2017泉州质检数学试卷
福建省泉州市2017年5月初中毕业班质量检测数学试题(含答案解析)

2017年福建省泉州市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. -(-2017)=2017B. |-2017|=±2017C. 20170=0D. 2017-1=-2017 2. 计算(-2a 2)3的结果是( )A. -6a 2B. -8a 5C. 8a 5D. -8a 6 3. 某几何体如下左图所示,该几何体的右视图是( )第3题图4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( ) A. 8 B. 12 C. 16 D. 185. 不等式组⎩⎪⎨⎪⎧x -1≤0-x <2,的整数解的个数为( )A. 0个B. 2个C. 3个D. 无数个6. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. OA =OCB. AC =BDC. AC ⊥BDD. BD 平分∠ABC第6题图7. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是()A. 最高分90B. 众数是5C. 中位数是90D. 平均分为87.5第7题图8. 如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若AD DB=12,DE=3,则BC的长度是()A. 6B. 8C. 9D. 10第8题图9. 实数a、b、c、d在数轴上的对应点从左到右依次是A、B、C、D,若b+d=0,则a+c的值()A. 小于0B. 等于0C. 大于0D. 与a、b、c、d的取值有关10. 已知双曲线y =kx 经过点(m ,n ),(n +1,m -1),(m 2-1,n 2-1),则k 的值为( )A. 0或3B. 0或-3C. -3D. 3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知x =0是方程x 2-5x +2m -1=0的解,则m 的值是________. 12. 分解因式:x 3-4x =________.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是15,则袋中黄球的个数为________.14. 抛物线y =x 2-6x +7的顶点坐标是________.15. 在直角坐标系中,点M (3,1)绕着原点O 顺时针旋转60°后的对应点的坐标是________.16. 如图,在面积为16的四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于点P ,则DP 的长是________.第16题图三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17. (8分)先化简,再求值:x (x +2)+(x -1)(x +1)-2x ,其中x = 2.18. (8分)解方程组:⎩⎪⎨⎪⎧x -y =13x +y =7.19. (8分)如图,在四边形ABCD 中,AB =AD =3,DC =4,∠A =60°,∠D =150°,试求BC 的长度.第19题图20. (8分)如图,E 、F 是▱ABCD 的对角线AC 上的两点,AE =CF ,求证:DF第20题图21. (8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:第21题图(1)接受测评的学生共有________人,扇形统计图中“优”部分对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好是3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.22. (10分)某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲图书少4本.(1)求甲、乙两种图书的单价各是多少元;(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?23. (10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD 的中点,且AC=5,DC=1.(1)求证:AB=DE;(2)求tan∠EBD的值.第23题图24. (13分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交AC ︵于点D ,过点D 作DE ∥AC ,交BA 的延长线于点E ,连接AD 、CD .(1)求证:DE 是⊙O 的切线; (2)若OA =AE =2时, ①求图中阴影部分的面积;②以O 为原点,AB 所在的直线为x 轴,直径AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,试在线段AC 上求一点P ,使得直线DP 把阴影部分的面积分成1∶2的两部分.第24题图25. (13分)如图,在直角坐标系中,抛物线y=-x2+bx+2与x轴交于A、B 两点,与直线y=2x交于点M(1,m).(1)求m,b的值;(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s>0)个单位长度.若线段MN与抛物线有两个不同的公共点,试求s的取值范围;(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO=∠BGO,并简要说明理由.(保留作图痕迹)第25题图1. A 【解析】2. D 【解析】(-2a 2)3=(-2)3(a 2)3=-8a 6,故选D .3. D 【解析】本题考查几何体的右视图,从右往左看,可看到两个矩形,一上一下叠放在一起,且所有棱都能看到,故轮廓线均为实线,符合条件的只有D .4. B 【解析】正多边形的每个外角都为60°,360°÷60°=6,所以这个多边形为正六边形,正六边形的周长为6×2=12.5. C 【解析】不等式组的解为-2<x ≤1,其中的整数解有-1,0,1,共3个.6. B 【解析】对角线相等的平行四边形是矩形,故选B .7. C 【解析】由折线统计图可知,十名选手的最高分为95分,A 错误;众数为90,B 错误;把成绩从低到高排,中间两数都为90,所以中位数为90,C 正确;x -=1080×2+85+90×5+95×2=88.5(分),故D 错误.8. C 【解析】∵DE ∥BC ,∴AB AD=BC DE,∵DB AD=21,∴BC DE=31,∵DE =3,∴BC =9. 9. A 【解析】根据数轴上右边的数总比左边的大,得a<b<c<d ,∵b +d =0,∴b +c<0,∵b>a ,∴a +c<0.10. D 【解析】把点(m ,n),(n +1,m -1),(m 2-1,n 2-1)代入双曲线y =x k得,k =mn ①,k =(n +1)(m -1)②,k =(m 2-1)(n 2-1)③,①代入②得m -n =1;②代入③中得,1=(m +1)(n -1),1=mn +n -m -1,mn =2+(m -n)=3,所以k =3.12. x(x +2)(x -2) 【解析】x 3-4x =x(x 2-4)=x(x +2)(x -2)13. 8 【解析】口袋中球的个数为2÷51=10个,袋中黄球的个数为10-2=8个. 14. (3,-2) 【解析】y =x 2-6x +7=(x 2-6x +9)-9+7=(x -3)2-2,所以抛物线的顶点坐标为(3,-2).15. (,-1) 【解析】如解图,由旋转的性质可知∠MOB =60°,OM =OB ,又∵M(,1),可得∠MOC =30°,∴∠COB =30°,过点B 作BC ⊥OC 于点C ,结合OB =OM 可知,点B 与点M 关于x 轴对称,∴B(,-1).第15题解图16. 4 【解析】如解图所示,过D 点作DE ⊥BC 交BC 的延长线于点E.∵∠ADC =∠ABC =90°,∴四边形DPBE 是矩形.∴∠PDE =90°,∴∠ADP =∠CDE.∵AD =DC ,∴Rt △APD ≌Rt △CED ,∴DP =DE ,∴四边形PDEB 是正方形,又∵四边形ABCD 的面积为16,∴正方形DPBE 的面积也为16,∴DP =DE =4.第16题解图17. 解:原式=x 2+2x +x 2-1-2x =2x 2-1当x =时,原式=2×()2-1=4-1=3. 18. 解:3x +y =7 ②x -y =1 ①, ①+②得4x =8,∴x =2, 将x =2代入①得y =1.所以该方程组的解为y =1x =2. 19. 解:如解图,连接DB ,第19题解图∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =3,∠ADB =60°,又∵∠ADC =150°,∴∠CDB =∠ADC -∠ADB =150°-60°=90°, ∵DC =4, ∴BC ===5.20. 证明:在▱ABCD 中,CD ∥AB ,DC =AB , ∴∠DCA =∠BAC , 在△DCF 和△BAE 中,CF =AE∠DCA =∠BAC,∴△DCF ≌△BAE(SAS ), ∴DF =BE.21. (1)80,135,补全条形统计图如解图①所示;第21题解图①【解法提示】接受测评的学生共有20÷25%=80(人),安全知识达到“良”的人数为80-30-20-5=25(人),扇形统计图中“优”部分对应扇形的圆心角为8030×360°=135°.(2)该校对安全知识达到“良”程度的人数为: 1200×8030+25=825(人);(3)列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53. 或画树状图如解图②:第21题解图②所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53.22. 解:(1)设甲种图书的单价是x 元,则乙种图书的单价是1.5x 元, 依题意得:x360-1.5x 360=4.解得:x =30,经检验x =30是原方程的解,且x =30,1.5x =45符合题意.答:甲种图书的单价是30元,乙种图书的单价是45元. (2)设乙种图书能买m本,依题意得:45m+30(100-m)≤3500,解得:m≤3100=3331,因为m是正整数,所以m最大值为33,答:乙种图书最多能买33本.23. (1)证明:在矩形ABCD中,∠ADC=90°,AB=DC=1,∵AC=,DC=1,∴在Rt△ADC中,AD===2,∵E是边AD的中点,∴AE=DE=1,又∵AB=1,∴AB=DE;(2)解:如解图,过点E作EM⊥BD于点M,第23题解图∵BD=AC=,在Rt△DEM和Rt△DBA中,sin∠ADB=ED EM=BD BA,即1EM=51,解得:EM=55,又∵在Rt△ABE中,BE===,∴在Rt△BEM中,BM==)25=55,∴在Rt△BEM中,tan∠EBD=BM EM=55=31.