福建省泉州市2017年5月初中毕业班质量检测数学试题(含答案解析)
2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析

2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。
福建省泉州市2023届高三毕业班质量监测(一)数学试题

一、单选题二、多选题1.已知全集,集合,集合,则A.B.C.D.2. 已知,是空间中两条不同的直线,,,是空间中三个不同的平面,则下列命题中错误的是( )A .若,,则B.若,,则C .若,,,则D .若,,,则3. 已知,,,则( )A.B.C.D.4.已知,则的值为( )A.B.C.D.5. 已知某几何体的三视图如图所示,三视图是腰长为的等腰直角三角形和边长为的正方形,则该几何体外接球的体积为()A.B.C.D .6. 椭圆E:的左右焦点分别为,,点P 在椭圆E 上,的重心为G .若的内切圆H 的直径等于,且,则椭圆E 的离心率为( )A.B.C.D.7.焦点为的抛物线上有一点,为坐标原点,则满足的点的坐标为( )A.B.C.D.8. 为庆祝广益中学建校130周年,高二年级派出甲、乙、丙、丁、戊5名老师参加“130周年办学成果展”活动,活动结束后5名老师排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则排法共有( )种.A .40B .24C .20D .129. 已知,设,其中则( )A.B.C .若,则D.10. 已知,则( )A .若,则B .若,则福建省泉州市2023届高三毕业班质量监测(一)数学试题福建省泉州市2023届高三毕业班质量监测(一)数学试题三、填空题四、解答题C .若,则D .若,则11. 已知函数( )A .在上单调递增B .在上单调递增C .在上有唯一零点D .在上有最小值为12. 如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足的是( )A.B.C.D.13. 某地以“绿水青山就是金山银山”理念为引导,推进绿色发展,现要订购一批苗木,苗木长度与售价如下表:苗木长度x (厘米)384858687888售价y (元)16.818.820.822.82425.8由表可知,苗木长度x (厘米)与售价y(元)之间存在线性相关关系,回归方程为,则当苗木长度为150厘米时,售价大约为__________.14.半径为的两圆和圆外切于点,点是圆上一点,点是圆上一点,则的取值范围为_______.15. 已知,则__________.16. 已知函数,(1)设,求函数的值域;(2)在中,角所对应的边为.若,的面积为.求的值.17. 设函数,其中.(1)当时,求函数的值域;(2)设,当时,①证明:函数恰有两个零点;②若为函数的极值点,为函数的零点,且,证明:.18. 阳马,中国古代算数中的一种几何形体,是底面为长方形,两个三角面与底面垂直的四棱锥体.如图,四棱锥P -ABCD 就是阳马结构,PD ⊥平面ABCD ,且,,.(1)证明:平面;(2)若,求三棱锥的体积.19.已知函数,其中(Ⅰ)求函数的定义域;(Ⅱ)若对任意恒有,试确定的取值范围.20. 赌徒分金问题是概率论发展史上最著名的问题之一,1651年法国著名统计学家德·梅赫将它提请著名数学家帕斯卡解决,后来大数学家费马和惠更斯也参与了讨论并给出一般性推广.以下是赌徒分金问题的例子:(1)甲乙两个选手实力相当(即每人每局胜的概率都是),约定谁先赢4局,就获胜,并赢得奖金10000元,但在甲胜3局,乙胜2局时,比赛被迫中止,请计算甲最后获胜的概率和分到奖金的数学期望.(2)甲选手每局获胜的概率为,乙选手每局获胜的概率为,现在甲胜3局,乙胜2局,给出方案一:谁率先赢4局谁赢得奖金;方案二:谁率先赢5局谁赢得奖金,如果你是甲选手,你怎样选择比赛方案,并解释其理由.21. 为进一步提升学生学习数学的热情,学校举行了数学学科知识竞赛.为了解学生对数学竞赛的喜爱程度是否与性别有关,现对高中部200名学生进行了问卷调查,得到如下2×2列联表:喜欢数学竞赛不喜欢数学竞赛合计男生70女生30合计已知在这200名学生中随机抽取1人,抽到喜欢数学竞赛的概率为0.6.(1)将2×2列联表补充完整,并判断是否有90%的把握认为喜欢数学竞赛与性别有关?(2)从上述不喜欢数学竞赛的学生中男生抽取3人,女生抽取2人,再在这5人中抽取3人,调查其喜欢的活动类型,求抽取的3人中至少有一名女生的概率.参考公式及数据:.P (K 2≥k )0.500.400.250.150.100.050.0250.010.0050.001k0.460.71 1.32 2.07 2.71 3.845.0246.6357.87910.828。
2017年福建省泉州市初中学业质量检查数学试题参考答案及评分标准(初定稿)20170516-1

解法二:画树状图如下:
女1 女 2女 3男 1男 2
女2 女 1女 3男 1男 2
女3 女 1女 2男 1男 2
男1 女 1女 2女 3男 2
男2 女 1女 2女 3男 1
…7 分
所有等可能的结果为 20 种,其中抽到一男一女的为 12 种, 所以 P (抽到 1 男 1 女)
12 3 .……………………………………………………………8 分 20 5
1 2
12. x( x 2)( x 2)
13. 8 14. (3, 2)
15. ( 3, 1) 16. 4
三、解答题(共 86 分) 17. (本小题 8 分) 解:原式 x 2 x x 1 2 x …………………………………………………………………6 分
2 2
= 2 x 1 …………………………………………………………………………………7 分
21. (本小题 8 分) (1)80,135° ;条形统计图如图所示;………3 分 (2)该校对安全知识达到“良”程度的人数:
30 25 1200 =825 (人)………………5 分 80
(3)解法一:列表如下:
女1 女1 女2 女3 男1 男2 --女 1女 2 女 1女 3 女 1男 1 女 1男 2 女2 女 2女 1 --女 2女 3 女 2男 1 女 2男 2 女3 女 3女 1 女 3女 2 --女 3男 1 女 3男 2 男1 男 1女 1 男 1女 2 男 1女 3 --男 1男 2 男2
∴ AD
3 2 3 x . ……………………………………………………………9 分 3 3 过点 P 分别作 PM x 轴,PN AD, 垂足分 y 别为 M , N , 由①得 AC 平分 OAD. D C ∴ PM PN. N P 3 2 3 F (x, x+ )(-2 x 1), 设P 3 3 P 3 2 3 M O A B x E PM PN = x+ . ………………10 分 3 3 ∵直线 DP 把阴影部分的面积分成 1: 2 的两部分
2024届福建省泉州市高三上学期质量监测数学试题(二)及答案

泉州市2024届高中毕业班质量监测(二)高三数学本试卷共22题,满分150分,共8页.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的,黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合(){20},{236}A x xB x x x x =->=-<-∣∣,则A B = ( )A. ()3,+∞B. ()2,+∞ C. ()2,5 D. ()2,32. 已知复数12ππcos isin ,i 55z z =+=,则12z z 在复平面内对应点位于( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3. 已知()0,π,sin cos θθθ∈=,则sin cos =θθ( )A. B. 12-C.12D.4. 已知圆柱母线长等于2,过母线作截面,截面的最大周长等于8,则该圆柱的体积等于( )A. πB. 2πC. 4πD. 8π5. 函数()f x 的数据如下表,则该函数的解析式可能形如( )x -2-101235()f x 2.31.10.71.12.35.949.1的A. ()xf x ka b=+B. ()e xf x kx b=+C. ()f x k x b =+D. ()2(1)f x k x b=-+6. 若抛物线24y x =与椭圆2222:11x y E a a +=-的交点在x 轴上的射影恰好是E 的焦点,则E 的离心率为( )A.B.C.1D.1-7. 某学校举办运动会,径赛类共设100米、200米、400米、800米、1500米5个项目,田赛类共设铅球、跳高、跳远、三级跳远4个项目.现甲、乙两名同学均选择一个径赛类项目和一个田赛类项目参赛,则甲、乙的参赛项目有且只有一个相同的方法种数等于( )A. 70B. 140C. 252D. 5048. 已知函数()()41134f x x x x=+≤≤-.若函数()y f x a =-存在零点,则a 的取值范围为( )A. 97,43⎡⎤⎢⎥⎣⎦B. 713,33⎡⎤⎢⎥⎣⎦C. 913,43⎡⎤⎢⎥⎣⎦D. 9,4⎡⎫+∞⎪⎢⎣⎭二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9. 抛掷一枚股子,设事件A =“出现点数为偶数”,事件B =“出现的点数为3的倍数”,则( )A. A 与B 是互斥事件B. A B ⋃不是必然事件C. ()13P AB =D ()23P A B ⋃=10. 已知定义在R 上的函数()f x 满足()()1f x f x +=-,当1,02x ⎡⎤∈-⎢⎥⎣⎦时,()2f x x =,当10,2x ⎛⎤∈ ⎥⎝⎦时,()sin πf x x =,则( )的.A. 12033f f ⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭B. 24033f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭C. 23032f f ⎛⎫⎛⎫+≥⎪ ⎪⎝⎭⎝⎭D. 25052f f ⎛⎫⎛⎫+≥⎪ ⎪⎝⎭⎝⎭11. 已知抛物线2:4C x y =的准线为l ,焦点为F ,过F 的直线m 与C 交于,A B 两点,则( )A. l 的方程为1y =-B. l 与以线段AB 为直径的圆相切C. 当线段AB 中点的纵坐标为2时,3AB =D. 当m 的倾斜角等于45 时,8AB =12. 在空间直角坐标系Oxyz 中,()0,0,0A ,()1,1,0B ,()0,2,0C ,()3,2,1D -,()2,2,1E x 在球F 的球面上,则( )A. DE //平面ABC B. 球F 的表面积等于100πC. 点D 到平面ACED. 平面ACD 与平面ACE 的夹角的正弦值等于45三、填空题:本题共4小题,每小题5分,共20分.13. 在平行四边形ABCD 中,()()1,2,4,2AB AD ==- ,则||||AC BD +=__________.14. 数列{}n a 中,111,2+==+nn n a a a ,则4a =__________.15. 已知直线:2l x y +=,圆C 被l 所截得到的两段弧的长度之比为1:3,则圆C 的方程可以为__________.(只需写出一个满足条件的方程即可)16. 若222ln 0x x a x -+≥,则a 的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 等差数列{}n a 和等比数列{}n b 中,1133522,5,20a b a b a b ==+=+=.(1)求{}n a 的公差d ;(2)记数列{}n n a b 的前n 项和为n S ,若0n a >,求20S .18. 教育部印发的《国家学生体质健康标准》,要求学校每学年开展全校学生的体质健康测试工作.某中学为提高学生的体质健康水平,组织了“坐位体前屈”专项训练.现随机抽取高一男生和高二男生共60人进行“坐位体前屈”专项测试.高一男生成绩的频率分布直方图如图所示,其中成绩在[)5,10的男生有4人.高二男生成绩(单位:cm )如下:10.212.8 6.4 6.614.38.316.815.99.717.518.618.319.423.019.720.524.920.525.117.5(1)估计高一男生成绩的平均数和高二男生成绩的第40百分位数;(2)《国家学生体质健康标准》规定,高一男生“坐位体前屈”成绩良好等级线为15cm ,高二男生为16.1cm .已知该校高一年男生有600人,高二年男生有500人,完成下列22⨯列联表,依据小概率值0.005α=的独立性检验,能否认为该校男生“坐位体前屈”成绩优良等级与年级有关?附:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d=+++α0.050.0100.0050.001x α3.8416.6357.87910.82819. 如图,两个棱长均等于2的正四棱锥拼接得到多面体PABCDQ ..(1)求证:PA 平面QBC ;(2)求平面PCD 与平面QBC 的夹角的正弦值.20. 一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.(1)求第2次摸到红球的概率;(2)设第1,2,3次都摸到红球的概率为1P ;第1次摸到红球的概率为2P ;在第1次摸到红球的条件下,第2次摸到红球的概率为3P ;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为4P .求1234,,,P P P P ;(3)对于事件,,A B C ,当()0P AB >时,写出()()()(),,,P A P BA P C AB P ABC ∣∣的等量关系式,并加以证明.21. ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin B C b cb B Ca c+-==+-.(1)若π6C =,求a ;(2)点D 是ABC 外一点,AC 平分BAD ∠,且2π3ADC ∠=,求BCD △的面积的取值范围.22. 动圆C 与圆221:(4C x y ++=和圆222:(4C x y -+=中的一个内切,另一个外切,记点C 的轨迹为E .(1)求E 的方程;(2)已知点()331,,42M t t x ⎛⎫<<⎪⎝⎭轴与E 交于,A B 两点,直线AM 与E 交于另一点P ,直线BM 与E交于另一点Q ,记,ABM PQM 面积分别为12,S S .若214915S S =,求直线PQ 的方程.的泉州市2024届高中毕业班质量监测(二)高三数学本试卷共22题,满分150分,共8页.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的,黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合(){20},{236}A x xB x x x x =->=-<-∣∣,则A B = ( )A. ()3,+∞B. ()2,+∞ C. ()2,5 D. ()2,3【答案】D 【解析】【分析】求出集合,A B ,再由交集的定义求解即可.