×频率即可.(1)如图:(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)∵360×(0.30+0.40)=360×0.70=252(天).∵估计我市今年空气质量是优良的天数有252天.考点:1.频数(率)分布表;2.用样本估计总体;3.中位数;4.众数.。
七年级数学下册统计调查测试(含答案)
七年级数学下册统计调查测试——抽样调查一、选择题1.为了了解某校九年级学生的视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).A.每名学生的视力B.60名学生的视力C.60名学生D.该校九年级学生的双眼视力2.为了反映某地区的天气变化趋势,最好选择( ).A.扇形统计图B.条形统计图C.折线统计图D.以上三种都不行3.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名七年级学生4.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( ).A.1万件B.19万件C.15万件D.20万件5.如图为某产品产量增长情况统计图,下列说法正确的是( ).A.产量持续增长B.产量有增有减C.开始产量不变D.条件不足,无法判断二、填空题6.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是________________,个体是________________,抽取的样本是___________,样本容量是_________.7.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果___________,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作___________.8.下列调查的样本中不缺乏代表性的有哪几个___________.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七1班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.9.为了让大家感受丢弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45位学生,那么根据提供的数据估计本周全班各家平均丢弃塑料袋数量约为______.10.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:甲公司乙公司从2003年到2007年,这两家公司中销售量增长较快的是____________.11.为了解09届本科生的就业情况,某网站对09届本科生的签约状况进行了网络调查,至3月底,参与网络调查的12000人中,只有4320人已与用人单位签约.在这个网络调查中,样本容量是______.三、解答题12.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集的数据,绘制成如图.(1)学校采用的调查方式是___________________________________________________.(2)选择喜欢“踢毽子”的学生有多少人,并在图中将“踢毽子”部分的图形补充完整.(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.13.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).图1 图2请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?(3)补全折线统计图.14.某海港受潮汐的影响,某天24小时港内的水深变化大致如图所示.一艘货轮于上午7时在该港码头开始卸货,计划当天卸完后离港,已知这艘货轮卸完货后吃水深度为2.5米(吃水深度即船底到水面的距离),该港口规定:为保证航行安全,只有当船底与港内水底间的距离不小于3.5米时,才能进出该港.(1)要使该船能在当天卸完货并安全出港,则出港时水深不能少于多少米?卸货最多只能用多少小时?(2)已知该船装有1200吨货物,先由甲装卸队单独卸,每小时卸货180吨,工作5小时,再由乙装卸队接着单独卸,乙装卸队每小时最少卸多少吨货,才能使该船及时离港?15.(株洲)某学校举行一次体育测试,从所有参加测试的学生中随机抽取10名学生的成绩,制作出如下统计表:95请回答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是____;(2)求成绩是C等的人数;(3)已知该校所有参加这次测试的学生中,有60名学生的成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少.参考答案1.D . 2.C . 3.D . 4.B . 5.A .6.这批手表的防水性能;每只手表的防水性能;10只手表的防水性能;10. 7.花费少、省时;全面、准确;样本的情况;抽样调查. 8.②,③. 9.28个. 10.甲公司. 11.12000.12.(1)抽样调查;(2)25人,如图;(3)16010020800=⨯(人).13.(1)20÷20%=100(人);(2)36°;(3)喜欢篮球的有40人,喜欢排球的有10人.(图略)14.解:(1)2.5+3.5=6(米),即出港时水深不能少于6米,而下午水深6米所对应的时间为15时,上午7时到港,必须在下午15时前离港,所以最多只能用15-7=8(小时).(2)(1 200-180×5)÷(15-7-5)=100(吨).答:乙装卸队每小时最少卸100吨货,才能使该船及时离港.15.解:(1)从表格中找到A 等级的最低分为85分,故易知孔明的成绩等级为A 等. (2)C 等的人数为2.(3)10名学生的等级中A等有3个,所以A等的比例为3 10.总人数为360=20010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
小题1:(1)在这次问卷调查中,一共抽查了名学生;
小题2:(2)请将上面两幅统计图补充完整;
小题3:(3)图中,“踢毽”部分所对应的圆心角为度;
小题4:(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?
解答:
小题1:(1)200;
小题2:(2).如图所示:
小题3:(3).;
小题4:(4).最喜欢球类活动的学生人数是
(名)
2、实验中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调查各兴趣小组活动情况,为此校学生会委托小容、小易进行一次随机抽样调查.根据采集到的数据,小容绘制的统计图1,小易绘制的统计图2(不完整)如下:
请你根据统计图1、2中提供的信息,解答下列问题:
小题1:写出2条有价值信息(不包括下面要计算的信息);
小题2:这次抽样调查的样本容量是多少?在图2中,请将小易画的统计图中的“体育”部分的图形补充完整;
小题3:爱好“书画”的人数占被调查人数的百分数是多少?估计实验中学现有的学生中,
有多少人爱好“书画”?
解答:
小题1:①电脑小组比音乐小组人数多;②音乐小组体育小组比例大;等等
小题2:画图,如图所示;
小题3:
3、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:
(1)求a、b的值.
(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.
(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?
解答:
解:(1)a="80" , b= 10%
(2)×100%×360°="108°
(3) 80+40+200×10%="140
×100%×8000="5600
4、
某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下统计图,其中测试成绩在90~100分为A级,75~89分为B级,60~74分为C级,60分以下为D级。
甲同学计算出成绩为C的频率是0.2,乙同学计算出成绩为A、B、C的频率之和为0.96,丙同学计算出成绩为A的频数与成绩为B的频数之比
为7:12.结合统计图回答下列问题:
小题1:这次抽查了多少人?
小题2:所抽查学生体育测试成绩的中位数在哪个等级内?
小题3:若该校九年级学生共有500人,请你估计这次体育测试成绩为A级和B级的学生共有多少人?
解答:
解:(1)由题意知,C级人数为10人,∴(人)答:这次共抽查了50人
(2)D级的频率是1-0.96=0.04.
∴D等级的人数为:0.04×50=2,
B级的人数是:×(50-10-2)=24,
A级的人为是:50-2-10-24=14,
因此,所抽查学生体育测试成绩的中位数在B等级内. (3)500×(人).
答:该校九年级育测试成绩为A级和B级的学生约为380人.。