新教材高中数学第6章立体几何初步5垂直关系 平面与平面垂直素养作业北师大版必修第二册

合集下载

2020_2021学年新教材高中数学单元素养评价第六章立体几何初步作业含解析北师大版必修第二册

2020_2021学年新教材高中数学单元素养评价第六章立体几何初步作业含解析北师大版必修第二册

单元素养评价(五)(第六章)(120分钟150分)一、单选题(每小题5分,共40分)1.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α【解析】选B.已知两条不相交的空间直线a和b,可以在直线a上任取一点A,则A∉b,过A作直线c∥b,则过直线a,c必存在平面α且使得a⊂α,b∥α.2.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,HG交于一点P,则( )A.点P一定在直线BD上B.点P一定在直线AC上C.点P一定在直线AC或BD上D.点P既不在直线AC上,也不在直线BD上【解析】选B. 如图,因为P∈HG,HG⊂平面ACD,所以P∈平面ACD.同理,P∈平面BAC.因为平面BAC∩平面ACD=AC,所以P∈AC.3.(2020·全国Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. B. C. D.【解析】选C.如图,设CD=a,PE=b,则PO==,由题意PO2=ab,即b2-=ab,化简得4-2·-1=0,解得=(负值舍去).4.《算数书》是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )A. B. C. D.【解析】选B.设圆锥底面积的半径为r,高为h,则L=2πr,πr2h=(2πr)2h,所以π=.5.菱形ABCD在平面α内,PC⊥α,则PA与对角线BD的位置关系是( )A.平行B.相交但不垂直C.相交垂直D.异面垂直【解析】选D.如图,PC⊥平面ABCD,所以PC⊥BD.又四边形ABCD是菱形,所以BD⊥AC. 因为PC∩AC=C,所以BD⊥平面PAC.因为PA⊂平面PAC,所以BD⊥PA.显然PA与BD异面,所以PA与BD异面垂直.6.一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为( )A.+B.2+C.+D.+【解析】选 B.如图,将直观图ABCD 还原后为直角梯形A′BCD′,其中A′B=2AB=2,BC=1+,A′D′=AD=1.所以这个平面图形的面积S=×(1+1+)×2=2+.7.在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC【解析】选C.如图,连接BC1,B1C,A1D,由题设知,A1B1⊥平面BCC1B1,从而A1B1⊥BC1,又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.8.如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使得平面AMN与平面MNCB所成的二面角为30°,则四棱锥A-MNCB的体积为(A. B. C. D.3【解析】选A.如图,作出二面角A-MN-B的平面角∠AED,AO为△AED底边ED上的高,也是四棱锥A-MNCB的高.由题意,得ED=,AO=,所以S四边形MNCB=×(2+4)×=3,V=××3=.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.用一张长、宽分别为8 cm和4 cm的矩形硬纸折成正四棱柱的侧面,则此正四棱柱的对角线长可以为( )A. cmB.2 cmC.32 cmD. cm【解析】选BD.分两种情况:(1)以4 cm的长为高,则正四棱柱底面是边长为2 cm的正方形,因此对角线长l1==2(cm).(2)以8 cm长为高,则正四棱柱底面是边长为 1 cm的正方形,因此对角线长l2==(cm).10.用一个平面去截正方体,关于截面的形状,下列判断正确的是( )A.直角三角形B.正五边形C.正六边形D.梯形【解析】选CD.画出截面图形如图:可以截出三角形但不是直角三角形,故A错误;如图1经过正方体的一个顶点去截就可得到五边形,但不是正五边形,故B错误;正方体有六个面,如图2用平面去截正方体时最多与六个面相交得六边形,且可以截出正六边形,故C正确;可以截出梯形,故D正确.11.如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱PA,PB 的中点,下列结论正确的是( )A.PC∥平面OMNB.平面PCD∥平面OMNC.OM⊥PAD.直线PD与直线MN所成角的大小为90°【解析】选ABC.连接AC,易得PC∥OM,所以PC∥平面OMN,结论A正确.同理PD∥ON,所以平面PCD∥平面OMN,结论B正确.由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论C正确.由于M,N分别为侧棱PA,PB的中点,所以MN∥AB.又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,即为∠PDC.又三角形PDC 为等边三角形,所以∠PDC=60°,故D错误.12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O 的直径,且SC=2,则( )A.三棱锥S-ABC的体积为B.三棱锥S-ABC的体积为C.三棱锥O-ABC的体积为D.三棱锥O-ABC的体积为【解析】选AC.由于三棱锥S-ABC与三棱锥O-ABC的底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍,由题知三棱锥O-ABC的棱长都为1,如图,所以S△ABC=,高OD==,则V O-ABC=××=,V S-ABC=2V O-ABC=.