【详解】因为()236x x x -<-,所以2560x x -+<,解得:23x <<,所以{2},{23}A xx B x x =>=<<∣∣,所以A B = ()2,3.故选:D .2. 已知复数12ππcos isin ,i 55z z =+=,则12z z 在复平面内对应的点位于( )A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限【答案】B 【解析】【分析】根据复数乘法运算和坐标对应方式即可做出选择.【详解】12ππππcos isin i sin icos 5555z z ⎛⎫=+=-+ ⎪⎝⎭,对应复平面内对应的点ππsin ,cos 55⎛⎫- ⎪⎝⎭,因为ππsin0,cos 055-<>,所以ππsin ,cos 55⎛⎫- ⎪⎝⎭位于第二象限.故选:B3. 已知()0,π,sin cos θθθ∈=,则sin cos =θθ( )A. B. 12-C.12D.【答案】C 【解析】【分析】根据同角三角函数关系和θ范围即可解出sin cos θθ==,则得到答案.【详解】因为()0,π,sin cos θθθ∈=,则π0,2θ⎛⎫∈ ⎪⎝⎭,结合22sin cos 1θθ+=,解得sin cos θθ==,则21sin cos 2θθ==,故选:C.4. 已知圆柱母线长等于2,过母线作截面,截面的最大周长等于8,则该圆柱的体积等于( )A. π B. 2πC. 4πD. 8π【答案】B 【解析】【分析】根据已知条件知当截面的周长最大时,截面为圆柱的轴截面,结合已知条件求出圆柱的半径,利用圆柱的体积公式即可求解.【详解】当过母线作截面,截面的周长最大时,此时截面为轴截面.设圆柱的底面半径为r ,则因为过母线作截面,截面的最大周长等于8,所以()2228r ⨯+=,解得1r =.所以该圆柱的体积为2π122π⨯⨯=.故选:B.5. 函数()f x 的数据如下表,则该函数的解析式可能形如( )x -2-101235()f x 2.31.10.71.12.35.949.1A. ()xf x ka b=+B. ()e xf x kx b=+C. ()f x k x b =+D. ()2(1)f x k x b=-+【答案】A 【解析】【分析】由函数()f x 的数据即可得出答案.【详解】由函数()f x 的数据可知,函数()()()()22,11f f f f -=-=,偶函数满足此性质,可排除B ,D ;当0x >时,由函数()f x 的数据可知,函数()f x 增长越来越快,可排除C .故选:A .6. 若抛物线24y x =与椭圆2222:11x y E a a +=-的交点在x 轴上的射影恰好是E 的焦点,则E 的离心率为( )A.B.C.1D.1-【答案】C 【解析】【分析】求出椭圆与抛物线交点坐标,代入椭圆方程并结合离心率定义即可.【详解】不妨设椭圆与抛物线在第一象限的交点为A ,椭圆E 右焦点为F ,则根据题意得AF x ⊥轴,()22211c a a =--=,则1c =,则()1,0F ,当1x =时,241=⨯y ,则2A y =,则()1,2A ,代入椭圆方程得22221211a a +=-,结合210a ->,不妨令0a >;解得1a =+,则其离心率1c e a ===-,故选:C.7. 某学校举办运动会,径赛类共设100米、200米、400米、800米、1500米5个项目,田赛类共设铅球、跳高、跳远、三级跳远4个项目.现甲、乙两名同学均选择一个径赛类项目和一个田赛类项目参赛,则甲、乙的参赛项目有且只有一个相同的方法种数等于( ) D. 504C. 252B. 140A. 70【答案】B 【解析】【分析】由分类加法、分步乘法计数原理以及排列组合的计算即可得解.【详解】由题意若甲、乙的相同的参赛项目为径赛类项目,则有15C 5=种选法,他们再分别从田赛类项目中各选一个(互不相同)即可,这时候有24A 4312=⨯=种选法,所以此时满足题意的选法有1254C A 51260=⨯=,由题意若甲、乙的相同的参赛项目为田赛类项目,则有14C 4=种选法,他们再分别从径赛类项目中各选一个(互不相同)即可,这时候有45A 5420=⨯=种选法,所以此时满足题意的选法有1245C A 42080=⨯=,综上所述,甲、乙的参赛项目有且只有一个相同的方法种数等于6080140+=种.故选:B8. 已知函数()()41134f x x x x=+≤≤-.若函数()y f x a =-存在零点,则a 的取值范围为( )A. 97,43⎡⎤⎢⎥⎣⎦ B. 713,33⎡⎤⎢⎥⎣⎦C. 913,43⎡⎤⎢⎥⎣⎦D. 9,4⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】【分析】对()f x 求导,求出()f x 的单调性和最值,函数()y f x a =-存在零点,即()y f x =与y a =的图象有交点,即可求出a 的取值范围.【详解】()()()()()()22222223884133264444x x x x f x x x x x x x -+--+-=-+==--'-,令()0f x '<,解得:813x <<;令()0f x '>,解得:833x <<,所以()f x 在813⎛⎫⎪⎝⎭,上单调递减,在8,33⎛⎫ ⎪⎝⎭上单调递增,()411311413f =+=-,()41733433f =+=-,84198834433f ⎛⎫=+= ⎪⎝⎭-,所以()f x 的最大值为133,最小值为94,故()913,43f x ⎡⎤∈⎢⎥⎣⎦,函数()y f x a =-存在零点,即()0f x a -=,即()y f x =与y a =的图象有交点,所以913,43a ⎡⎤∈⎢⎥⎣⎦故选:C ,二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9. 抛掷一枚股子,设事件A =“出现的点数为偶数”,事件B =“出现的点数为3的倍数”,则( ).A. A 与B 是互斥事件B. A B ⋃不是必然事件C. ()13P AB =D. ()23P A B ⋃=【答案】BD 【解析】【分析】利用事件的关系,互斥事件与对立事件的定义结合古典概型的概率公式,即可判断求解.【详解】掷骰子有点数为1,2,3,4,5,6六种结果,事件A =“出现的点数为偶数”包含2,4,6三种结果,事件B =“出现的点数为3的倍数”包含3,6两种结果,对于A ,事件A ,B 有可能同时发生,故事件A ,B 不是互斥事件,故A 错误;对于B ,事件A B ⋃包含2,3,4,6四种结果,所以A B ⋃不是必然事件,故B 正确;对于C ,事件AB 包含6一种结果,所以()16P AB =,故C 错误;对于D ,()()()()32126663P A B P A P B P AB ⋃=+-=+-=,故D 正确.故选:BD.10. 已知定义在R 上的函数()f x 满足()()1f x f x +=-,当1,02x ⎡⎤∈-⎢⎥⎣⎦时,()2f x x =,当10,2x ⎛⎤∈ ⎥⎝⎦时,()sin πf x x =,则( )A. 12033f f ⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭B. 24033f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭C. 23032f f ⎛⎫⎛⎫+≥⎪ ⎪⎝⎭⎝⎭D. 25052f f ⎛⎫⎛⎫+≥⎪ ⎪⎝⎭⎝⎭【答案】BD 【解析】【分析】求出函数的周期,根据周期性计算函数值再判断即可.【详解】因为()()1f x f x +=-,则()()()21f x f x f x +=-+=,所以()f x 的周期为2,对A ,11sin33f π⎛⎫==⎪⎝⎭,因为()()1f x f x +=-,令13x =-,则121223333f f ⎡⎤⎛⎫⎛⎫⎛⎫=-=-⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎦-⎣,显然12033f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,对B ,因为()()2f x f x =+,则2433f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则24033f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,故B 正确;对C ,31121222f f ⎛⎫⎛⎫⎛⎫=-=⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2233f ⎛⎫= ⎪⎝⎭,则2310323f f ⎛⎫⎛⎫+=-< ⎪ ⎪⎝⎭⎝⎭,故C 错误;对D ,22sin π055f ⎛⎫=>⎪⎝⎭,51πsin 1222f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则25052f f ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BD.11. 已知抛物线2:4C x y =的准线为l ,焦点为F ,过F 的直线m 与C 交于,A B 两点,则( )A. l 的方程为1y =-B. l 与以线段AB 为直径的圆相切C. 当线段AB 中点的纵坐标为2时,3AB =D. 当m 的倾斜角等于45 时,8AB =【答案】ABD 【解析】【分析】A ,根据抛物线定义及圆与直线相切的判定判断B ,利用抛物线的定义求弦长可判断CD.【详解】由抛物线2:4C x y =的方程可知12p=,所以准线方程为1y =-,故A 正确;设AB 中点为M ,过,,B M A 分别作准线的垂线,垂足分别为,,B M A ''',则由梯形中位线可得2BB AA MM +=''',再由抛物线定义可得,,BF BB AF AA '==',所以22BF AFAB MM +==',即圆心到准线的距离等于半径,所以l 与以线段AB 为直径的圆相切,故B 正确;设()()1122,,,A x y B x y ,因为AB 中点的纵坐标为2,所以124y y +=,由抛物线的定义可知12116AB AF BF y y =+=+++=,故C 错误;当m 的倾斜角等于45 时,由于(0,1)F ,所以直线m 的方程为1y x =+,联立214y x x y=+⎧⎨=⎩,消去x ,得2610y y -+=,所以126y y +=,由抛物线定义可得12118AB AF BF y y =+=+++=,故D 正确.故选:ABD12. 在空间直角坐标系Oxyz 中,()0,0,0A ,()1,1,0B ,()0,2,0C ,()3,2,1D -,()2,2,1E x 在球F 的球面上,则( )A. DE //平面ABC B. 球F 表面积等于100πC. 点D 到平面ACED. 平面ACD 与平面ACE 的夹角的正弦值等于45【答案】AC 【解析】【分析】由球心F 在平面ABC 上的投影位置及D 点求球心F 的坐标和球半径,可得E 点坐标,利用空间向量计算点D 到平面ACE 的距离和平面ACD 与平面ACE 的夹角的正弦值.【详解】平面ABC 的一个法向量(0,0,1)n =,2(3,0,0)DE x =+ ,则0n DE ⋅=,又因为DE ⊄平面ABC ,所以//DE 平面ABC ,A 正确;因为()0,0,0A ,()1,1,0B ,()0,2,0C ,则AB BC ⊥,球心F 在平面xOy 上的投影点即ABC 外接圆圆心(0,1,0)F ',的设(0,1,)F z ,因FC FD =,则22222(12)(03)(12)(1)z z -+=++-+-,得5z =,即(0,1,5)F,球半径R FC ==,球F 表面积4π26104πS =⨯=,B 错误;由FE R =,2222(0)(21)(15)26x -+-+-=,得23x =,(3,2,1)E ,(0,2,0)AC =,(3,2,1)AE = ,设平面ACE 的一个法向量(,,)m a b c = ,AE m AC m ⎧⋅=⎪⎨⋅=⎪⎩,所以32020a b c b ++=⎧⎨=⎩,取(1,0,3)m =- ,(3,2,1)AD =- ,点D 到平面ACE的距离等于AD m m ⋅== ,C 正确;同理可得平面ACD 的一个法向量(1,0,3)s =,平面ACD 与平面ACE的夹角的余弦值等于45s m s m ⋅==⋅ ,正弦值等于35,D 错误.故选:AC.【点睛】关键点点睛:注意到A ,B ,C 三点共面,且平面ABC 即为平面xOy ,所以易得球心F 在平面ABC 上的投影,将空间问题平面化.三、填空题:本题共4小题,每小题5分,共20分.13. 在平行四边形ABCD 中,()()1,2,4,2AB AD ==- ,则||||AC BD +=__________.【答案】10【解析】【分析】根据向量加减的坐标运算和向量模的坐标运算即可得到答案.【详解】因为四边形ABCD 为平行四边形,则()5,0A A C AB D =+=,()3,4BD AD AB =-=-,则||||10AC BD +==,故答案为:10.14. 数列{}n a 中,111,2+==+nn n a a a ,则4a =__________.【答案】15【解析】【分析】根据递推关系求解即可.为【详解】由111,2+==+nn n a a a ,可得2123a a =+=,2322347a a =+=+=,34327815a a =+=+=.故答案为:1515. 已知直线:2l x y +=,圆C 被l 所截得到的两段弧的长度之比为1:3,则圆C 的方程可以为__________.(只需写出一个满足条件的方程即可)【答案】224x y +=(答案不唯一)【解析】【分析】求出圆心到直线的距离与半径的关系,再假设圆心位于原点,代入计算即可.【详解】若圆C 被l 所截得到的两段弧的长度之比为1:3,则劣弧所对圆心角为1242ππ⨯=,设圆C 的半径为r ,则圆心到直线l 的距离为sin4r π=,不妨使得圆心为坐标原点,设圆C 的方程为222x y r +=,,解得2r =,则此时圆C 的方程为224x y +=,故答案为:224x y +=(答案不唯一.)16. 若222ln 0x x a x -+≥,则a 的取值范围为__________.【答案】{2}-【解析】【分析】令2()22ln f x x x a x =-+,根据(1)0f =,可转化为min ()(1)f x f =,利用()01f '=求出a ,再检验即可得解.