第24题解图24. (1)证明:如解图,连接OC,∵OA=OC,F为AC的中点,∴OD⊥AC,又∵DE∥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:①由(1)得OD⊥DE,∴∠EDO=90°,∵OA=AE=2,∴OA=OD=AD=2,∴△AOD是等边三角形,∴∠AOD=∠DAO=60°,∴∠ACD=21∠AOD=30°,又∵AC⊥OD,∴∠CAO=∠CAD=30°,∴∠ACD=∠CAO,∴CD∥AB,∴S △ACD =S △OCD , ∴S 阴=S 扇形OCD ,∵∠CAD =∠OAD -∠OAC =60°-30°=30°, ∴∠COD =2∠CAD =60°, ∴S 阴=36060π×22=32π;②由已知得:A(-2,0),C(1,), ∴直线AC 的表达式为y =33x +33,如解图,过点P 1分别作P 1M ⊥x 轴,P 1N ⊥AD ,垂足分别M ,N , 由①得AC 平分∠OAD , ∴P 1M =P 1N ,设P 1(x ,33x +33)(-2≤x ≤1), P 1M =P 1N =33x +33,∵直线DP 1把阴影部分面积分成1∶2的两部分, 若S △AP 1D =31S 阴,即21×2·(33x +33)=31×32π, 解得:x =93π-18,此时P 1(93π-18,92π),若S △AP 2D =32S 阴,同理可求得P 2(93π-18,94π), 综上所述:满足条件的点P 的坐标为P 1(93π-18,92π)和P 2(93π-18,94π).25. 解:(1)把M(1,m)代入y =2x 得m =2×1=2,把M(1,2)代入y =-x 2+bx +2得2=-12+b +2,即b =1; (2)由(1)得y =-x 2+x +2,M(1,2),因为点N ,点M 关于原点O 对称,所以N(-1,-2),如解图①,过点N 作CN ⊥x 轴,交抛物线于C ,则C 的横坐标为-1, 所以C 的纵坐标为-(-1)2+(-1)+2=0,第25题解图①所以C(-1,0)与A 重合,则CN =AN =2,即当s =2时线段MN 与抛物线有两个公共点, 设平移后的直线表达式为y =2x +s , 由y =-x2+x +2y =2x +s得x 2+x +s -2=0, 由Δ=12-4(s -2)=0,得s =49,即当s =49时,线段MN 与抛物线只有一个公共点,所以,当线段MN 与抛物线有两个公共点时,s 的取值范围为2≤s <49; (3)如解图②,在x 轴上取一点P(-2,0),以P 为圆心,OP 为半径作圆,⊙P 与抛物线的交点,即是所求作的点G(解图②中的G 与G′),理由:第25题解图②当点G 在x 轴上方时,由作图可知,PG =2,PA =1,PB =4, 则PG PA=PB PG=21, ∵∠GPA =∠BPG , ∴△GPA ∽△BPG , ∴∠PBG =∠PGA , ∵GP =PO ,∴∠POG=∠PGO,又∵∠POG=∠PBG+∠OGB,∠PGO=∠PGA+∠AGO,∴∠AGO=∠BGO,同理可证:当点G′在x轴的下方时,结论也成立.。
【全国市级联考】福建省泉州市2017届九年级初中学业质量检查数学(解析版)

2017年福建省泉州市初中学业质量检查数学试卷(试卷满分:150分;考试时间:120分钟)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. B. C. D.【答案】A【解析】试题分析:A、根据相反数的求法得出选项正确;B、根据负数的绝对值等于它的相反数可得:原式=2017;C、任何非零实数的零次幂为1可得:原式=1;D、根据负指数次幂的计算法则可得:原式= .2. 计算的结果是( )A. B. C. D.【答案】D【解析】试题分析:积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.3. 某几何体如下左图所示,该几何体的右视图是( )A. B. C. D.【答案】D【解析】试题分析:根据三视图的法则可得:A为主视图,B为俯视图,D为左视图.4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )A. 8B. 12C. 16D. 18【答案】B【解析】试题分析:根据多边形的外角求法可得:这个多边形的边数为六边形,则周长为:2×6=12.5. 不等式组的整数解的个数为( )A. 0个B. 2个C. 3个D. 无数个【答案】C【解析】试题分析:解不等式组可得不等式组的解为:,则整数解有x=-1、0、1,共三个.6. 如图,的对角线与相交于点,要使它成为矩形,需再添加的条件是( )A. B. C. D. 平分【答案】B...【解析】试题分析:对角线相等的平行四边形为矩形,有一个角为直角的平行四边形为矩形,则根据题意可知添加的条件为AC=BD.7. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A. 最高分90B. 众数是5C. 中位数是90D. 平均分为87.5【答案】C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.8. 如图,在中,点分别是边,上的点,且∥,若,,则的长度是( )A. 6B. 8C. 9D. 10【答案】C【解析】试题分析:根据可得:,根据DE∥BC可得:△ADE∽△ABC,则,根据DE=3可得BC=3DE=9.点睛:本题主要考查的就是三角形相似的应用.解决本题的关键就是根据题意得出三角形相似.相似三角形的边长之比等于相似比,相似三角形的面积之比等于相似比的平方,各边对应的中线、高线以及角平分线的比值等于相似比.在证明三角形相似的时候,利用两个角对应相等来证明是用的最多的一种方法.9. 实数,,,在数轴上的对应点从左到右依次是,,,,若,则的值( )A. 小于0B. 等于0C. 大于0D. 与a,b,c,d的取值有关【答案】A【解析】试题分析:根据b+d=0可得:b、d互为相反数,则根据题意可画出数轴为:,则a+c为负数.10. 已知双曲线经过点(,),(,),(,),则的值为( )A. 或B. 或C.D.【答案】D【解析】试题分析:根据反比例函数图象上点的特征可得:mn=(n+1)(m-1),则m-n=1mn=将m-n=1代入可得:mn=,则=3mn,解得:mn=0或3,即k=0或3,根据反比例函数的性质可得:k=3.点睛:本题主要考查的就是反比例函数图象上点的坐标的特点,难度中等.解决这个问题的关键就是能够根据题意列出两个等式,然后通过完全平方公式来进行解答.对于反比例函数图象上的点横纵坐标的积为定值,经过反比例函数图象上的任意一点分别作x轴和y轴的垂线所形成的矩形的面积为.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知是方程的解,则的值是___________.【答案】【解析】试题分析:将x=0代入方程可得:0-0+2m-1=0,解得:m=.12. 分解因式:=___________.【答案】...【解析】试题分析:==x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是,则袋中黄球的个数为___________.【答案】【解析】试题分析:设黄球的个数为x个,则根据概率可得:,解得:x=8,即袋子黄球的个数为8个.14. 抛物线的顶点坐标是_______________.【答案】【解析】试题分析:将函数解析式配方成顶点式可得:y=,则函数的顶点坐标为(3,-2).点睛:本题主要考查的就是二次函数一般式转化为顶点式,属于简单的题目.在化顶点式的时候我们首先通过提取将二次项系数化为1,然后再加上一次项系数一半的平方,从而得到顶点式.二次函数的基本形式一般有三种:一般式;顶点式:;交点式也称两根式:,对于不同的题目我们要选择不同的形式来进行解答.15. 在直角坐标系中,点绕着坐标原点旋转后,对应点的坐标是_______________.【答案】或(0,2)【解析】试题分析:本题首先在平面直角坐标系中画出点M所在的位置,如果绕着坐标原点顺时针旋转时则点的坐标为();如果绕着坐标原点逆时针旋转时则点的坐标为(0,2).16. 如图,在面积为的四边形中,,,于点,则的长是___________.【答案】【解析】试题分析:过点D作DE⊥BC交BC的延长线于E ∵DP⊥AB,DE⊥BC,∠ABC=90°∴四边形DPBE为矩形∴∠PDE=∠E=90°,PD=BE,DE=PB ∴∠PDC+∠EDC=90°∵∠ADC=90°∴∠PDC+∠PDA=90°∴∠DEC=∠PDA∵∠APD=∠E=90°,AD=CD ∴△APD≌△CED (AAS)∴PD=DE ∴四边形DPBE为正方形则四边形ABCD的面积等于正方形DPBE的面积即,则DP=4.点睛:本题主要考查的是图形的旋转、三角形全等以及特殊平行四边形的判断,难度中等,解决本题的关键就是将△APD通过旋转转化为△CED,然后根据特殊平行四边形来进行证明.在解决非特殊四边形的问题时,我们经常会通过旋转或割补的方法转化为特殊的四边形来进行解答.在证明特殊平行四边形的时候,我们一定要根据实际的题目来选择合适的证明方法.三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 在答题卡的相应位置内作答.17. 先化简,再求值:,其中.【答案】,3【解析】试题分析:首先根据多项式的乘法以及平方差公式将括号去掉,然后进行合并同类项,最后将x 的值代入化简后的式子进行计算得出答案.试题解析:原式 =当时,原式=18. 解方程组:【答案】...【解析】试题分析:首先将两式相加得出关于x的一元一次方程,求出x的值,然后将x的值代入第一个方程求出y的值,从而得出方程组的解.试题解析:①+②得:,所以 .把代入①得:.所以,该方程组的解为19. 如图,在四边形中,,,,,试求的长度.【答案】【解析】试题分析:连接DB,根据AB=AD,∠A=60°得出等边三角形,根据等边三角形的性质以及∠ADC=150°得出△BDC为直角三角形,最后根据勾股定理求出BC的长度.试题解析:连结DB, ∵,,∴是等边三角形,∴,,又∵∴,∵∴20. 如图,,是的对角线上的两点,,求证:.【答案】证明见解析【解析】试题分析:根据平行四边形的性质得出DC=AB,∠DCA=∠BAC,结合CF=AE得出△DCF和△BAE全等,从而得出答案.试题解析:在中,,∴在和中,∴∴21. 某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.【答案】(1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女).试题解析:(1)80,135°;条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:(人)(3)解法一:列表如下:...所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女).解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女).22. 某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲种图书少4本.(1)求甲、乙两种图书的单价各是多少元;(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?【答案】(1)甲种图书的单价是元,则乙两种图书的单价是元.(2)乙种图书最多能买本.【解析】试题分析:(1)、首先设甲种图书的单价是x元,则乙两种图书的单价是1.5x元,然后根据同样的钱所购的图书数量列出分式方程,从而求出x的值,得出答案;(2)、乙种图书能买m本,根据总费用列出不等式,然后根据m为正整数,从而得出m的最大值.试题解析:(1)设甲种图书的单价是元,则乙两种图书的单价是元,依题意得:解得:经检验是原方程的解,且,符合题意.答:甲种图书的单价是元,则乙两种图书的单价是元.(2)设乙种图书能买本,依题意得:解得:因为是正整数,所以最大为.答:乙种图书最多能买本.23. 如图,在矩形中,对角线,相交于点,是边的中点,且,.(1)求证:;(2)求的值....