【详解】令2()22ln f x x x a x =-+,则定义域为(0,)+∞,且(1)0f =,由题意,0x ∀>,()0(1)f x f ≥=,min ()(1)f x f ∴=,又()f x 在(0,)+∞上可导,所以1x =为函数()f x 的极值点,()42af x x x'=-+,(1)420f a '∴=-+=,即2a =-,当2a =-时,224222(21)(1)()42x x x x f x x x x x--+-'=--==,当(0,1)x ∈时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞时,()0f x '>,()f x 单调递增,所以min ()(1)0f x f ==,()0f x ≥成立.综上,222ln 0x x a x -+≥时a 的取值范围为{2}-.故答案为:{2}-四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 等差数列{}n a 和等比数列{}n b 中,1133522,5,20a b a b a b ==+=+=.(1)求{}n a 的公差d ;(2)记数列{}n n a b 的前n 项和为n S ,若0n a >,求20S .【答案】(1)12d =或52d =- (2)10-【解析】【分析】(1)根据已知条件及等差等比数列的通项公式即可求解;(2)根据(1)的结论及等差等比数列的通项公式,利用分组求和及等差数列的前n 项和公式即可求解.【小问1详解】设等比数列{}n b 的公比为q ,由题意得222252440d q d q ⎧++=⎨++=⎩,整理,得22232210q d q d ⎧+=⎨++=⎩,消去q ,得24850d d +-=,解得12d =或52d =-.【小问2详解】由(1)得112q d =-⎧⎪⎨=⎪⎩或252q d =⎧⎪⎨=-⎪⎩.因为0n a >,所以0d >,故112q d =-⎧⎪⎨=⎪⎩.从而()13,212n n n n a b -+==⋅-,()()131n n n a b n -=+⨯-1122334455661919202200S a b a b a b a b a b a b a b a b ++++++++= 4567892223--+-+=+-+ ()()4682257923++++-+++=+ ()()10422105231022⨯+⨯+=-=-.18. 教育部印发的《国家学生体质健康标准》,要求学校每学年开展全校学生的体质健康测试工作.某中学为提高学生的体质健康水平,组织了“坐位体前屈”专项训练.现随机抽取高一男生和高二男生共60人进行“坐位体前屈”专项测试.高一男生成绩的频率分布直方图如图所示,其中成绩在[)5,10的男生有4人.高二男生成绩(单位:cm )如下:10212.8 6.4 6.614.38.316.815.99.717.518.618.319.423.019.720.524.920.525.117.5(1)估计高一男生成绩的平均数和高二男生成绩的第40百分位数;(2)《国家学生体质健康标准》规定,高一男生“坐位体前屈”成绩良好等级线为15cm ,高二男生为16.1cm .已知该校高一年男生有600人,高二年男生有500人,完成下列22⨯列联表,依据小概率值0.005α=的独立性检验,能否认为该校男生“坐位体前屈”成绩优良等级与年级有关?.等级年级良好及以上良好以下合计高一高二合计附:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.050.0100.0050.001x α3.8416.6357.87910.828【答案】(1)15,16.35 (2)详见解析【解析】【分析】(1)完善频率分布直方图,根据频率分布直方图求高一男生成绩平均值,根据所给数据按百分位数定义求高二男生成绩第40百分位数;(2)列出列联表,计算2χ.【小问1详解】依题意得,抽取高二男生20人,所以抽取高一男生40人.因为高一男生成绩在[5,10)的男生有4人,所以450.140a ⨯==,解得002a =.由(0.010.070.04)51ab ++⨯++=,解得0.06b =.由样本估计总体,可估计高一男生成绩的平均数()1 2.50.017.50.0212.50.0717.50.0622.50.045x =⨯+⨯+⨯+⨯+⨯⨯12.5(100.0550.100.3550.3100.2)15=⨯⨯⨯+--+++=⨯⨯.由200.48⨯=,可知样本数据的第40百分位数是第8项和第9项数据的均值,高二男生“坐位体前屈”成绩在[5,15)有7人,[15,20) 有8人,所以第40百分位数m 在[15,20)中,故15.916.816.352m +==.由样本估计总体,可估计高二男生成绩的第40百分位数为 16.35.【小问2详解】根据样本,知高一男生成绩良好及以上占50%,良好以下占50%,高二男生成绩良好及以上占1260%20=,良好以下占840%20=,由样本估计总体,可得22⨯列联表如下:良好及以上良好以下合计高一300300600高二300200500合计6005001100零假设为0H :该校男生“坐位体前屈”成绩等级与年级之间无关.根据列联表中的数据,得()220.0051100300200300300117.879600500600500x χ⨯-⨯==>=⨯⨯⨯根据小概率值0.005α=的独立性检验,我们推断0H 不成立,即认为“坐位体前屈”成绩等级与年级有关,此推断犯错误的概率不大于0.005.19.如图,两个棱长均等于2PABCDQ .(1)求证:PA 平面QBC ;(2)求平面PCD 与平面QBC 夹角的正弦值.【答案】(1)证明见解析 (2【解析】【分析】(1)建立空间直角坐标系,利用向量共线可得//PA QC ,再由线面平行的判定定理得证;的(2)求出两个平面的法向量,利用向量夹角求出平面夹角的余弦,再转化为正弦即可.【小问1详解】连结,AC BD ,交于点O ,连结,PO QO ,由正四棱锥性质可知PO ⊥平面ABCD ,QO ⊥平面ABCD ,所以,,P O Q 三点共线,又四边形ABCD 是正方形,可得,,PO AC BD 两两垂直,且交于点O .以O 为原点,分别以,,OB OC OP的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Oxyz ,如图,由2AO PA ==,在Rt PAO △中,PO =,则(()()())(,0,,,,,0,0,P A D C BQ ,从而((0,,PA QC ==,故PA QC =-,又A QC ∉,所以//PA QC ,又PA ⊄平面QBC ,QC ⊂平面QBC ,所以PA 平面QBC .【小问2详解】由(1)可得(((,,,PC PD QC QB ====,设平面PCD 的法向量1111(,,)n x y z =,则1111110n PC n PD ⎧⋅==⎪⎨⋅==⎪⎩,令11z =,得1(1,1,1)n =-,设平面QBC 的法向量2222(,,)n x y z =,则2222220n QB n QC ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令21z =,得2(1,1,1)n =--,所以1212121cos ,3n n n n n n ⋅===,设平面PCD 与平面QBC 的夹角为θ,则121cos cos ,3n n θ==,所以sin θ==.20. 一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.(1)求第2次摸到红球的概率;(2)设第1,2,3次都摸到红球的概率为1P ;第1次摸到红球的概率为2P ;在第1次摸到红球的条件下,第2次摸到红球的概率为3P ;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为4P .求1234,,,P P P P ;(3)对于事件,,A B C ,当()0P AB >时,写出()()()(),,,P A P BA P C AB P ABC ∣∣的等量关系式,并加以证明.【答案】(1)710(2)详见解析 (3)详见解析【解析】【分析】(1)根据全概率公式求解即可;(2)根据相互独立事件乘法公式、条件概率公式及排列数公式求解;(3)根据(2)猜想()()()()P ABC P A P B A P C AB =,由条件概率公式证明即可.【小问1详解】记事件“第i 次摸到红球”为()1,2,3,,10i A i = ,则第2次摸到红球的事件为2A ,于是由全概率公式,得()()()()()2121121||P A P A P A A P A P A A =+7237710310910=⨯+⨯=.【小问2详解】由已知得()371123310A 7A 24P P A A A ===,()21710P P A ==,()()()21273212110A 107102|A 71573P A A P P A A P A ===⨯=⨯=,()()()1234312127155|2478P A A A P P A A A P A A ===⨯=.【小问3详解】由(2)可得1234P P P P =,即()()()()123121312||P A A A P A P A A P A A A =,可猜想:()()()()P ABC P A P B A P C AB =,证明如下:由条件概率及()0()0,P A P AB >>,得()()()|P AB P B A P A =,()()()|P ABC P C AB P AB =,所以()()()()()()()()()P AB P ABC P A P B A P C AB P A P ABC P A P AB =⋅⋅=.21. ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin B C b cb B Ca c+-==+-.(1)若π6C =,求a ;(2)点D 是ABC 外一点,AC 平分BAD ∠,且2π3ADC ∠=,求BCD △的面积的取值范围.【答案】(1)2 (2)0BCD S < 【解析】【分析】(1)由正弦定理和余弦定理求出即可;(2)由正弦定理把边化成角,再用三角形面积公式1sin 2BCD S BC CD BCD =×Ð 结合导数求出范围.【小问1详解】由正弦定理可知sin sin sin a b cA B C==,所以()()sin sin πsin sin sin sin sin sin sin B C A A a b cB CB CB C b c a c+--====++++-,所以222222a ac b c a c b ac -=-Þ+-=,由余弦定理2221cos 22a cb B ac +-==,因为ABC 的内角,,A B C ,所以π3B =,又π6C =,所以π,2π2cos 6b A a ====.【小问2详解】由正弦定理22sin sin sin AC BC BC BACB BAC ===Þ=ÐÐ,22sin sin sin AC CD CD DACADC DAC ==Þ=ÐÐÐ,又AC 平分BAD ∠,所以BAC DAC ∠=∠,因为四边形ABCD 的内角和为2π,且πB ADC ∠+∠=,易知π2BAC BCD -Ð=Ð,所以1sin 2BCD S BC CD BCD =×Ð 1=2sin 2sin sin 2BAC DAC BCD ´Ð´Ð´Ð()22sin sin π2BAC BAC =д-Ð22sin sin 2BAC BAC =дÐ()1cos 2sin 2BAC BAC =-ÐÐ,①设2BAC x Ð=,则①()1cos sin sin cos sin x x x x x =-=-,令()sin cos sin f x x x x =-,则()()()222()cos sin cos 2cos cos 12cos 1cos 1f x x x x x x x x ¢=--+=-++=+-+,因为在ACD 中π03DAC <Ð<,所以202π3BAC <Ð<,所以1cos 12x -<<,所以1cos 12x -<<时()0f x '>恒成立,且1cos 2x =-,2π3x =时()f x =,cos 1x =,0x =时()0f x =,则0()f x <,所以0BCD S < .22. 动圆C 与圆221:(4C x y ++=和圆222:(4C x y -+=中的一个内切,另一个外切,记点C 的轨迹为E .(1)求E 的方程;(2)已知点()331,,42M t t x ⎛⎫<<⎪⎝⎭轴与E 交于,A B 两点,直线AM 与E 交于另一点P ,直线BM 与E交于另一点Q ,记,ABM PQM 的面积分别为12,S S .若214915S S =,求直线PQ 的方程.【答案】(1)2214x y -=(2)280x y --=【解析】【分析】(1)根据题意可得1212||||4||CC CC C C -=<=,利用双曲线的定义可判断轨迹,写出方程;(2)联立直线与双曲线的方程,分别求出,P Q 关于t 的坐标,利用三角形面积公式及面积比值可得1t =,可得,P Q 坐标,据此求出直线方程.【小问1详解】由题意,圆心分别为12(C C ,两圆半径都为2,设圆C 的半径为R ,由题意得12||2||2R CC CC =-=+或21||2||2R CC CC =-=+,故1212||||4||CC CC C C -=<=,所以点C 的轨迹是以12,C C 为焦点,实轴长为4的双曲线,其中21,a c b ====,所以轨迹E 的方程为2214x y -=.【小问2详解】如图,由题意可得()(),,,203,2,0AM BM tA B k k t -==-,所以直线AM 的方程为()23ty x =+,直线BM 的方程为(2)y t x =--,设()()1122,,,P x y Q x y ,由()222314t y x x y ⎧=+⎪⎪⎨⎪-=⎪⎩,消去y ,得()2222941616360t x t x t ----=,由2121636,2,94A A P P t x x x x x t --⋅==-=-,得21281894t x t+=-,从而212281812239494t t ty t t ⎛⎫+=+= ⎪--⎝⎭,故22281812,9494t t P t t ⎛⎫+ ⎪--⎝⎭,由()22214y t x x y ⎧=--⎪⎨-=⎪⎩,消去y ,得()222214161640t x t x t -+--=,由2216414B Q t x x t --⋅=-,22,B Q x x x ==,得2228241t x t +=-,从而222282424141t ty t t t ⎛⎫+-=-⋅-= ⎪--⎝⎭,故22282441,14t t Q t t ⎛⎫+- ⎪--⎝⎭,因为,ABM PQM 的面积分别为12,S S ,且214915S S =,sin sin PMQ AMB ∠∠=,所以211sin 21sin 2MP MQ PMQS S MA MB AMB ⋅∠==⋅∠()()121211|1||1|||||||||1(2)123x x x x MP MQ MA MB ---⋅-⋅==⋅--⋅-,由214915S S =,得214915S S =,即()()()22224349159441t t t+=--,又因为34t <()()()22224349159441t t t+=--,化简,可得21t =,解得1t =,当1t =时,2655,12P ⎛⎫⎪⎝⎭,1033,4Q ⎛⎫- ⎪⎝⎭,所以124532261053PQk +==-,所以直线PQ 的方程为1226255y x ⎛⎫-=- ⎪⎝⎭,即280x y --=.。