【答案】(1)证明见解析; (2)试题解析:(1)、在矩形中,∵,,∴在中,∵E是边AD的中点,∴∵∴(2)、过点E作EM⊥BD于M,∵在和中,即:解得:又在中,在中,在中,24. 如图,为的直径,为弦的中点,连接并延长交于点,过点作∥,交的延长线于点,连接,.(1)求证:是⊙的切线;(2)若时,①求图中阴影部分的面积;②以为原点,所在的直线为轴,直径的垂直平分线为轴,建立如图所示的平面直角坐标系,试在线段上求一点,使得直线把阴影部分的面积分成的两部分.【答案】(1)证明见解析;(2) ①②或【解析】试题分析:(1)、连接OC,根据等腰三角形的三线合一定理得出OD⊥AC,根据平行线的性质得出OD⊥DE,从而得出切线;(2)、首先得出△AOD为等边三角形,然后根据题意得出△ACD和△OCD的面积相等,从而得出阴影部分的面积等于扇形OCD的面积,然后根据扇形的面积计算法则得出答案;(3)、根据题意得出直线AC的解析式,过点P分别作PM⊥x轴,PN⊥AD,垂足分别为M,N,设设根据面积分成1:2两部分得出△APD的面积等于阴影部分面积的或列出方程,求出x的值,得出点P的坐标.试题解析:(1)、连结∵为的中点∴又∵∴∴是⊙O的切线(2)、①由(1)得∴∴∴∴∴是等边三角形∴∴又∵∴∴∴∴∴∵∴∴②由已知得:∴直线的表达式为过点P分别作轴,垂足分别为,, 由①得平分...∴设∵直线把阴影部分的面积分成的两部分若即解得:,此时若同理可求得综上所述:满足条件的点P的坐标为和25. 如图,在直角坐标系中,抛物线与轴交于、两点,与直线交于点.(1)求,的值;(2)已知点,点关于原点对称,现将线段沿轴向上平移(>0)个单位长度.若线段与抛物线有两个不同的公共点,试求的取值范围;(3)利用尺规作图,在该抛物线上作出点,使得,并简要说明理由.(保留作图痕迹)【答案】(1),;(2)取值范围为;(3)作图见解析,理由见解析.【解析】试题分析:(1)、根据一次函数解析求出点M的坐标,然后将点M的坐标代入二次函数解析式得出b的值;(2)、根据对称得出点N的坐标,过点N作CN⊥x轴,交抛物线于C,从而得出CN=AN=2,即当S=2时线段MN与抛物线有两个交点,然后设平移后的解析式为y=2x+s,然后将一次函数和二次函数联立成方程组,根据根的判别式得出s的值,从而得出取值范围;(3)、如图,在x轴上取一点P(-2,0)以P为圆心,OP为半径作圆,⊙P与抛物线的交点,即是所求作的点G,根据△GPA和△BPG相似得出答案.试题解析:(1)、把代入得把代入得即(2)、由(1)得因为点,点关于原点对称,所以过点N作轴,交抛物线于C, 则C的横坐标为所以C的纵坐标为所以与重合.则,即当线段与抛物线有两个公共点.设平移后的直线表达式为由得由得即当线段与抛物线只有一个公共点.所以,当线段与抛物线有两个公共点时. 取值范围为(3)、如图,在轴上取一点以为圆心,为半径作圆,⊙与抛物线的交点,即是所求作的点(图中的与)理由:当点在轴上方时,由作图可知,则又∵∴∴∵∴又∴同理可证:当点()在轴下方时,结论也成立. ...点睛:本题主要考查的就是二次函数与一次函数的交点,三角形相似,圆的知识的综合题,综合性比较强,难度比较大.在求一次函数和二次函数交点个数问题的时候,我们首先需要将一次函数和二次函数联立成方程组,然后转化为一元二次方程,从而根据根的判别式来进行判断根的个数.在做圆与函数的综合题时,我们往往会将圆的题目转化为三角形全等或者相似来进行证明解答.。
2017年福建省泉州市初中学业质量检查数学试题参考答案及评分标准(初定稿)20170516-1

解法二:画树状图如下:
女1 女 2女 3男 1男 2
女2 女 1女 3男 1男 2
女3 女 1女 2男 1男 2
男1 女 1女 2女 3男 2
男2 女 1女 2女 3男 1
…7 分
所有等可能的结果为 20 种,其中抽到一男一女的为 12 种, 所以 P (抽到 1 男 1 女)
12 3 .……………………………………………………………8 分 20 5
1 2
12. x( x 2)( x 2)
13. 8 14. (3, 2)
15. ( 3, 1) 16. 4
三、解答题(共 86 分) 17. (本小题 8 分) 解:原式 x 2 x x 1 2 x …………………………………………………………………6 分
2 2
= 2 x 1 …………………………………………………………………………………7 分
21. (本小题 8 分) (1)80,135° ;条形统计图如图所示;………3 分 (2)该校对安全知识达到“良”程度的人数:
30 25 1200 =825 (人)………………5 分 80
(3)解法一:列表如下:
女1 女1 女2 女3 男1 男2 --女 1女 2 女 1女 3 女 1男 1 女 1男 2 女2 女 2女 1 --女 2女 3 女 2男 1 女 2男 2 女3 女 3女 1 女 3女 2 --女 3男 1 女 3男 2 男1 男 1女 1 男 1女 2 男 1女 3 --男 1男 2 男2
∴ AD
3 2 3 x . ……………………………………………………………9 分 3 3 过点 P 分别作 PM x 轴,PN AD, 垂足分 y 别为 M , N , 由①得 AC 平分 OAD. D C ∴ PM PN. N P 3 2 3 F (x, x+ )(-2 x 1), 设P 3 3 P 3 2 3 M O A B x E PM PN = x+ . ………………10 分 3 3 ∵直线 DP 把阴影部分的面积分成 1: 2 的两部分
福建省泉州市普通高中2017年教学质量随机监测数学文试卷

泉州市普通高中2017年教学质量随机监测试卷2017.4数 学 文(选修1-2)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷4至6页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题卷上无效。
4.考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,1. 下列表示旅客搭乘动车的流程中,正确的是 A.买票→候车厅候车→上车→候车检票口检票 B.候车厅候车→买票→上车→候车检票口检票 C.买票→候车厅候车→候车检票口检票→上车 D.候车厅候车→上车→候车检票口检票→买票2. 复数1i z =-在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3. 关于衡量两个变量y 与x 之间线性相关关系的相关系数r 与相关指数2R 中,下列说法中正确的是A .r 越大,两变量的线性相关性越强B . 2R 越大,两变量的线性相关性越强 C. r 的取值范围为(,)-∞+∞ D . 2R 的取值范围为[)0,+∞4.若1i1iz +=-,则z = A .i B .i -C .1-D .15. 给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a ⊄平面α,直线b ⊂平面α,且a ∥α,所以a ∥b .上述推理的结论不一定是正确的,其原因是A .大前提错误B .小前提错误C .推理形式错误D .非以上错误6. 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是A .人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B .人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C .人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D .人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%7. 若函数()f x 满足(4)2f =,且对于任意正数12,x x ,都有1212()()()f x x f x f x ⋅=+成立. 则()f x 可能为A.()f x =B. ()2xf x =C. 2()log f x x =D.()2xf x =8. 复平面上矩形ABCD 的四个顶点中,A B C ,,所对应的复数分别为23i +,32i +,23i --,则D 点对应的复数是A.23i -+B. 23i -C. 32i --D.32i -9.下表给出的是两个具有线性相关关系的变量,x y 的一组样本数据:得到的回归方程为y =每增加1个单位时,y 就A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位 10. 按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是A .6B .21C .156D .23111.给出下面两个推理(其中Q 为有理数集,R 为实数集,C 为复数集):①由“若,a b ∈R , 0a b -=,则a b =”推出“,a b ∈C ,0a b -=,则a b =”②由“若,,,a b c d ∈R ,复数a bi c di +=+,则,a c b d ==”推出“若,,,a b c d ∈Q ,a c ++,则,a cb d ==”.其中推理正确的是 A .①②全错 B .①对②错C .①错②对D .①②全对12. 若复数z 满足3i 3i 6z z ++-=,则1i z ++的最小值是A. 1B. 2C. 2D. 5第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.若P Q ==,则P ,Q 中较大的数是 .14. 若复数z 满足i(1)32i z +=-+,则z 的虚部是 .15. 已知命题P :若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积12S r a b c =++().试根据命题P的启发,仿P写出关于四面体的一个命题Q : .16. 已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;… . 若3(*)m m ∈N 的分解中最小的数为91,则m 的值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分10分)实数m 取什么数值时,复数2(4)(56)i z m m m =-+--分别是: (Ⅰ)实数? (Ⅱ)虚数? (Ⅲ)纯虚数?18.(本小题满分12分)用反证法证明:在ABC ∆中,若C ∠是直角,则B ∠是锐角.19.(本小题满分12分)2017年4月14日,某财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关? 参考数据:参考公式: ()()()()()2,n ad bc a b c d a c b d -=++++K 其中.d c b a n +++=20.(本小题满分12分)已知a ,b ,c 是不全相等的正实数,求证:3b c a a c b a b ca b c+-+-+->++.21.(本小题满分12分)一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产的零件中有缺点的零件数随机器运转的速度而变化,下表为抽样数据:(转/秒)(Ⅰ)请画出上表数据的散点图;(Ⅱ)根据散点图判断,y ax b =+与y d =哪一个适宜作为每小时生产的零件中有缺点的零件数y 关于转速x 的回归方程类型 (给出判断即可,不必说明理由),根据判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)若实际生产中,允许每小时生产的零件中有缺点的零件数最多为10个,那么机器的运转速度应控制在什么范围内?(参考公式:1221ˆni ii ni i x y nx ybx nx==-=-∑∑,ˆˆay bx =-.)22. (本小题满分12分)已知数列{}n a 满足1a a =,1(2sin 1)22n n n a a n π+=-+. (Ⅰ)请写出2345,,,a a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,不必证明;(Ⅲ)请利用(Ⅱ)中猜想的结论,求数列{}n a 的前120项和.泉州市2017年普通高中教学质量随机监测试卷数学 文(选修1-2)参考答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. (1)C (2)D (3)B (4)D (5)A (6)B (7)C (8)C (9)B (10)D (11)D (12)A二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分.(13)P(14)3(15)若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,,则四面体的体积23413V R S S =++1(S +S ). (答案仅供参考,叙述正确即给分) (16)10三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分).本小题主要考查复数、虚数、纯虚数的概念等基础知识,考查解一元二次方程的运算求解能力.解:(Ⅰ)当2560m m --=,即61m m ==-或时,复数z 是实数;……3分(Ⅱ)当2560m m --≠,即61m m ≠≠-且时,复数z 是虚数;……6分 (Ⅲ)当40m -=,且2560m m --≠,即4m =时,复数z 是纯虚数.……10分18.(本小题满分12分).本小题主要考查反证法、三角形内角和等基础知识,考查推理论证能力,考查分析问题、解决问题能力.证明:假设在ABC ∆中B ∠不是锐角, ……3分则B ∠是直角或钝角. ……5分 因为在ABC ∆中,C ∠是直角,所以0180B C ∠+∠≥. ……8分 由三角形内角和为0180,可知00A ∠≤, ……10分 这与在ABC ∆中0(0,180)A ∠∈相矛盾, ……11分 所以假设不成立,故B ∠不是锐角, 即命题成立. ……12分19.(本小题满分12分).本小题主要考查列联表、卡方公式、独立性检验等基础知识,考查运算求解能力和数据处理能力.解:(Ⅰ) 402515s =-=,30255t =-=. ……4分(Ⅱ)()226025151557.530304020K ⨯-⨯==⨯⨯⨯ ,(每3个数据1分,计算1分) ……8分因为7.5 6.635>, (10)分因此,通过查找临界值表,可知,能在犯错误的概率不超过1%的前提下, 认为使用淡化海砂与混凝土耐久性是否达标有关. ……12分 注:未画列联表,只要公式中使用的数据正确,不扣分。
福建省泉州市2017届高三3月质量检测数学理试题 Word版含答案

2017年泉州市普通高中毕业班质量检查理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 为复数z 的共轭复数,且()11i z i -=+,则z 为( ) A .i - B . i C .1i - D .1i +2.已知集合11|<22,|ln 022x A x B x x ⎧⎫⎧⎫⎛⎫=≤=-≤⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭,则()R A C B = ( ) A . ∅ B .11,2⎛⎤- ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .(]1,1-3. 若实数,x y 满足约束条件1222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22z x y =+的最小值是( )A.45 C .1 D . 44.已知向量,a b满足()1,0a a b a a b =-=-= ,则2b a -= ( ) A . 2 B..5. 已知n S 为数列{}n a 的前n 项和且22n n S a =-,则54S S -的值为( ) A . 8 B .10 C. 16 D .32 6.已知函数()2sin cos 222x x f x ϕϕπϕ++⎛⎫⎛⎫⎛⎫=<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且对于任意的x R ∈,()6f x f π⎛⎫≤ ⎪⎝⎭.则 ( )A .()()f x f x π=+B .()2f x f x π⎛⎫=+⎪⎝⎭C. ()3f x f x π⎛⎫=-⎪⎝⎭ D .()6f x f x π⎛⎫=- ⎪⎝⎭7. 函数()()ln sin 0f x x x x x ππ=+-≤≤≠且的图象大致是( )A .B .C. D .8.关于x 的方程ln 10x x kx -+=在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个不等实根,则实数k 的取值范围是( )A .11,1e ⎛⎤+ ⎥⎝⎦ B .(]1,1e - C. 11,1e e⎡⎤+-⎢⎥⎣⎦D .()1,+∞9.机器人AlphaGo (阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.下面的算法是寻找“1210,,,a a a ”中“比较大的数t ”,现输入正整数“42,61,80,12,79,18,82,57,31,18“,从左到右依次为1210,,,a a a ,其中最大的数记为T ,则T t -= ( )A .0B . 1 C. 2 D .310.某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是 ( )A .圆弧B .抛物线的一部分 C. 椭圆的一部分 D .双曲线的一部分 11.已知抛物线E 的焦点为F ,准线为l 过F 的直线m 与E 交于,A B 两点,,CD 分别为,A B 在l 上的射影,M 为AB 的中点,若m 与l 不平行,则CMD ∆是( )A .等腰三角形且为锐角三角形B .等腰三角形且为钝角三角形 C.等腰直角三角形 D .非等腰的直角三角形 12. 数列{}n a 满足12sin122n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列{}n a 的前100项和为( ) A . 5050 B .5100 C.9800 D .9850第Ⅱ卷二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.某厂在生产甲产品的过程中,产量x (吨)与生产能耗y (吨)的对应数据如下表:根据最小二乘法求得回归直线方程为ˆ0.65yx a =+.当产量为80吨时,预计需要生产能耗为 吨.14. ()()4121x x -+的展开式中,3x 的系数为 .15.已知l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,l 与圆()222x c y a-+=(其中222c a b =+)相交于,A B 两点,若AB a =,则C 的离心率为 .16.如图,一张4A 纸的长、宽分别为,2a .,,,A B C D 分别是其四条边的中点.现将其沿图中虚线掀折起,使得1234,,,P P P P 四点重合为一点P ,从而得到一个多面体.关于该多面体的下列命题,正确的是 .(写出所有正确命题的序号) ①该多面体是三棱锥; ②平面BAD ⊥平面BCD ;③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为25a π三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos sin A C A C B -+= .(1)证明:,,a b c 成等比数列;(2)若角B 的平分线BD 交AC 于点D ,且6,2BAD BCD b S S ∆∆==,求BD . 18.如图,在以,,,,,A B C D E F 为顶点的多面体中,AF ⊥平面ABCD ,DE ⊥平面ABCD ,0//,,60,244AD BC AB CD ABC BC AF AD DE =∠=====.(1)请在图中作出平面α,使得DE α⊂,且//BF α,并说明理由; (2)求直线EF 和平面BCE 所成角的正弦值.19.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记为0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.(1)求,,a b c 的值;(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中选取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望()E ξ; (3)某评估机构以指标M (()()E M D ξξ=,其中()D ξ表示ξ的方差)来评估该校安全教育活动的成效.若0.7M ≥,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案?20. ABC ∆中,O 是BC 的中点,BC =,其周长为6+,若点T 在线段AO 上,且2AT TO =.(1)建立合适的平面直角坐标系,求点T 的轨迹E 的方程;(2)若,M N 是射线OC 上不同两点,1OM ON = ,过点M 的直线与E 交于,P Q ,直线QN 与E 交于另一点R .证明:MPR ∆是等腰三角形. 21. 已知函数()()ln 11,f x mx x x m R =+++∈.(1)若直线l 与曲线()y f x =恒相切于同一定点,求l 的方程; (2)当0x ≥时,()xf x e ≤,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,圆C 的方程为4cos ρθ=. (1)求l 的普通方程和C 的直角坐标方程;(2)当()0,ϕπ∈时,l 与C 相交于,P Q 两点,求PQ 的最小值. 23.选修4-5:不等式选讲 已知函数()124f x x x =++-. (1)解关于x 的不等式()9f x <;(2)若直线y m =与曲线()y f x =围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.试卷答案一、选择题1-5: ABBAD 6-10: CDADD 11、12:AB二、填空题16. ①②③④ 三、解答题17.解法一:(1)因为()2cos cos cos sin A C A C B -+= ,所以()2cos cos cos cos sin sin sin A C A C A C B --= ,化简可得2sin sin sin A C B =,由正弦定理得,2b ac =,故,,a b c 成等比数列. (2)由题意2BAD BCD S S ∆∆=,得11sin 2sin 22BA BD ABD BC BD CBD ∠=⨯∠ , 又因为BD 是角平分线,所以ABD CBD ∠=∠,即sin sin ABD CBD ∠=∠, 化简得,2BA BC =,即2c a =.由(1)知,2ac b =,解得a c == 再由2BAD BCD S S ∆∆=得,11222AD h CD h ⎛⎫=⨯ ⎪⎝⎭(h 为ABC ∆中AC 边上的高), 即2AD CD =,又因为6AC =,所以4,2AD CD ==. 