2018年福建省福州市初中毕业班质量检测数学试题及答案

(1) 抽样调查的人数共有
人;
(2) 就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能 被采访到,为什么?
22. ( 9 分)某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如 果 35 名学生购票恰好用去 750 元,甲乙两种票各买了多少张? 23. (10 分 ) 如图, AB 为⊙ O的直径,弦 AC=2,∠ B= 30 °,∠ ACB的 平分线交⊙ O于 点 D,求: (1) BC , AD的长。 (2) 图中两阴影部分面积的和.
∴∠ BDE= ∠BAC= ,
∵ BD= 2BC=2sin , ∴ BE=BD· sin =2sin .sin ∴ AE=AB-BE=l-2sin 2 ,
=2sin 2 ,
∴ cos2
AE 1 2sin 2
cos DAE
AD
1
2
1 2sin
阅读以上内容,回答下列问题: (1) 如图 l ,若 BC=1 ,则 cos =
)
>2 .
3.下列图形中,是轴对称图形的是(
)
4. 福州近期空气质量指数 (AQI) 分别为: 78,80, 79, 79, 81, 78,
80, 80,这组数
据的中位数是(
)
A .79
B
.79.5
C
.80
D
.80.5
5.如图, ⊙ O中,半径 OC=4,弦 AB垂直平分 OC,则 AB的长是 ( )
3
(2) 求出 sin 2 的表达式(用含 sin
, cos2 =
;
或 cos 的式子表示) .
25. ( 13 分)如图,△ AABC 中, AC=8, BC=6, AB =10.点 P 在 AC 边
福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题(带答案解析)

福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题1.已知集合{}012M =,,,{}2|20N x x x =∈+-≤Z ,则M N =I ( ) A .{}1,0,1- B .{}0,1 C .{}0,1,2 D .{}2,1,0,1-- 2.若x yi +(,)x y ∈R 与31i i +-互为共轭复数,则x y +=( ) A .0 B .3C .-1D .4 3.某旅行社调查了所在城市20户家庭2019年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的众数和中位数分别是( )A .1.4,1.4B .1.4,1.5C .1.4,1.6D .1.62,1.6 4.记n S 为等差数列{}n a 的前n 项和.已知25a =-,416S =-,则6S =( ) A .-14 B .-12 C .-17 D .125.5(3)(2)x x +-的展开式中4x 的系数为( )A .10B .38C .70D .2406.已知函数41()2x x f x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b << 7.松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的5x =,2y =,则输出的n 的值为( )A .4B .5C .6D .78.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( )A .[]1,1-B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1- 9.已知函数()sin 2cos 2f x a x b x =-,0ab ≠.当x ∈R 时()3f x f π⎛⎫≤⎪⎝⎭,则下列结论错误..的是( ) A.a B .012f π⎛⎫= ⎪⎝⎭C .2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭D .42155f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭10.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5n f ()*n N ∈的前2020项的和为( ) A .101051+ B .1010514- C .1010512- D .101051- 11.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BDB .11BC BD ⊥ C .三棱锥11C B CE -的体积为13 D .异面直线1B C 与BD 所成的角为60︒12.若双曲线C :221x y m n+=(0)mn <绕其对称中心旋转3π可得某一函数的图象,则C 的离心率可以是( )A .3B .43CD .213.已知向量(1,1)a =r ,(1,)b k =-r ,a b ⊥r r ,则a b +=r r _________.14.在数列{}n a 中,11a =,23a =,21n n a a +=,则20192020a a +=____________. 15.设F 是抛物线E :23y x =的焦点,点A 在E 上,光线AF 经x 轴反射后交E 于点B ,则点F 的坐标为___________,||4||AF BF +的最小值为__________.16.直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,1AA =点M 是侧面11BCC B 内的动点(不含边界),AM MC ⊥,则1A M 与平面111BCC B 所成角的正切值的取值范围为__________.17.在平面四边形ABCD 中,2ABC π∠=,2DAC ACB ∠=∠,3ADC π∠=.(1)若6ACB π∠=,BC =BD ;(2)若DC =,求cos ACB ∠.18.如图1,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,E 为CD 的中点,以BE 为折痕将BCE ∆折起到PBE ∆的位置,使得平面PBE ⊥平面ABED ,如图2.(1)证明:平面PAB ⊥平面PBE ;(2)求二面角B PA E --的余弦值.19.已知(1,0)F 是椭圆C :22221x y a b+=(0)a b >>的焦点,点31,2P ⎛⎫ ⎪⎝⎭在C 上. (1)求C 的方程;(2)斜率为12的直线l 与C 交于()11,A x y ,()22,B x y 两点,当1212340x x y y +=时,求直线l 被圆224x y +=截得的弦长.20.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有A 材料、B 材料供选择,研究人员对附着在A 材料、B 材料上再结晶各做了50次试验,得到如下等高条形图.(1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV 胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为12,第三个环节生产合格的概率为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标? 附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.已知函数2()sin 2x f x e x ax x =+--.(1)当0a =时,求()f x 的单调区间;(2)若0x =为()f x 的极小值点,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为,4x t y =⎧⎪⎨=-⎪⎩(t 为参数),圆C 的方程为22(1)1y x +-=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程;(2)过O 且倾斜角为α的直线与l 交于点A ,与C 交于另一点B ,若5612ππα≤≤,求||||OB OA 的取值范围. 23.记函数1()212f x x x =++-的最小值为m . (1)求m 的值;(2)若正数a ,b ,c 满足abc m =,证明:9ab bc ca a b c++≥++.参考答案1.B【解析】【分析】用列举法写出集合N ,再根据交集的定义写出M N ⋂.【详解】解:因为{}2|20N x x x =∈+-≤Z所以{}2,1,0,1N =--, 又{}012M =,, {}0,1M N ∴=I故选:B【点睛】本题考查了交集的运算问题,属于基础题.2.C【解析】【分析】 计算3121i i i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121i i i+=+-Q ,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.3.B【解析】【分析】根据众数和中位数的定义解答即可;【详解】解:依题意可得则组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5,故选:B【点睛】本题考查求几个数的众数与中位数,属于基础题.4.B【解析】【分析】设等差数列{}n a 的公差为d ,依题意列出方程组,再根据前n 项和公式计算可得;【详解】解:设等差数列{}n a 的公差为d ,则()14154414162a d S a d +=-⎧⎪⎨⨯-=+=-⎪⎩解得172a d =-⎧⎨=⎩,所以()616616122S a d ⨯-=+=- 故选:B【点睛】本题考查等差数列的通项公式及求和公式的应用,属于基础题.5.A【解析】【分析】首先求出二项式5(2)x -展开式的通项为()5152rr r r T C x -+=-,再令53r -=,54-=r 分别求出系数,由555(3)(2)(2()3)2x x x x x +--=+-即可得到展开式中4x 的系数.【详解】解:因为555(3)(2)(2()3)2x x x x x +--=+-,而5(2)x -展开式的通项为()5152rr r r T C x -+=-,当54-=r 即1r =时,()114425210T C x x =-=-,当53r -=即2r =时,()223335240T C x x =-=故5(3)(2)x x +-的展开式中4x 的系数为()4031010+⨯-= 故选:A【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.6.A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】 解:因为41()222x x x x f x --==-,定义域为R ,()()22x x f x f x --=-=- 故函数是奇函数,又2x y =在定义域上单调递增,2xy -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20<所以()()()0.30.30.320.2log 2f f f >> 即a b c >>故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.7.A【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:当1n =时,152x =,4y =,满足进行循环的条件,当2n =时,454x =,8y =满足进行循环的条件, 当3n =时,1358x =,16y =满足进行循环的条件, 当4n =时,40516x =,32y =不满足进行循环的条件, 故输出的n 值4.故选:A .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D【解析】【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=,()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减,()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==, ∴a 的取值范围为[]2ln 22,1-.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.9.D 【解析】 【分析】依题意,利用辅助角公式得到()()2f x x ϕ=-,且3f π⎛⎫⎪⎝⎭是()f x 的最大值,从而sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ,即可得到()2sin 26f x b x π⎛⎫=- ⎪⎝⎭,从而一一验证可得; 【详解】解:因为()()sin 2cos 22f x a x b x x ϕ=-=-,其中sin ϕ=,cos ϕ=0ab ≠.当x ∈R 时()3f x f π⎛⎫≤ ⎪⎝⎭,所以3x π=是图象的对称轴,此时,函数取得最大值sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ;则1sin 2ϕ==,cos ϕ==,所以a ,故A 正确;()2sin 26f x b x π⎛⎫∴=- ⎪⎝⎭,则2sin 2012126f b πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 17172sin 22sin 22sin 2sin 556563030f b b b b πππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=⨯--=⨯--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,221317172sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即C 正确; 22192sin 22sin 55630f b b ππππ⎛⎫⎡⎤∴=⨯-=⎪⎢⎥⎝⎭⎣⎦4421332sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故42155f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,即D 错误; 故选:D 【点睛】本题考查辅助角公式及三角函数的性质的应用,属于中档题. 10.D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 11.ABD 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一验证即可; 【详解】解:如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-u u u u r ,()11,1,1BD =-u u u u r ,()1,1,0BD =-u u u r ,()11,0,1BA =-u u u r所以()111011110B C BD =-⨯+⨯+-⨯=u u u r u u u r u g ,即11BC BD ⊥u u u r u u ur u ,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=u u u r u u u r g,1B C =u u u rBD =u u u r,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BD θ==u u u r u u u u ur g u u u r r g u ,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =r ,则1·0·0n BA n BD ⎧=⎨=⎩u u u v v u u u v v ,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =r ,则()10111110n B C =⨯+⨯+⨯-=r u u u r g ,即1C n B ⊥r u u u r,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选:ABD【点睛】本题考查空间向量法在立体几何中的应用,属于中档题. 12.AD 【解析】 【分析】利用双曲线旋转后是函数的图象,求出渐近线的斜率,然后求解双曲线的离心率即可.【详解】解:当0m >,0n <时,由题意可知双曲线的渐近线的倾斜角为:6π,所以斜率为:3,可得:13m n =-,所以双曲线的离心率为:2e ==.当0m <,0n >时,由题意可知双曲线的渐近线的倾斜角为:6π,=3n m =-,所以双曲线的离心率为:e ==. 故选:AD . 【点睛】本题考查双曲线的简单性质的应用,属于中档题. 13.2 【解析】 【分析】由a b ⊥r r得0a b ⋅=r r ,算出1k=,再代入算出a b +r r即可.【详解】Q (1,1)a =r ,(1,)b k =-r ,a b ⊥r r,10a b k ∴⋅=-+=r r ,解得:1k =,()0,2a b ∴+=r r,则2a b +=r r .故答案为:2 【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算. 14.43【解析】 【分析】由递推公式可以先计算出前几项,再找出规律,即可得解; 【详解】解:因为11a =,23a =,21n n a a +=,所以131a a =,即31a =,241a a =,所以413a =351a a =,所以51a =, 461a a =,所以63a =L L由此可得数列{}n a 的奇数项为1,偶数项为3、13、3、13L L 所以2019202014133a a +=+= 故答案为:43【点睛】本题考查由递推公式研究函数的性质,属于基础题. 15.3,04⎛⎫ ⎪⎝⎭ 274【解析】 【分析】首先由抛物线的解析式直接得到焦点坐标,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立直线与抛物线方程,可得根与系数的关系,利用1233||4||444AF BF x x ⎛⎫+=+++ ⎪⎝⎭以及基本不等式计算可得; 【详解】解:因为23y x =,23p =,所以32p =,故焦点F 的坐标为3,04⎛⎫⎪⎝⎭,根据抛物线的性质可得B 点关于x 轴对称的点1B 恰在直线AF 上,且1||||B F BF =,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立得2343y k x y x⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,化简的22223930216k x k x k ⎛⎫-++= ⎪⎝⎭, 所以12916x x =,所以121233151527||4||4444444AF BF x x x x ⎛⎫+=+++=++≥= ⎪⎝⎭ 当且仅当124x x =时取等号,当直线1AB 的斜率不存在时,A 点与B 点重合,15||4||52AF BF p +==,综上可得||4||AF BF +的最小值为274故答案为:3,04⎛⎫ ⎪⎝⎭;274. 【点睛】本题考查抛物线的定义标准方程及其性质,直线与抛物线相交问题,焦点弦的相关性质与基本不等式的应用,属于中档题.16.⎤⎥⎝⎦【解析】如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<,由AM MC ⊥,则0AM MC =u u u u r u u u u rg ,即可得到动点M 的轨迹方程,连接1A M ,1B M ,则11A MB Ð为1A M 与平面11BCC B 所成角,从而11111tan A B A MB MB ∠=,即可求出1A M 与平面111BCC B 所成角的正切值的取值范围;【详解】解:如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<则(4,4,AM x z =--u u u u r,(,0,CM x z =-u u u u r,因为AM MC ⊥,所以0AM MC =u u u u r u u u u rg ,()(240x x z -+-=,即()(2224x z -+-=,(0z <<,连接1A M ,1B M,则12B M ≤<以111142MB <≤, 依题意可得11A B ⊥面11BCC B ,则11A MB Ð为1A M 与平面11BCC B所成角,1111114tan 27A B A MB MB MB ⎛⎤∠==∈ ⎥ ⎝⎦故答案为:27⎛⎤⎥ ⎝⎦本题考查空间向量法解决立体几何问题,线面角的计算,属于中档题. 17.(1)BD =2)3cos 4ACB ∠=【解析】 【分析】(1)在Rt ABC ∆中,由已知条件求出相关的边与角,由倍角关系推导求出ADC ∆为等边三角形,再利用余弦定理即求出BD =.(2)由题目已知条件2DAC ACB ∠=∠,可将所要的角转化到ACD ∆中,再将AC 用Rt ABC ∆中边角来表示,利用正弦定理及三角恒等变换求解即可得.【详解】解:(1)在Rt ABC ∆中,由6ACB π∠=,BC =1AB =,3BAC π∠=,2AC =又23DAC ACB π∠=∠=,3ADC π∠=,所以ADC ∆为等边三角形,所以2AD =在ABD ∆中,由余弦定理得,2222cos BD AB AD AB AD BAD =+-⨯⨯∠, 即222212212cos73BD π=+-⨯⨯⨯=,解得BD =(2)设ACB θ∠=,AB x =, 则2DAC θ∠=,DC =,在Rt ABC ∆中,sin sin AB xAC θθ==, 在ACD ∆中,根据正弦定理得,sin sin ACDAC D A CC D =∠∠,sin sin 3xθπ=,sinsin 23sin x πθθ⋅=⋅2sin cos sin xθθθ=⋅解得3cos 4θ=,即3cos 4ACB ∠=【点睛】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证能力和运算求解能力等,考查数形结合思想和化归与转化思想等,体现综合性与应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注.18.(1)证明见解析(2)7【解析】 【分析】(1)依题意可得PE BE ⊥,由面面垂直的性质可得PE ⊥平面ABCD ,从而得到PE AB ⊥,再证AB BE ⊥,即可得到AB ⊥平面PBE ,从而得证;(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,利用空间向量求二面角的余弦值; 【详解】解:(1)依题意知,因为CD BE ⊥,所以PE BE ⊥, 当平面PBE ⊥平面ABED 时,平面PBE ⋂平面ABCD BE =,PE ⊂平面PBE , 所以PE ⊥平面ABCD ,因为AB Ì平面ABCD ,所以PE AB ⊥,由已知,BCD ∆是等边三角形,且E 为CD 的中点, 所以BE CD ⊥,//AB CD ,所以AB BE ⊥,又PE BE E ⋂=,PE ⊂平面PBE ,BE ⊂平面PBE ,所以AB ⊥平面PBE ,又AB Ì平面PAB ,所以平面PAB ⊥平面PBE .(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,则(0,0,0)E ,(0,0,1)P,B,A ,(0,0,1)EP =u u u r,EA =u u u r ,(2,0,0)BA =u u u r,1)PA =-u u u r,设平面PAB 的一个法向量()111,,m x y z =u r ,平面PAE 的一个法向量()222,,n x y z =r由00BA m PA m ⎧⋅=⎨⋅=⎩u u u v vu u u v v得11112020x x z =⎧⎪⎨+-=⎪⎩;令11y =,解得1z =10x =,所以m =u r,由00EP n EA n ⎧⋅=⎨⋅=⎩u u u v vu u u v v得222020z x =⎧⎪⎨+=⎪⎩;令22y =-,解得2x =,20z =,所以2,0)n =-r,cos ,7m n m n m n ⋅====-⋅u r ru r r u r r .. 【点睛】本小题考查线面垂直的判定与性质、二面角的求解及空间向量的坐标运算等基础知识,考查空间想象能力、推理论证及运算求解能力,考查化归与转化思想、数形结合思想等,体现基础性、综合性与应用性,导向对发展数学抽象、逻辑推理、直观想象等核心素养的关注.19.(1)22143x y +=(2【解析】 【分析】(1)由已知可得221a b -=,再点31,2P ⎛⎫⎪⎝⎭在椭圆上得到方程组,解得即可; (2)设直线l 的方程为12y x t =+,联立直线与椭圆,列出韦达定理,由1212340x x y y +=,解得22t =,再由点到线的距离公式及勾股定理计算可得; 【详解】解:(1)由己知得221a b -=, 因点31,2P ⎛⎫⎪⎝⎭在椭圆上,所以221914a b += 所以24a =,23b =所以椭圆C 的方程为:22143x y +=(2)设直线l 的方程为12yx t =+, 联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 得2230x tx t ++-=, ()222431230t t t ∆=--=->,解得24t <,12x x t +=-,2123x x t =-,由1212340x x y y +=,即12121134022x x x t x t ⎛⎫⎛⎫+++=⎪⎪⎝⎭⎝⎭, 所以()21212220x x t x x t +++=(*).将12x x t +=-,2123x x t =-代入(*)式,解得22t =,由于圆心O到直线l的距离为d==,所以直线l被圆O截得的弦长为5l===.【点睛】本小题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想、数形结合思想、函数与方程思想等,体现基础性、综合性与创新性,导向对发展逻辑推理、直观想象、数学运算、数学建模等核心素养的关注. 20.(1)填表见解析;有99%的把握认为试验成功与材料有关(2)定价至少为2.2万元/吨【解析】【分析】(1)写出列联表,根据列联表求出2K的观测值,结合临界值表可得;(2)生产1吨的石墨烯发热膜,所需的修复费用为X万元,易知X可取0,0.1,0.2,0.3,0.4,0.5,然后根据独立重复事件的概率公式计算概率,写出分布列后求出期望即可.【详解】解:(1)根据所给等高条形图,得列联表:2K的观测值2100(4520530)1250507525k⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元. 易知X 可取0,0.1,0.2,0.3,0.4,0.5.202122(0)2312P X C ⎛⎫==⨯= ⎪⎝⎭,212124(0.1)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 222122(0.2)2312P X C ⎛⎫==⨯= ⎪⎝⎭,202111(0.3)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 212112(0.4)2312P X C ⎛⎫==⨯= ⎪⎝⎭,222111(0.5)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 则X 的分布列为:修复费用的期望:111111()00.10.20.30.40.50.263612612E X =⨯+⨯+⨯+⨯+⨯+⨯=. 所以石墨烯发热膜的定价至少为0.211 2.2++=万元/吨,才能实现预期的利润目标. 【点睛】本小题主要考查等高条形图、独立性检验、分布列与期望等基础知识,考查数据处理能力、运算求解能力、应用意识等,考查统计与概率思想等,考查数学抽象、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.21.(1)递增区间为(0,)+∞,递减区间为(0,)+∞(2)12a ≤ 【解析】 【分析】(1)首先求出函数的导函数()cos 2x f x e x '=+-,记()()g x f x '=,则()sin xg x e x '=-,分析()g x 的单调性,即可求出函数的单调性;(2)依题意可得(0)0f '=,记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-,利用导数分析()h x '的单调性,即可得到()cos x h x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点,即()sin 2x g x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-,再对a 分类讨论可得;【详解】解:(1)当0a =时,()cos 2xf x e x '=+-, 记()()g x f x '=,则()sin xg x e x '=-,当0x >时,e 1x >,1sin 1x -≤≤,所以()sin 0xg x e x '=->,()g x 在(0,)+∞单调递增,所以()(0)0g x g >=,因为()()0f x g x '=>,所以()f x 在(0,)+∞为增函数;当0x <时,1x e <,1cos 1x -≤≤,所以()cos 20xf x e x '=+-<, 所以()f x 在(0,)+∞为减函数.