【注】利用角平分线定理得到4,2AD CD ==同样得分,在ABC ∆中由余弦定理可得,222cos2b c a A bc +-===在ABD ∆中由余弦定理可得,2222cos BD AD AB AD AB A =+-,即(22242428BD =+-⨯⨯=,求得BD =解法二:(1)同解法一.(2)同解法一,4,2AD CD ==.在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==, 在BCD ∆中由余弦定理可得,2222cos BD CD BC CD BC C =+-,即(22222228BD =+-⨯⨯=,求得BD =解法三: (1)同解法一.(2)同解法二,4,2AD CD ==.在ABC ∆中由余弦定理可得,222543cos 2724a cb B ac +-===, 由于2cos 12sin2B B =-,从而可得sin 2B =, 在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==,求得sin C = 在BCD ∆中由正弦定理可得,sin sin CD BD CBD C =∠,即sin sin CD CBD CBD==∠ 【注】若求得sin A 的值后,在BDA ∆中应用正弦定理求得BD 的,请类比得分. 解法四: (1)同解法一.(2)同解法一,4,2AD CD ==.在BCD ∆中由余弦定理得,(2222214cos 224BD BD BDC BD BD +--∠==⨯⨯,在BDA ∆中由余弦定理得,(2222456cos 248BD BD BDA BDBD+--∠==⨯⨯,因为BDA BDC π∠+∠=,所以有cos cos 0BDC BDA ∠+∠=,故221456048BD BD BD BD--+=,整理得,2384BD =,即BD =18.解:(1)如图,取BC 中点P ,连接,PD PE ,则平面PDE 即为所求的平面α. 显然,以下只需证明//BF 平面α; ∵2,//BC AD AD BC =, ∴//AD BP 且AD BP =, ∴四边形ABPD 为平行四边形, ∴//AB DP .又AB ⊄平面PDE ,PD ⊂平面PDE , ∴//AB 平面PDE .∵AF ⊥平面ABCD ,DE ⊥平面ABCD , ∴//AF DE .又AF ⊄平面PDE ,DE ⊂平面PDE , ∴//AF 平面PDE ,又AF ⊂平面,ABF AB ⊂平面,ABF AB AF A ⋂=, ∴平面//ABF 平面PDE . 又BF ⊂平面ABF ,∴//BF 平面PDE ,即//BF 平面α.(2)过点A 作AG AD ⊥并交BC 于G , ∵AF ⊥平面ABCD ,∴,AF AG AF AD ⊥⊥,即,,AG AD AF 两两垂直,以A 为原点,以,,AG AD AF 所在直线分别为,,x y z 轴,建立如图所示空间直角坐标系A xyz -.在等腰梯形ABCD 中,∵060,24ABG BC AD ∠===,∴1,BG AG ==则))1,0,BC-.∵44AF DE ==,∴()()0,2,1,0,0,4E F ,∴()()0,4,0,BC BE ==.设平面BCE 的法向量(),,n x y z =,由00n BC n BE ⎧=⎪⎨=⎪⎩,得4030y y z =⎧⎪⎨++=⎪⎩,取x =BCE的一个法向量)n =.设直线EF 和平面BCE 所成角为θ,又∵()0,2,3EF =-,∴sin cos ,n EF θ===,故直线EF 和平面BCE所成角的正弦值为26. 19.解:(1)由频率分布直方图可知,得分在[)20,40的频率为0.005200.1⨯=, 故抽取的学生答卷数为:6600.1=, 又由频率分布直方图可知,得分在[]80,100的频率为0.2, 所以600.212b =⨯=,又2460b a b +++=,得30a b +=, 所以18a =.180.0156020c ==⨯.(2)“不合格”与“合格”的人数比例为24:36=2:3, 因此抽取的10人中“不合格”有4人,“合格”有6人. 所以ξ有20,15,10,5,0共5种可能的取值.ξ的分布列为:()()()431226646444410101018320,15,1014217C C C C C P P P C C C ξξξ=========,()()134644441010415,035210C C C P P C C ξξ======. ξ的分布列为:所以()20151050121421735210E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由(2)可得()()()()()()2222218341201215121012512012161421735210D ξ=-⨯+-⨯+-⨯+-⨯+-⨯=,所以()()120.750.716E M D ξξ===>,故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案. 20.解法一:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭.由6AB AC BC ++=+6AB AC +=, 因为故6AB AC BC +=>,所以点A 的轨迹是以,B C 为焦点,长轴长为6的椭圆(除去长轴端点),所以A 的轨迹方程为()2221399x y x +=≠±. 设()()00,,,A x y T x y ,依题意13OT OA =,所以()()001,,3x y x y =,即0033x x y y =⎧⎨=⎩, 代入A 的轨迹方程222199x y +=得,()()22323199x y +=,所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()()()1122331,0,,0,1,,,,,,M m N m Q x y P x y R x y m ⎛⎫≠⎪⎝⎭. 由题意得直线QM 不与坐标轴平行, 因为11QM y k x m =-,所以直线QM 为()11y y x m x m=--, 与2221x y +=联立得,()()()22222211111122120mmx x m x x mx x m x +---+--=,由韦达定理2221111221212mx x m x x x m mx --=+-,同理222222111*********111122121112x x x mx m x x m m x x x x m mx x m m ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭===+-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭, 所以23x x =或10x =, 当23x x =时,PR x ⊥轴, 当10x =时,由()()2112212112m x x x mmx -+=+-,得2221mx m =+,同理3222122111m m x x m m ⎛⎫ ⎪⎝⎭===+⎛⎫+ ⎪⎝⎭,PR x ⊥轴.因此MP MR =,故MPR ∆是等腰三角形. 解法二:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,22B C ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 在x轴上取12,F F ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭,因为点T 在线段AO 上,且2AT TO =, 所以12//,//FT AB F T AC ,则()1212116233FT F T AB AC F F +=+=⨯=>= 故T 的轨迹是以12,F F 为焦点,长轴长为2的椭圆(除去长轴端点), 所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()1,0,,0,1,M m N n m n m ⎛⎫≠=⎪⎝⎭,()()()112233,,,,,Q x y P x y R x y , 由题意得,直线QM 斜率不为0,且()01,2,3i y i ≠=,故设直线QM 的方程为:x t y m =+ ,其中11x mt y -=, 与椭圆方程2221x y +=联立得,()2222210t y mty m +++-=,由韦达定理可知,212212m y y t -=+ ,其中()22221211122112222x m x mx m y t y y --+++=+=,因为()11,Q x y 满足椭圆方程,故有221121x y +=,所以22121122mx m t y -++=. 设直线RN 的方程为:x sy n =+,其中11x ns y -=, 同理222113221121,22nx n n y y s s y -+-=+=+ , 故()()()()()()222222212222231321122211222m m s m s y y y t n y y y n t t s --+++====---+++ 222121212211211221111212nx n m m x y m m mx m mx my -+⎛⎫-+ ⎪⎝⎭=-=-=--+-+ , 所以23y y =-,即PR x ⊥轴,因此MP MR =,故MPR ∆是等腰三角形.21.解:(1)因为直线l 与曲线()y f x =恒相切于同一定点, 所以曲线()y f x =必恒过定点,由()()ln 11f x mx x x '=+++,令()ln 10x x +=,得0x =, 故得曲线()y f x =恒过的定点为()0,1.因为()()ln 111x f x m x x ⎛⎫'=+++ ⎪+⎝⎭,所以切线l 的斜率()01k f '==, 故切线l 的方程为1y x =+,即10x y -+=.(2)令()()()[)ln 11,0,x x g x e f x e x mx x x =-=--+-∈+∞,()()[)1ln 1,0,1x xg x e m x mx x '=--+-∈+∞+. 令()()[)1ln 1,0,1xx h x e m x mx x =--+-∈+∞+, ()()[)()211,0,,01211xh x e m x h m x x ⎡⎤''=-+∈+∞=-⎢⎥++⎢⎥⎣⎦. ① 当0m ≤时,因为()0h x '>,所以()h x 在[)0,+∞上单调递增,故()()()00h x g x h '=≥=, 因为当[)0,x ∈+∞时,()0g x '≥,所以()g x 在[)0,+∞上单调递增,故()()00g x g ≥=. 从而,当0x ≥时,()xe f x ≥恒成立.② 当102m <≤时, 因为()h x '在[)0,+∞上单调递增,所以()()0120h x h m ''≥=-≥, 故与①同理,可得当0x ≥时,()xe f x ≥恒成立.③ 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<. 取410x m =->,因为()()()22111111111xh x e m x m x x x x ⎡⎤⎡⎤'=-+≥+-+⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦, 所以()1111141440164284h m m m '-≥-->⨯-->, 前述说明在()0,41m -内,存在唯一的()00,41x m ∈-,使得()00h x '=,且当[]00,x x ∈时,()0h x '≤,即()h x 在[]00,x 上单调递减,所以当[]00,x x ∈时,()()()00h x g x h '=≤=, 所以()g x 在[]00,x 上单调递减,此时存在00x x =>,使得()()000g x g <=,不符合题设要求. 综上①②③所述,得m 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.说明:③也可以按以下方式解答: 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<,当x →+∞时,()211,011xe m x x ⎡⎤→+∞-+→⎢⎥++⎢⎥⎣⎦,所以()h x '→+∞, 故存在()00,x ∈+∞,使得()00h x '=,且当()00,x x ∈时,()0h x '<, 下同前述③的解答.22.解一:(1)由直线l 的参数方程3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),消去参数t 得,()()3sin 1cos 0x y ϕϕ---=,即直线l 的普通方程为()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=, 由圆C 的极坐标方程为4cos ρθ=,得()24cos 0*ρρθ-=,将222cos x x y ρθρ=⎧⎨+=⎩代入(*)得, 2240x y x +-=, 即C 的直角坐标方程为()2224x y -+=.(2)将直线l 的参数方程代入()2224x y -+=得,()22cos sin 20t t ϕϕ++-=,()24cos sin 80ϕϕ∆=++>,设,P Q 两点对应的参数分别为12,t t , 则()12122cos sin ,2t t t t ϕϕ+=-+=-,所以12PQ t t =-===因为()()0,,20,2ϕπϕπ∈∈, 所以当3,sin 214πϕϕ==-时,PQ 取得最小值【注:未能指出取得最小值的条件,扣1分】 解法二:(1)同解法一(2)由直线l 的参数方程知,直线l 过定点()3,1M , 当直线l CM ⊥时,线段PQ 长度最小. 此时()223212CM=-+=,PQ ===所以PQ 的最小值为解法三: (1)同解法一(2)圆心()2,0到直线()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=的距离,cos sin 4d πϕϕϕ⎛⎫=-=- ⎪⎝⎭,又因为()0,ϕπ∈, 所以当34ϕπ=时,d又PQ == 所以当34ϕπ=时,PQ 取得最小值23.解:(1)()33,11245,1233,2x x f x x x x x x x -+≤-⎧⎪=++-=-+-<<⎨⎪-≥⎩.①当1x ≤-时,由不等式339x -+<,解得2x >-. 此时原不等式的解集是:{|21x x -<≤-.②当12x -<<时,由不等式59x -+<,解得4x >-. 此时原不等式的解集是:{}|12x x -<<.③当2x ≥时,由不等式339x -<,解得4x <, 此时原不等式的解集是:{}|24x x ≤<. 综上可得原不等式的解集为()2,4-.(2)由(1)可得,函数()f x 的图像是如下图所示的折线图. 因为()()()min 16,23f f x f -===,故当36m <≤时,直线y m =与曲线()y f x =围成一个三角形, 即m 的范围是(]3,6. 【注:范围正确,不倒扣】 且当6m =时,()()max 1316362S =+-=.。
2017-2018学年泉州市九年级(上)质检数学试卷

2017-2018学年福建省泉州市九年级(上)质检数学试卷一、选择题(本大题共10小题,共40.0分)1.若二次根式有意义,则x的取值范围是()A. x>1B. x≥1C. x<1D. x≤12.下列根式是最简二次根式的是()A. B. C. D.3.若,则的值为()A. B. C. D.4.方程x2-25=0的解是()A. x1=x2=5B. x1=x2=25C. x1=5,x2=-5D. x1=25,x2=-255.下列事件为必然事件的是()A. 掷一枚普通的正方体骰子,掷得的点数不小于1B. 任意购买一张电影票,座位号是奇数C. 抛一枚普通的硬币,正面朝上D. 一年有367天6.两个相似三角形的对应边的比为4:9,则它们的面积比为()A. 2:3B. 9:4C. 16:81D. 81:167.如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A. 2B. 3C. 4D. 58.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A. 1000(1+x)2=1000+440B. 1000(1+x)2=440C. 440(1+x)2=1000D. 1000(1+2x)=1000+4409.如图,AB∥CD∥EF,直线l1,l2分别与这三条平行线交于点A,C,E和点B,D,F,则下列式子不定成立的是()A. =B. =C. =D. =10.对于任意锐角α,下列结论正确的是()A. sinα<tanαB. sinα≤tanαC. sinα>tanαD. sinα≥tanα二、填空题(本大题共6小题,共24.0分)11.点(3,-2)关于原点的对称点的坐标为______.12.计算:()()=______.13.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是______度.14.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是______.15.我国古代数学著作《九章算术》中有“井深几何”问题如下;“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”它的题意可以由如图所示获得,井深BC为______尺.16.关于x的一元二次方程ax2+bx=0(a≠0)的一根为x=2018,则关于x的方程a(x+2)2+bx+2b=0的根为______.三、计算题(本大题共3小题,共24.0分)17.计算:×-+|-|18.如图,小亮站在自家阳台上A处观测到对面大楼底部C的俯角为43°,若两栋楼之间的距离BC为30米,则A处到地面B处的距离AB为多少米?(结果精确到0.1米)(供选用数据:sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325)19.绿苑小区在规划设计时,设置了一块面积为375平方米的矩形绿地,并且长比宽多10米,那么绿地的长和宽各为多少米?四、解答题(本大题共6小题,共62.0分)20.方程x2-4x+(1-m)=0是关于x的一元二次方程.(1)若x=4是方程的一个实数根,试求m的值;(2)若该方程有两个不相等的实数根,试求m的取值范围.21.如图,在11×14的网格图中,△ABC三个顶点坐标分别为A(-4,1),B(-1,1),(-2,4).(Ⅰ)以A为位似中心,将△ABC放大为原来的2倍得到△AB1C1,请在网格图画出△AB1C1;(Ⅱ)直接写出(Ⅰ)中点B1,C1的坐标.22.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数 1 2 3 4 5 6 7 8 9 10黑棋数 2 5 1 5 4 7 4 3 3 6根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为______;(Ⅱ)试估算袋中的白棋子数量.23.已知方程ax2+bx+c=0(a≠0)是关于x的一元二次方程.(Ⅰ)直接写出方程根的判别式为______;(Ⅱ)写出求根公式的推导过程.24.如图,在矩形ABCD中,CD=4,P是射线DA上的一个动点,连结PC,点D关于PC的对称点为E,连结DE交PC于点M,过点E作EF⊥DE交射线DA于点F.(I)求证:PD=PF;(Ⅱ)若DP:PA=2:1,当点E落在射线AB上时,求AE的长.25.已知一次函数y=kx-2的图象与x轴交于点A(-2,0),与y轴交于点B,点P的坐标为(0,m).(I)求k的值;(Ⅱ)当m为何值时,△POA∽△AOB?(Ⅲ)求PA+PB的最小值.。
福建泉州新世纪中学2017年普通高中毕业班质量检查数学(理)试卷(含答案)

2017年普通高中毕业班质量检查数学(理)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非必考题两部分).第Ⅰ卷1至3页,第Ⅱ卷4至6页.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|1216,|x A x B x x a =<≤=<,若AB A =,则实数a 的取值范围是A.4a >B.4a ≥C.0a ≥D.0a > 2.已知复数z 满足(1i)2i z +⋅=-,则复数z 的共轭复数为(A )13i 22- (B )13i 22+ (C )13i + (D )13i - 3.已知随机变量ξ服从正态分布2(2,)N σ,若(02)=0.3P ξ≤≤,则(4)=P ξ≥(A )0.2 (B )0.3 (C )0.6 (D )0.84.若双曲线22131x y m m +=--的渐近线方程为12y x =±,则m 的值为 (A )1- (B )13 (C )113 (D )1-或135.执行如图所示的程序框图,运行相应的程序,若输入x 的值为 2,则输出S 的值为A .64B .84C .340D .13646.已知数列}{n a 的前n 项和为n S ,且1n+112()n n a a a n *=⋅=∈N ,,则=0162S A .1008323⋅- B.122016- C .322009- D .322008-7. 已知()42340123423(2)(2)(2)(2)x a a x a x a x a x -=+-+-+-+-,则2a =(A )24 (B )56 (C )80 (D )2168.在区域0,(,)|1,1x x y x y x y ⎧⎫≥⎧⎪⎪⎪Ω=+≤⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭中,若满足0ax y +>的区域面积占Ω面积的13,则实数a 的值是 A.23 B. 12C. 12-D. 23-9. 在四面体ABCD中,若AB CD =,2AC BD ==,AD BC ==,则直线AB 与CD所成角的余弦值为A .13-B .14-C .14 D .1310.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、 前后完全对称,六根完全相同的正四棱柱分成三组,经90榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为(A) (B) (C) (D )511.已知1F ,2F 是椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则22a e b+(其中e 为椭圆C 的离心率)的最小值为 A12.曲线C 是平面内与两个定点1(2,0)F -,2(2,0)F 的距离之积等于9的点的轨迹.给出下列命题:①曲线C 过坐标原点; ②曲线C 关于坐标轴对称;③若点P 在曲线C 上,则12F PF △的周长有最小值10; ④若点P 在曲线C 上,则12F PF △面积有最大值92. 其中正确命题的个数为(A )0 (B )1 (C )2 (D )3第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须D CBA做答. 第22、23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b满足,1)=a ,||1=b ,且λ=a b ,则实数λ= . 