综上所述,()f x 的递增区间为(0,)+∞,递减区间为(0,)+∞.·(2)由题意可得()cos 22xf x e x ax '=+--,(0)0f '=. 记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-.下面证明()cos xh x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点:令()()x h x ϕ'=,则()sin xx e x ϕ'=+在,02π⎛⎫- ⎪⎝⎭是增函数,所以()(0)2x πϕϕϕ⎛⎫'''-<< ⎪⎝⎭.又02πϕ⎛⎫'-< ⎪⎝⎭,(0)0ϕ'>, 所以存在1,02x π⎛⎫∈-⎪⎝⎭,()10x ϕ'=,且当1,2x x π⎛⎫∈- ⎪⎝⎭,()0x ϕ'<,()1,0x x ∈,()0x ϕ'>,所以()x ϕ,即()h x '在1,2x π⎛⎫- ⎪⎝⎭为减函数,在()1,0x 为增函数,又02h π⎛⎫'-> ⎪⎝⎭,(0)0h '=,所以()10h x '<, 根据零点存在性定理,存在01,2x x π⎛⎫∈- ⎪⎝⎭,()00h x '= 所以当()0,0x x ∈,()0h x '<,又0x >,()cos 0xh x e x '=->,所以()h x ,即()sin 2xg x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-. ①当120a -≥,12a ≤,()0g x '≥恒成立,所以()g x ,即()f x '为增函数, 又(0)0f '=,所以当()0,0x x ∈,()0f x '<,()f x 为减函数,(0,)x ∈+∞,()0f x '>,()f x 为增函数,0x =是()f x 的极小值点,所以12a ≤满足题意. ②当12a >,(0)120g a '=-<,令()1xx e x =--,0x > 因为0x >,所以()10xu x e '=->,故()u x 在(0,)+∞单调递增,故()(0)0u x u >=,即有1x e x >+ 故2(2)sin 2221sin 220ag a ea a a a a '=-->+--≥,又()sin 2x g x e x a '=--在(0,)+∞单调递增,由零点存在性定理知,存在唯一实数(0,)m ∈+∞,()0g m '=,当(0,)x m ∈,()0g x '<,()g x 单调递减,即()f x '递减,所以()(0)0f x f ''<=,此时()f x 在(0,)m 为减函数,所以()(0)0f x f <=,不合题意,应舍去. 综上所述,a 的取值范围是12a ≤. 【点睛】本小题主要考查导数的综合应用,利用导数研究函数的单调性、最值和零点等问题,考查抽象概括、推理论证、运算求解能力,考查应用意识与创新意识,综合考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想、有限与无限思想以及特殊与一般思想,考查数学抽象、逻辑推理、直观想象、数学运算、数学建模等核心素养.22.(1cos sin 40θρθ+-=;2sin ρθ=(2)13,24⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化; (2)利用极坐标方程将||||OB OA 转化为三角函数求解即可. 【详解】(1)因为,4x t y =⎧⎪⎨=-⎪⎩,所以l40y +-=,又cos x ρθ=,sin y ρθ=,222x y ρ+=,lcos sin 40θρθ+-=,C 的方程即为2220x y y +-=,对应极坐标方程为2sin ρθ=.(2)由己知设()1,A ρα,()2,B ρα,则1ρ=22sin ρα=,所以,)21||12sin sin ||4OB OA ραααρ==⨯+12cos 214αα⎤=-+⎦ 12sin 2146πα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦又5612ππα≤≤,22663πππα≤-≤, 当266ππα-=,即6πα=时,||||OB OA 取得最小值12; 当262ππα-=,即3πα=时,||||OB OA 取得最大值34.所以,||||OB OA 的取值范围为13,24⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力. 23.(1)1m =(2)证明见解析 【解析】 【分析】(1)将函数()f x 转化为分段函数或利用绝对值三角不等式进行求解; (2)利用基本不等式或柯西不等式证明即可. 【详解】解法一:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩当12x ≤-时,1()22f x f ⎛⎫≥-= ⎪⎝⎭, 当1122x -<≤,1()12f x f ⎛⎫≥= ⎪⎝⎭, 当12x >时,1()12f x f ⎛⎫>= ⎪⎝⎭, 所以min ()1m f x ==解法二:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩如图当12x =时,min ()1m f x == 解法三:(1)111()222f x x x x =++-+-111222x x x ⎛⎫⎛⎫≥+--+- ⎪ ⎪⎝⎭⎝⎭ 1112x =+-≥ 当且仅当11022102x x x ⎧⎛⎫⎛⎫+-≤ ⎪⎪⎪⎪⎝⎭⎝⎭⎨⎪-=⎪⎩即12x =时,等号成立.当12x =时min ()1m f x == 解法一:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c c a b ⎛⎫++++≥⎪⎝⎭,因为111()9a b c c a b ⎛⎫++++≥=⎪⎝⎭成立,所以原不等式成立.解法二:(2)因为0a >,0b >,0c >,所以0ab bc ca ++≥>,0a b c ++≥>,又因为1abc =,所以()()9a b c ab bc ac ++++≥=,()()9ab bc ac a b c ++++≥所以9ab bc ca a b c++≥++,原不等式得证.补充:解法三:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c a b c ⎛⎫++++≥⎪⎝⎭,由柯西不等式得:2111()9a b ca b c ⎛⎫++++≥= ⎪⎝⎭成立, 所以原不等式成立. 【点睛】本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.。
2024福建省三明市高三下学期5月质量检测三模数学试题及答案

三明市2024年普通高中高三毕业班质量检测数 学 试 题(本试卷总分150分, 考试时间120分钟。
)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线y=-x+2与圆 x ²+y ²=4相交于M ,N 两点,则|MN|= 2 B.2 2 D.42. 已知a ,b ,c 分别为ΔABC 三个内角A ,B ,C 的对边, a =3,b =37,c =7,则A+C 的值为 A.π6 B.π3 C.2π3D.5π63.随机变量ξ~ N (μ,σ²),函数 f (x )=x ²−4x +ξ没有零点的概率是 12,则μ的值为 A. 1 B.2 C.3 D.44.若 a =−b =−c =log 2313,则A. c>a>bB. c>b>aC. a>b>cD. b>c>a5.各种不同的进制在生活中随处可见,计算机使用的是二进制,数学运算一般使用的是十进制,任何进制数均可转换为十进制数,如八进制数(3750)8转换为十进制数的算法为3×8³+7×8²+5×¹+0×8⁰=2024.若将八进制数 77⋯76个7转换为十进制数,则转换后的数的末位数字是A.3B.4C.5D.66.函数 f (x )=sin (ωx +φ)(ω>0,0<φ<π)的部分图象如图所示,其中A ,B 两点为图象与x 轴的交点,C 为图象的最高点,且△ABC 是等腰直角三角形,若 OB =−3OA ,则向量 A O 在向量 AC 上的投影向量的坐标为A. −14 , −14B. 14 , 14C. −12 , −12D. 12 ,127.已知抛物线x ²=2p y(p >0)的焦点为F ,第一象限的两点A ,B 在抛物线上,且满足|AF|-|BF|=3,|AB|=3 2若线段AB 中点的横坐标为3,则p 的值为A.2 B.3 C.4 D.58.已知函数f (x )=e ˣ⁻¹−e ¹⁻ˣ+x ³−3x ²+3x ,若实数x ,y 满足f (3x ²)+f (2y ²−4)=2,则x+y 的最大值为A. 1B.52C. 5D.303二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.i 是虚数单位,下列说法正确的是 A.i 2024=−1B.若 ω=−12−32i ,则 ω2=ωC.若|z|=l,z∈C,则|z-2|的最小值为1D.若-4+3i是关于x的方程x²+px+q=0(p,q∈R)的根,则q=710.假设甲袋中有3个红球和2个白球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,混匀后再从乙袋中任取2个球.下列选项正确的是A.从甲袋中任取2个球是1个红球1个白球的概率为35B.从甲、乙两袋中取出的2个球均为红球的概率为120C.从乙袋中取出的2个球是红球的概率为37150D.已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为183711.在棱长为2的正方体ABCD−A1B1C1D1中,E,F,G分别为AB,B C,C1D1的中点,则下列说法正确的是A.若点P在正方体的表面上,且PE⋅PG=0,则点P的轨迹长度为24πB.若三棱锥F-C1CE的所有顶点都在球O的表面上,则球O的表面积为14πC.过点E,F,D1的平面截正方体ABCD−A1B1C1D1所得截面多边形的周长为2+213D.若用一张正方形的纸把此正方体完全包住,不考虑纸的厚度,不将纸撕开,则所需纸的面积的最小值为32三、填空题:本大题共3小题,每小题5分,共15分.12.已知从小到大排列的一组数据:1,5,a,10,11,13,15,21,42,57,若这组数据的极差是其第30百分位数的7倍,则a的值为 .13.已知关于x的不等式(x−keˣ)[x²−(k+3)x+9]≤0对任意x∈(0,+∞)均成立,则实数k的取值范围为 .14.记N∗m ={1,2,3,⋯,m}(m∈N∗),A k表示k个元素的有限集,S(E)表示非空数集E中所有元素的和,若集合Mm,k ={S(Ak)|Ak⊆N∗m},则M4,3=,若S(M m,2)≥817,则m的最小值为 .四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,多面体PABCD中,△PBD和△CBD均为等边三角形,平面ABD⊥平面PBD,BD=2,PC=3.(1)求证:BD⊥PC;(2)求平面ABD与平面PBC夹角的余弦值.16.(15分)已知函数f(x)=sinωx+cosωx+>0)图象的两条相邻对称轴间的距离为π2.(1)若f(x)在(0,m)上有最大值无最小值,求实数m的取值范围;(2)将函数f(x)的图象向右平移π6个单位长度;再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到g(x)的图象,设ℎ(x)=g(x)+12x,求h(z)在(−2π,π)的极大值点.17.(15分)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.18.(17分)已知数列{aₙ}满足a1⋅a2⋯ao−1⋅an=(2)n2+a,n∈N∗.(1)求数列{aₙ}的通项公式;(2)设数列{aₙ}的前n项和为Sₙ,若不等式(−1)n t Sn−14≤S n2对任意的n∈N∗恒成立,求实数t的取值范围;(3)记bn =1log2a n,求证:b1−b2b1+b2−b3b2+⋯+b a−b n+1b a<2(n∈N∗).19.(17分)已知平面直角坐标系xoy中,有真命题:函数y=mx+nx (m≥0,n>0)的图象是双曲线,其渐近线分别为直线y=mx和y轴.例如双曲线y=4x 的渐近线分别为x轴和y轴,可将其图象绕原点O顺时针旋转π4得到双曲线x²−y²=8的图象.(1)求双曲线y=1x的离心率:(2)已知曲线E:x²−y²=2,过E上一点P作切线分别交两条渐近线于A,B 两点,试探究△AOB面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y=33x+32x的图象为Γ,直线l:x+3y−3=0,过F(1,3)的直线与Γ在第一象限交于M,N两点,过M,N作l的垂线,垂足分别为C,D,直线MD,NC交于点H,求△MNH面积的最小值.三明市2024年普通高中高三毕业班质量检测数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分.1.C 2.C 3.D 4.A 5.A 6.B 7.B 8.C二、选择题:本大题考查基础知识和基本运算.每小题6分,满分18分.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 10.ACD 11.BCD三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分.12.613.1,3e ⎡⎤⎢⎥⎣⎦14.{}6,7,8,9,21(第一空2分,第二空3分)四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解法一:(1)证明:取BD 的中点M ,连接PM MC 、,·······················1分∵BPD △和BCD △均为等边三角形,∴BD PM ⊥,BD CM ⊥.··································································2分又PM CM M = ,∴BD ⊥平面CPM ,·········································································3分CP ⊂ 又平面CPM ,∴BD CP ⊥.