14.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名; 乙说:我是第三名; 丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第一名的是 . 15. 已知函数2()=cos(π)f n n n ,数列{}n a 满足()n +∈N ,则122n a a a +++= .16.在ABC △中,90BAC ∠=,4BC =,延长线段BC 至点D ,使得4BC CD =,若30CAD ∠=,则AD = .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}n a 前5项和为50,722a =,数列{}n b 的前n 项和为n S ,11b =,131n n b S +=+. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若数列{}n c 满足12112n n nc c ca b b b +++⋅⋅⋅⋅+=,n *∈N ,求122017c c c++⋅⋅⋅+的值.18.(本小题满分12分)如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠=,2AD AP ==,AB DP ==E 为CD 的中点,点F 在线段PB 上. (Ⅰ)求证:AD PC ⊥;(Ⅱ)试确定点F 的位置,使得直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.19.(本小题满分12分)某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;()(1)n a f n f n =++若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[]0,2,(2,4],…,(]14,16分成8组,制成了如图1所示的频率分布直方图.(图1) (图2)(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.(i )现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;(ⅱ)试估计全市居民用水价格的期望(精确到0.01);(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x =+. 若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,短轴长为2.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若圆22:1O x y +=的切线l 与曲线E 相交于A 、B 两点,线段AB 的中点为M ,求OM 的最大值. 21.(本小题满分12分)已知函数22()e (21)xf x ax x =+-,a ∈R .(Ⅰ)当4a =时,求证:过点(1,0)P 有三条直线与曲线()y f x =相切; (Ⅱ)当0x ≤时,()10f x +≥,求实数a 的取值范围.请考生在(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.若直线lπcos()204θ--=,曲线C 的极坐标方程为:2sin cos ρθθ=,将曲线C 上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线1C .(Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求PA PB +的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x x a x a =++-,a ∈R . (Ⅰ)若1a =,求函数()f x 的最小值;(Ⅱ)若不等式()5f x ≤的解集为A ,且2A ∉,求a 的取值范围.2017年三明市普通高中毕业班质量检查理科数学参考答案及评分标准一、选择题:每小题5分,满分60分.1.A2.D3.B4.C5.B6.A7.A8. C9. D 10.D 11.C 12.C 二、填空题:每小题5分,满分20分.13.2± 14.2 15.2n - 16.2 17.解: (Ⅰ)设等差数列{}n a 的公差为d .依题意得1154550,2622,a d a d ⨯⎧+=⎪⎨⎪+=⎩ 解得14a =,3d =, ································· 2分 所以1(1)31n a a n d n =+-=+. ···························································· 3分 当1n =时,21314b b =+=, 当2n ≥时,131n n b S +=+,131n n b S -=+,以上两式相减得13n n n b b b +-=,则14n n b b +=, ·································· 4分 又214b b =,所以14n n b b +=,n *∈N . ··············································· 5分 所以{}n b 为首项为1,公比为4的等比数列,所以14n n b -=. ·············································································· 6分 (Ⅱ)因为12112n n nc c ca b b b +++⋅⋅⋅⋅+=,n *∈N 当2n ≥时,121121n n n c c ca b b b --++⋅⋅⋅⋅+=, 以上两式相减得13nn n nc a a b +=-=, 所以1334n n n c b -==⨯,2n ≥. ········ 8分 当1n =时,121c a b =,所以1217c a b ==,不符合上式, ························· 9分 所以122017c c c ++⋅⋅⋅+2201673(444)=+++⋅⋅⋅+ ······························· 10分 201620174(14)734314-=+⨯=+-. 18.解:(Ⅰ)证明:在平行四边形ABCD 中,连接AC ,因为AB =2BC =,45ABC ∠=,由余弦定理得28422cos454AC =+-⋅⋅=, 得2AC =, ……………………2分 所以90ACB ∠=,即BC AC ⊥,又AD ∥BC , 所以AD AC ⊥,又2AD AP ==,DP =PA AD ⊥,AP AC A =,所以AD ⊥平面PAC,所以AD PC ⊥. …………………………5分(Ⅱ)侧面PAD ⊥底面A B C D ,PA AD ⊥,所以PA ⊥底面A B C D ,所以直线,,AC AD AP 两两互相垂直,以A 为原点,直线,,AC AD AP 坐标轴,建立如图所示空间直角坐标系A xyz -, ……………………6分则(0,0,0)A ,(2,0,0)D -,(0,2,0)C ,(2,2,0)B ,(1,1,0)E -,(0,0,2)P ,所以(0,2,2)PC =-,(2,0,2)PD =--,(2,2,2)PB =-,设PFPBλ=([0,1])λ∈, 则(2,2,2)PF λλλ=-,(2,2,22)F λλλ-+, 所以(21,21,22)EF λλλ=+--+,易得平面ABCD 的法向量(0,0,1)=m . ……………………8分 设平面PDC 的法向量为(,,)x y z =n ,由0PC ⋅=n ,0PD ⋅=n ,得220,220,y z x z -=⎧⎨--=⎩令1x =,得(1,1,1)=--n . (10)分因为直线EF 与平面PDC 所成的角和此直线与平面ABCD 所成的角相等, 所以|cos ,||cos ,|EF EF <>=<>m n ,即||||||||||||EF EF EF EF ⋅⋅=⋅⋅m n m n ,所以 |22||λ-+=,1|||λλ-=,解得λ,所以PF PB =. …………………………12分19. 解:(Ⅰ)(i )由题意,从全市居民中依次随机抽取5户,每户居民月用水量超过12吨的概率为110,因此这5户居民恰好3户居民的月用水用量都这超过12吨的概率为 33251981()()101010000P C ==. …………………………4分(ii )由题设条件及月均用水量的频率分布直方图,可得居民每月的水费数据分组与概率分布表如下:所以全市居民用水价格的期望()40.9 4.20.06 4.60.04 4.04E X =⨯+⨯+⨯≈吨.…………8分(Ⅱ) 设李某2016年1~6月份的月用水费y (元)与月份x 的对应点为(,)(1,2,3,4,5,i i x y i =,它们的平均值分别为x ,y ,则126216x x x x +++==,又点(,)x y 在直线233y x =+上,所以40y =,因此126240y y y +++=,所以7月份的水费为294.624054.6-=元.设居民月用水量为吨,相应的水费为()f t 元,则4, 012,()48(12) 6.6, 12<14,61.2(14)7.8 1416,t t f t t t t t <≤⎧⎪=+-⨯≤⎨⎪+-⨯<≤⎩ 即4, 012,()2 6.631.2, 12<14,7.848, 1416,t t f t t t t t <≤⎧⎪=-≤⎨⎪-<≤⎩当13t =时,() 6.61331.254.6f t =⨯-=,所以李某7月份的用水吨数约为13吨. …………………………12分20. 解法一:(I )因为△MCD 的面积是△NCD 的面积的3倍,所以3MF NF =,即()3a c a c +=- ,所以22a c ==,所以23b =,则椭圆Γ的方程为22143x y +=. …………………………4分(II )当ACD BCD ∠=∠,则0AC BC k k +=, 设直线AC 的斜率为k ,则直线BC 的斜率为k -,不妨设点C 在x 轴上方,31,2C ⎛⎫⎪⎝⎭, 设A ()11,x y ,B ()22,x y ,则AC 的直线方程为()312y k x -=-,代入22143x y +=中整理得 ()()2223442341230k x k k x k k +--+--=, ()()12423134k k x k -+=+;同理()()22423134k k x k ++=+. ……………………8分所以()21228634k x x k -+=+,()1222434kx x k --=+, ……………………10分则1212AB y y k x x -=- ()12122k x x k x x +-=- 12=,t因此直线AB 的斜率是定值12. …………………………12分 解法二:(I )同 解法一.(II )依题意知直线AB 的斜率存在,所以设AB 方程:y kx m =+代入22143x y +=中 整理得222(43)84120k x kmx m +++-=,设A ()11,x y ,B ()22,x y ,所以122843kmx x k +=-+, 212241243m x x k -=+, (6)分222222644(43)(412)16(1239)0k m k m k m ∆=-+-=-+>当ACD BCD ∠=∠,则0AC BC k k +=,不妨设点C 在x 轴上方,31,2C ⎛⎫⎪⎝⎭,所以12123322011y y x x --+=--,整理得121232()()2302kx x m x x m +-+-+=,……………8分所以222412382()()23043243m kmk m m k k -⋅+---+=++, 整理得21212(2)960k m k m +-+-=, ……………………9分即(63)(223)0k k m -+-=,所以2230k m +-=或630k -=.