····················································································4分(2)以M 为原点,,MB MC所在直线为,x y 轴,过M 作平面BCD 的垂线所在直线为z 轴,如图所示建立空间直角坐标系,···········································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD .∵PBD △和CBD △均为等边三角形,∴3PM MC PC ===,60PMC ∠=︒,∴330,,22P ⎛⎫ ⎪ ⎪⎝⎭,()3,0C ,()1,0,0B ,··············································6分∴331,,22BP ⎛⎫=- ⎪ ⎪⎝⎭ ,()3,0BC =- .330,22MP ⎛⎫= ⎪ ⎪⎝⎭设平面PBC 的法向量为(,,)x y z =m ∴0,0BP BC ⎧⋅=⎪⎨⋅=⎪⎩m m 即330,2230x y z x ⎧-++=⎪⎨⎪-+=⎩取1z =,则()3,1=m ,···································································8分平面ABD 的法向量330,22MP ⎛⎫= ⎪ ⎪⎝⎭,·················································10分设平面ABD 与平面PBC 的夹角为θ,∴cos cos ,MP MP MP θ⋅==nn n33913313==⋅··································12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分解法二:(1)同解法一······································································4分(2)如图,取MC 的中点E 为原点,连接PE ,过点E 作//EF MB ,交BC 于点F ,由(1)知CM BD ⊥,EF MC ⊥,又由(1)知BD ⊥平面CPM ,PE ⊂ 又平面CPM ,∴BD PE ⊥,∵PBD △和CBD △均为等边三角形且棱长为2,∴3PM MC PC ===,PE MC ∴⊥,BD MC M ∴= PE CBD∴⊥平面∴以E 为原点,,,EF EC EP所在直线为,,x y z 轴,建立空间直角坐标系,如图所示··························································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD ,∴平面ABD的法向量30,,22MP ⎛⎫= ⎪ ⎪⎝⎭···················································7分∴30,0,2P ⎛⎫ ⎪⎝⎭,0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,,02B ⎛⎫- ⎪ ⎪⎝⎭·············································8分∴()1,CB = ,330,,22CP ⎛⎫=- ⎪ ⎪⎝⎭,设平面PBC 的法向量为(),,x y z =m ,∴00CP CB ⎧⋅⎪⎨⋅⎩==⎪m m,即033022x y z ⎧-=⎪⎨-+=⎪⎩,取1z =,则()=m ,·················10分设平面ABD 与平面PBC 的夹角为θ,∴39cos cos ,13MP MP MP θ⋅===mm m,······························12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分16.解法一:(1)由题意13()sin cos()sin cos sin(6223f x x x x x x ππωωωωω=++=+=+·····································································································2分因为()f x 图象的两条相邻对称轴间的距离为π2,所以周期2ππ22T ω==⨯,故2ω=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,·····················4分当()0,x m ∈时,πππ2,2333x m ⎛⎫+∈+ ⎪⎝⎭,·················································5分因为()f x 在区间()0,m 上有最大值无最小值,所以ππ3π2232m <+≤,·········6分解得π7π1212m <≤,所以m 的取值范围为π7π,1212⎛⎤⎥⎝⎦.···································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,因为(2,)x ππ∈-,所以当4(2,)3x ππ∈--时,()0h x '>,()h x 单调递增,····························11分当42(,)33x ππ∈--时,()0h x '<,()h x 单调递减,································12分当22(,33x ππ∈-时,()0h x '>,()h x 单调递增,··································13分当2(,)3x ππ∈时,()0h x '<,()h x 单调递减.·········································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法二:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,当222233k x k ππππ-+<<+时,()0h x '>,()h x 单调递增,因为(2,)x ππ∈-所以1k =-时,423x ππ-<<-,()h x 单调递增,··································11分1k =时,2233x ππ-<<()h x 单调递增·················································12分当242233k x k ππππ+<<+时,()0h x '<,()h x 单调递减,因为(2,)x ππ∈-0k =时,23x ππ<<,()h x 单调递减,··············································13分1k =-时,4233x ππ-<<-,()h x 单调递减,······································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法三:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-因为(2,)x ππ∈-,所以,(),()x h x h x '的变化情况如下:x4(2,)3ππ--43π-42(,)33ππ--23π-22(,)33ππ-23π2(,)3ππ()h x '+0-0+0-()h x 单调递增极大值单调递减极小值单调递增极大值单调递减···································································································14分所以函数()h x 的极大值点为43π-和23π.··············································15分17.解:(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件(1,2,3)i A i =,记随机任选1题,甲答对为事件B ,··············································1分则31122331()()(|)()(|)()(|)()(|)i i i P B P A P B A P A P B A P A P B A P A P B A ===++∑······························································································2分12121434545255=⨯+⨯+⨯=,·······························································4分所以随机任选1题,甲答对的概率为35;···········································5分(2)乙答对记为事件C ,则1122331111111()()(|)()(|)()(|)4242222P C P A P C A P A P C A P A P C A =++=⨯+⨯+⨯=·····································································································7分设每一轮比赛中甲得分为X ,则331(1)()()()15210P X P BC P B P C ⎛⎫====⨯-= ⎪⎝⎭,·································8分331511(0)()()()225112P X P BC BC P BC P BC ⎛⎫⎛⎫===+=⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭ ,········9分35511(1)()12P X P BC ⎛⎫=-==-⨯= ⎪⎝⎭.····················································10分三轮比赛后,设甲总得分为Y ,则33(3)10100207P Y ⎛⎫=== ⎪⎝⎭,······························································11分22331(2)C 10200272P Y ⎛⎫==⨯= ⎪⎝⎭,··························································12分22123311279(1)C C 331051000102P Y ⎛⎫⎛⎫==⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,···································13分所以甲最终获得奖品的概率为27272794411(3)0002001000100(2)(1)0P P Y P Y P Y =++====++=.····················15分18.(1)因为2121nn n n a a a a +-⋅⋅= ①所以当2(1)11212,n n n n n a a a a -+--≥⋅⋅= ②,·············································1分由②①得2n n a =··················································································2分因为1n =时12a =也符合上式,····························································3分所以数列{}n a 是以2为首项,2为公比的等比数列,所以*,2n n N a n =∈.·············································································4分(2)由(1)知,()12122212nn n S +-==--,···············································5分因为不等式2(1)14n n n tS S -⋅-≤对任意的n *∈N 恒成立,又0n S >且n S 单调递增,·····································································································6分所以14(1)n n nt S S -⋅≤+对任意的n *∈N 恒成立,···········································7分因为1234=26=14=30S S S S =,,,,··························································8分所以当n 为偶数时,原式化简为14n n t S S ≤+对任意的n *∈N 恒成立,即min 14n n t S S ⎛⎫≤+ ⎪⎝⎭因为26S =>2n =时,253t ≤,············································10分。
2024年福建省泉州市初中毕业班教学质量监测(一)化学试卷

2024年福建省泉州市初中毕业班教学质量监测(一)化学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.泉州是“海丝名城”,下列做法与“做强文旅经济,提升城市品质”不相符的是A.提倡公共交通出行B.推广城市露天烧烤C.提倡使用节水设备D.推广垃圾分类回收2.下列化学用语书写正确的是A.氨分子:NH3B.2个氮原子:N2C.铝离子:Al+D.锰酸钾:KMnO4C H O是一种天然类胡萝卜素,可用于预防黄斑变性眼疾。
下列关于叶3.叶黄素()40562黄素说法正确的是A.含有98个原子B.碳、氢元素质量比为5:7C.由碳、氢、氧三种元素组成D.氧元素的质量分数最大4.在进行碳酸氢铵的性质实验中,下列操作错误的是A.闻气味B.取用固体C.加热固体D.检验CO25.氦氖激光仪用于治疗皮肤病。
氦元素的信息和氖原子的结构示意图如图,下列说法错误的是A.氦原子的质量是4.003B.氖原子的质子数为10C.氖原子的最外层电子数为8D.氦气和氖气均属于稀有气体6.为达到出售的干燥标准,制盐厂常用流化床(如图)干燥氯化钠。
下列说法错误的是A.此过程用到的原理是烘干B.干燥的热空气属于纯净物C.流化床内发生的变化是物理变化D.热空气使水分子运动速率加快7.下图是某种“加碘食盐”包装袋上的部分说明,下列说法错误的是A.人体缺碘会引起甲状腺疾病B.碘酸钾中碘元素的化合价为+5价C.每袋“加碘食盐”中含碘酸钾15mg D.可推测碘酸钾性质之一是受热易分解8.下图是KClO3、KCl的溶解度曲线,下列说法正确的是A.KClO3的溶解度小于KClB.KClO3、KCl的溶解度均随温度升高而增大C.20℃时,20gKCl溶于100g水中可形成饱和溶液D.60℃时,无法配制相同浓度的KClO3溶液和KCl溶液9.下列图中的实验现象与推论相对应的是A.带火星的木条复燃,说明氧气已集满B.冰块融化后天平仍平衡,验证质量守恒定律C.松手后导管中形成液柱,说明装置的气密性良好D.水进入集气瓶超过容积的五分之一,说明红磷过量10.知:36V以上的电压不是安全电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年福建省泉州市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. -(-2017)=2017B. |-2017|=±2017C. 20170=0D. 2017-1=-2017 2. 计算(-2a 2)3的结果是( )A. -6a 2B. -8a 5C. 8a 5D. -8a 6 3. 某几何体如下左图所示,该几何体的右视图是( )第3题图4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( ) A. 8 B. 12 C. 16 D. 185. 不等式组⎩⎪⎨⎪⎧x -1≤0-x <2,的整数解的个数为( )A. 0个B. 2个C. 3个D. 无数个6. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. OA =OCB. AC =BDC. AC ⊥BDD. BD 平分∠ABC第6题图7. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是()A. 最高分90B. 众数是5C. 中位数是90D. 平均分为87.5第7题图8. 如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若AD DB=12,DE=3,则BC的长度是()A. 6B. 8C. 9D. 10第8题图9. 实数a、b、c、d在数轴上的对应点从左到右依次是A、B、C、D,若b+d=0,则a+c的值()A. 小于0B. 等于0C. 大于0D. 与a、b、c、d的取值有关10. 已知双曲线y =kx 经过点(m ,n ),(n +1,m -1),(m 2-1,n 2-1),则k 的值为( )A. 0或3B. 0或-3C. -3D. 3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知x =0是方程x 2-5x +2m -1=0的解,则m 的值是________. 12. 分解因式:x 3-4x =________.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是15,则袋中黄球的个数为________.14. 抛物线y =x 2-6x +7的顶点坐标是________.15. 在直角坐标系中,点M (3,1)绕着原点O 顺时针旋转60°后的对应点的坐标是________.16. 如图,在面积为16的四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于点P ,则DP 的长是________.第16题图三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17. (8分)先化简,再求值:x (x +2)+(x -1)(x +1)-2x ,其中x = 2.18. (8分)解方程组:⎩⎪⎨⎪⎧x -y =13x +y =7.19. (8分)如图,在四边形ABCD 中,AB =AD =3,DC =4,∠A =60°,∠D =150°,试求BC 的长度.第19题图20. (8分)如图,E 、F 是▱ABCD 的对角线AC 上的两点,AE =CF ,求证:DF第20题图21. (8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:第21题图(1)接受测评的学生共有________人,扇形统计图中“优”部分对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好是3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.22. (10分)某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲图书少4本.(1)求甲、乙两种图书的单价各是多少元;(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?23. (10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD 的中点,且AC=5,DC=1.(1)求证:AB=DE;(2)求tan∠EBD的值.第23题图24. (13分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交AC ︵于点D ,过点D 作DE ∥AC ,交BA 的延长线于点E ,连接AD 、CD .(1)求证:DE 是⊙O 的切线; (2)若OA =AE =2时, ①求图中阴影部分的面积;②以O 为原点,AB 所在的直线为x 轴,直径AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,试在线段AC 上求一点P ,使得直线DP 把阴影部分的面积分成1∶2的两部分.第24题图25. (13分)如图,在直角坐标系中,抛物线y=-x2+bx+2与x轴交于A、B 两点,与直线y=2x交于点M(1,m).(1)求m,b的值;(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s>0)个单位长度.若线段MN与抛物线有两个不同的公共点,试求s的取值范围;(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO=∠BGO,并简要说明理由.(保留作图痕迹)第25题图1. A 【解析】2. D 【解析】(-2a 2)3=(-2)3(a 2)3=-8a 6,故选D .3. D 【解析】本题考查几何体的右视图,从右往左看,可看到两个矩形,一上一下叠放在一起,且所有棱都能看到,故轮廓线均为实线,符合条件的只有D .4. B 【解析】正多边形的每个外角都为60°,360°÷60°=6,所以这个多边形为正六边形,正六边形的周长为6×2=12.5. C 【解析】不等式组的解为-2<x ≤1,其中的整数解有-1,0,1,共3个.6. B 【解析】对角线相等的平行四边形是矩形,故选B .7. C 【解析】由折线统计图可知,十名选手的最高分为95分,A 错误;众数为90,B 错误;把成绩从低到高排,中间两数都为90,所以中位数为90,C 正确;x -=1080×2+85+90×5+95×2=88.5(分),故D 错误.8. C 【解析】∵DE ∥BC ,∴AB AD=BC DE,∵DB AD=21,∴BC DE=31,∵DE =3,∴BC =9. 9. A 【解析】根据数轴上右边的数总比左边的大,得a<b<c<d ,∵b +d =0,∴b +c<0,∵b>a ,∴a +c<0.10. D 【解析】把点(m ,n),(n +1,m -1),(m 2-1,n 2-1)代入双曲线y =x k得,k =mn ①,k =(n +1)(m -1)②,k =(m 2-1)(n 2-1)③,①代入②得m -n =1;②代入③中得,1=(m +1)(n -1),1=mn +n -m -1,mn =2+(m -n)=3,所以k =3.12. x(x +2)(x -2) 【解析】x 3-4x =x(x 2-4)=x(x +2)(x -2)13. 8 【解析】口袋中球的个数为2÷51=10个,袋中黄球的个数为10-2=8个. 14. (3,-2) 【解析】y =x 2-6x +7=(x 2-6x +9)-9+7=(x -3)2-2,所以抛物线的顶点坐标为(3,-2).15. (,-1) 【解析】如解图,由旋转的性质可知∠MOB =60°,OM =OB ,又∵M(,1),可得∠MOC =30°,∴∠COB =30°,过点B 作BC ⊥OC 于点C ,结合OB =OM 可知,点B 与点M 关于x 轴对称,∴B(,-1).第15题解图16. 4 【解析】如解图所示,过D 点作DE ⊥BC 交BC 的延长线于点E.∵∠ADC =∠ABC =90°,∴四边形DPBE 是矩形.∴∠PDE =90°,∴∠ADP =∠CDE.∵AD =DC ,∴Rt △APD ≌Rt △CED ,∴DP =DE ,∴四边形PDEB 是正方形,又∵四边形ABCD 的面积为16,∴正方形DPBE 的面积也为16,∴DP =DE =4.第16题解图17. 解:原式=x 2+2x +x 2-1-2x =2x 2-1当x =时,原式=2×()2-1=4-1=3. 18. 解:3x +y =7 ②x -y =1 ①, ①+②得4x =8,∴x =2, 将x =2代入①得y =1.所以该方程组的解为y =1x =2. 19. 解:如解图,连接DB ,第19题解图∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =3,∠ADB =60°,又∵∠ADC =150°,∴∠CDB =∠ADC -∠ADB =150°-60°=90°, ∵DC =4, ∴BC ===5.20. 证明:在▱ABCD 中,CD ∥AB ,DC =AB , ∴∠DCA =∠BAC , 在△DCF 和△BAE 中,CF =AE∠DCA =∠BAC,∴△DCF ≌△BAE(SAS ), ∴DF =BE.21. (1)80,135,补全条形统计图如解图①所示;第21题解图①【解法提示】接受测评的学生共有20÷25%=80(人),安全知识达到“良”的人数为80-30-20-5=25(人),扇形统计图中“优”部分对应扇形的圆心角为8030×360°=135°.(2)该校对安全知识达到“良”程度的人数为: 1200×8030+25=825(人);(3)列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53. 或画树状图如解图②:第21题解图②所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53.22. 解:(1)设甲种图书的单价是x 元,则乙种图书的单价是1.5x 元, 依题意得:x360-1.5x 360=4.解得:x =30,经检验x =30是原方程的解,且x =30,1.5x =45符合题意.答:甲种图书的单价是30元,乙种图书的单价是45元. (2)设乙种图书能买m本,依题意得:45m+30(100-m)≤3500,解得:m≤3100=3331,因为m是正整数,所以m最大值为33,答:乙种图书最多能买33本.23. (1)证明:在矩形ABCD中,∠ADC=90°,AB=DC=1,∵AC=,DC=1,∴在Rt△ADC中,AD===2,∵E是边AD的中点,∴AE=DE=1,又∵AB=1,∴AB=DE;(2)解:如解图,过点E作EM⊥BD于点M,第23题解图∵BD=AC=,在Rt△DEM和Rt△DBA中,sin∠ADB=ED EM=BD BA,即1EM=51,解得:EM=55,又∵在Rt△ABE中,BE===,∴在Rt△BEM中,BM==)25=55,∴在Rt△BEM中,tan∠EBD=BM EM=55=31.第24题解图24. (1)证明:如解图,连接OC,∵OA=OC,F为AC的中点,∴OD⊥AC,又∵DE∥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:①由(1)得OD⊥DE,∴∠EDO=90°,∵OA=AE=2,∴OA=OD=AD=2,∴△AOD是等边三角形,∴∠AOD=∠DAO=60°,∴∠ACD=21∠AOD=30°,又∵AC⊥OD,∴∠CAO=∠CAD=30°,∴∠ACD=∠CAO,∴CD∥AB,∴S △ACD =S △OCD , ∴S 阴=S 扇形OCD ,∵∠CAD =∠OAD -∠OAC =60°-30°=30°, ∴∠COD =2∠CAD =60°, ∴S 阴=36060π×22=32π;②由已知得:A(-2,0),C(1,), ∴直线AC 的表达式为y =33x +33,如解图,过点P 1分别作P 1M ⊥x 轴,P 1N ⊥AD ,垂足分别M ,N , 由①得AC 平分∠OAD , ∴P 1M =P 1N ,设P 1(x ,33x +33)(-2≤x ≤1), P 1M =P 1N =33x +33,∵直线DP 1把阴影部分面积分成1∶2的两部分, 若S △AP 1D =31S 阴,即21×2·(33x +33)=31×32π, 解得:x =93π-18,此时P 1(93π-18,92π),若S △AP 2D =32S 阴,同理可求得P 2(93π-18,94π), 综上所述:满足条件的点P 的坐标为P 1(93π-18,92π)和P 2(93π-18,94π).25. 解:(1)把M(1,m)代入y =2x 得m =2×1=2,把M(1,2)代入y =-x 2+bx +2得2=-12+b +2,即b =1; (2)由(1)得y =-x 2+x +2,M(1,2),因为点N ,点M 关于原点O 对称,所以N(-1,-2),如解图①,过点N 作CN ⊥x 轴,交抛物线于C ,则C 的横坐标为-1, 所以C 的纵坐标为-(-1)2+(-1)+2=0,第25题解图①所以C(-1,0)与A 重合,则CN =AN =2,即当s =2时线段MN 与抛物线有两个公共点, 设平移后的直线表达式为y =2x +s , 由y =-x2+x +2y =2x +s得x 2+x +s -2=0, 由Δ=12-4(s -2)=0,得s =49,即当s =49时,线段MN 与抛物线只有一个公共点,所以,当线段MN 与抛物线有两个公共点时,s 的取值范围为2≤s <49; (3)如解图②,在x 轴上取一点P(-2,0),以P 为圆心,OP 为半径作圆,⊙P 与抛物线的交点,即是所求作的点G(解图②中的G 与G′),理由:第25题解图②当点G 在x 轴上方时,由作图可知,PG =2,PA =1,PB =4, 则PG PA=PB PG=21, ∵∠GPA =∠BPG , ∴△GPA ∽△BPG , ∴∠PBG =∠PGA , ∵GP =PO ,∴∠POG=∠PGO,又∵∠POG=∠PBG+∠OGB,∠PGO=∠PGA+∠AGO,∴∠AGO=∠BGO,同理可证:当点G′在x轴的下方时,结论也成立.。