……………………10分当2230k m +-=时,直线AB 过定点31,2C ⎛⎫⎪⎝⎭, 不合题意;当630k -=时,12k =,符合题意, 所以直线AB 的斜率是定值12. (12)分21. 解:(I )22b =,所以1b =,=2a =. 所以椭圆C 的标准方程2214x y +=. ······················································· 4分(II )设11(,)A x y ,22(,)B x y ,00(,)M x y ,易知直线l 的斜率不为0,则设:l x my t =+. 因为l 与圆O1=,即221t m =+; ··································· 6分 由2244x y x my t⎧+=⎨=+⎩消去x ,得222(4)240m y mty t +++-=,则222222=44(4)(4)16(4)480m t t m m t ∆--+=-+=>,12224mty y m +=-+, 024mt y m =-+,00244tx my t m =+=+,即224(,)44t mt M m m -++, ·················· 8分 22222222222224(16)(1)(16)()()44(4)(4)t mt t m m m OM m m m m +++=+==++++, ·················· 9分 设24x m =+,则4x ≥,2222(3)(12)369112525136()81616x x OM x x x x -+==-++=--+≤,当8x =时等号成立,所以OM 的最大值等于54. ···································· 12分 22.解:(Ⅰ)曲线C 的直角坐标方程为2y x =, ………………2分1C ∴的直角坐标方程为22(1)y x =-. ………………5分(Ⅱ)由直线lcos()204πθ--=,得cos sin 20ρθρθ+-=所以直线l 的直角坐标方程为:20x y +-=,又点(2,0)P 在直线l 上,所以直线l的参数方程为:22(x t t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数), 代入1C的直角坐标方程得240t +-=, …………………………8分设A ,B 对应的参数分别为12,t t ,121281604t t t t ∆=+>⎧⎪∴+=-⎨⎪=-⎩,1212PA PB t t t t ∴+=+=-===…………………………10分23.解:(Ⅰ)因为1a =,所以()11f x x x =++-11x x +-+≥2=,当仅当(1)(1)0x x +-≤时,即11x -≤≤时,()f x 的最小值为2. ·············· 5分 (Ⅱ)因为2A ∉,所以(2)5f >,即225a a ++->, ······························· 7分当2a <-时,不等式可化为225a a ---+>,解得52a <-,所以52a <-; 当22a -≤≤时,不等式可化为225a a +-+>,此时无解;当2a >时,不等式可化为225a a ++->,解得52a >,所以52a >; 综上,a 的取值范围为55,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭. ······································ 10分。
福建省泉州市2017届高三(5月)第二次质量检查数学(理)试题含答案

2017年泉州市普通高中毕业班第二次质量检查理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}065,122<+-=>=x x x B x A x,则=B C A( )A .()3,2B .(][)+∞∞-,32,C .(][)+∞,32,0D .[)+∞,3 2。
已知复数i a z +=().R a ∈若2<z ,则2i z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3。
公差为2的等差数列{}na 的前n 项和为.nS 若123=S,则=3a ( )A .4B .6C .8D .144.已知实数y x ,满足约束条件y x z y x xy +=⎩⎨⎧≤--≤,022,则满足1≥z 的点()y x ,所构成的区域面积等于( )A .41 B .21 C 。
43 D .15.榫卯是古代中国建筑、家具及其他器械中常见的结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”,某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”的体积等于( )A.12B.13C。
14D.156.执行一次如图所示的程序框图,若输出i的值为0,则下列关于框图中函数()()Rxf∈的表述,正确的是()xA.()x f是奇函数,且为减函数B.()x f是偶函数,且为增函数C.()x f不是奇函数,也不为减函数D.()x f不是偶函数,也不为增函数7。
已知以O为中心的双曲线C的一个焦点为P F,为C上一点,M为PF的中点,若OMF ∆为等腰直角三角形,则C 的离心率等于( ) A .12-B .12+ C 。
22+ D .215+ 8.已知曲线()⎪⎭⎫⎝⎛<+=22sin :πϕϕx y C 的一条对称轴方程为6π=x ,曲线C 向左平移()0>θθ个单位长度,得到的曲线E 的一个对称中心为⎪⎭⎫⎝⎛0,6π,则θϕ-的最小值是( )A .12π B .4π C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年福建省泉州市初中学业质量检测
数学试题
(试卷满分:150分;考试时间:120分钟)
友情提示:所有答案必须填写在答题卡相应的位置上.
一、 选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的,请在答题卡上相应题目的答题区域内作答。
)
1.下列各式正确的是( )
A .-(- 2017) = 2017 B.丨-2017丨= ±2017 C.2017O =0 D.2017-1=-2017
2.计算(-2a 2)3的结果是( )
A. - 6a
B. -8a 5
C.8a 5
D. -8a 6
3.某几何体如下左图所示,该几何体的右视图是( )
4.一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )
A.8
B. 12
C. 16
D. 18
5.不等式组⎩⎨⎧<-≤-2
01x x 的整数解的个数为( )
A.0个
B.2个
C.3个
D.无数个
6.如图, □ABCD 的对角线AC 与BD 相交于点0,要使它成为矩形,需再添加的条件是( )
A. OA=OC
B.AC=BD
C.AC 丄BD
D. BD 平分∠ABC
D 匕
D
7.在学校演讲比赛中,10选手的成绩折线统计图如图所示,则下列说法正确的是( )
A.最高分是90
B.众数是5 中位数是90 D.平均数是87.5
8 .如图,在△ABC 中,点D,E 分别是边AB,AC 上的点,且DE ∥BC ,若2
1=DB AD ,DE=3,则BC 的长度是( )
A. 6
B. 8
C. 9
D.10
9.实数a,b,c,d 在数轴上的对应点从左到右依次是A,B,C,D, b +d = 0, 则a + c 的值( )
A.小于0
B.等于0
C.大于0
D.与a,b,c,d 的取值有关
10.已知双曲线x
k y = 经过点(m ,n ),(n+1,m-1) ,(m 2-1,n 2-1), 则k 的值为( )
A. 0 或 3
B. 0 或-3
C. -3
D.3
二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置
11.已知x=0是方程x 2 - 5x +2m-1=0的解,则m 的値是 .
12.分解因式:x 3
-4x = .
13.某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是5
1,则袋中黄球的个数为 . 14.抛物线y=x 2-6x+7的顶点坐标是 .
15.在直命坐标系中,点M(3,1)绕着原点o 顺吋针旋转60O 后的对应点的坐标是 .
16.如图,在面积为16的四边形ABCD 中,
∠ADC=∠ABC=90。
,AD = CD,DP 丄AB 于点P ,则DP 的长是 .
三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.
17.(8 分)先化简,再求値x(x+2)+(x-1)(x+1)-2x.其中x=2 .
第16题A D C B P
18.(8分)解方程⎩⎨⎧=+=-7
31y x y x
19.(8分)如图,在四边形ABCD 中,AB=AD=3,DC=4, ∠A=60O , ∠D=150O ,试求BC 的长度。
20.(8分)如图,E,F 是□ABCD 对角线AC 上的两点,且AE=CF,求证:DF=BE.
第20题
21.(8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:
(1)接受测评的学生共人,扇形统计图中“优”部分所对应扇形的圆心角为。
,并补全条形统计图;
(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生怡好是3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率。
22.(10分)某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲种图书少4本。
(1)求甲、乙两种图书的单价各是多少元;
(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?
23.( 10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点,且 AC=5,DC=1.
(1)求证:AB=DE;
(2)求tan∠EBD 的值.
̂于24.(13分)如图,AB为⊙O的直径,点F为弦AC的中点,连接OF并延长交AC
点D,过点D作DE∥AC,交BA的延长线于点E,连接AD,CD.
(1)求证:DE是⊙O的切线;
(2)当OA = AE = 2 时,
①求图中阴影部分的而积;
②以O为原点,AB所在的直线为x轴,直径AB的垂直平分线为y轴,建立如图
所示的平面直角坐标系,试在线段AC上求一点P,使得直线DP把阴影部分的面
积分成 1 :2的两部分.
25. (13分)如图,在直角坐标系中,抛物线= -x2+kx+2与x轴交于A、B两点,与直线y=2x交于点M(1,m).
(1)求m,k的值;
(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s>0)个单
位长度. 若线段MN与抛物线有两个不同的公共点,试求s的取值范围;
(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO =∠BGO,并简要说明理
由. (保留作图痕迹)。