三、填空题(每小题5分,共20分)13.已知a,b表示不同的直线,α,β,γ表示不重合的平面.①若α∩β=a,b⊂α,a⊥b,则α⊥β;②若a⊂α,a垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a,α∩γ=b,则a⊥b;④若a⊥α,b⊥β,a∥b,则α∥β.上述命题中,正确命题的序号是________.【解析】对①可举反例,如图,需b⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a,b不垂直;根据面面、线面垂直的定义与判定知②④正确.答案:②④14.古希腊数学家阿基米德的墓碑上刻着一个圆柱,此圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图所示,相传这个图形表达了阿基米德最引以为豪的发现,我们不妨称这个圆柱为“阿氏球柱体”,若在装满水的阿氏球柱体中放入其内切球(溢出部分水),则“阿氏球柱体”中剩下的水的体积与圆柱体积的比值为________.【解析】因为球内切于圆柱,所以圆柱的底面半径与球的半径相等,不妨设为r,则圆柱的高为2r,所以V圆柱=πr2·2r=2πr3,V球=πr3.所以球与圆柱的体积之比为2∶3,即球的体积等于圆柱体积的.所以在装满水的阿氏球柱体中放入其内切球,溢出部分水的体积为圆柱体积的,即剩下的水的体积是圆柱体积的,则“阿氏球柱体”中剩下的水的体积与圆柱体积的比值为. 答案:15.已知正四棱台的上底面边长为2,下底面边长为6,侧棱长为6,则正四棱台外接球的半径为________.【解析】根据题意,设该四棱台为ABCD-A1B1C1D1,取正棱台的上下底面的中心O1,O2,即上下底面外接圆的圆心也为O1,O2,则O2A=AC=AB=3,同理O1A1=A1C1=A1B1=.过点A1作A1H⊥AO2,且交AO2于点H,则有A1H===8,球心O在线段O1O2上,则有+=8,解得R=3.答案:316.(本题第一空3分,第二空2分)已知二面角α-l-β为60°,动点P,Q分别在平面α,β内,P 到β的距离为,Q到α的距离为2,则P,Q两点之间距离的最小值为________,此时直线PQ与平面α所成的角为________.【解析】如图,分别作QA⊥α于点A,AC⊥l于点C,PB⊥β于点B,PD⊥l于点D,连接CQ,BD,则∠ACQ=∠PDB=60°,AQ=2,BP=,所以AC=PD=2.又因为PQ==≥2,当且仅当AP=0,即点A与点P重合时取最小值,此时,PQ⊥平面α,故PQ与平面α所成的角为90°.答案:290°四、解答题(共70分)17.(10分)(2020·江苏高考)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C 的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.【补偿训练】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠ABC=60°,E为CD的中点,F 为PD上一点.(1)求证:BD⊥平面PAC;(2)求证:平面PAB⊥平面FAE.【证明】(1)因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以AC⊥BD,又PA⊂平面PAC,AC⊂平面PAC,PA∩AC=A,所以BD⊥平面PAC.(2)在菱形ABCD中,∠BAD=180°-∠ABC=120°,AD=CD,所以∠BAC=∠CAD=∠BAD=60°,AC=AD.因为E为CD的中点,所以∠CAE=∠CAD=30°,所以∠BAE=∠BAC+∠CAE=60°+30°=90°,即AB⊥AE.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.又PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,所以AE⊥平面PAB.因为AE⊂平面FAE,所以平面PAB⊥平面FAE.18.(12分)在四面体A-BCD中,点E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.【解析】(1)因为点E,F分别是AB,BC的中点,所以EF∥AC.因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(2)因为点E,F,M分别是AB,BC,CD的中点,所以EF∥AC,FM∥BD,所以∠EFM是异面直线AC与BD所成的角(或所成角的补角).在△EFM中,EF=FM=EM=1,所以△EFM是等边三角形,所以∠EFM=60°,所以异面直线AC与BD所成的角为60°.19.(12分)某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是cm3.(1)求正方体石块的棱长;(2)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大表面积.【解析】(1)设正方体石块的棱长为a cm,则每个截去的四面体的体积为××××=.由题意可得8×+=a3,解得a=40.故正方体石块的棱长为40 cm.(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,所以球形石凳的表面积S=4π×2=1 600π(cm)2.20.(12分)(2020·全国Ⅲ卷)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.【证明】(1)因为长方体ABCD-A1B1C1D1,所以BB1⊥平面ABCD,所以AC⊥BB1,因为在长方体ABCD-A1B1C1D1中,AB=BC,所以四边形ABCD为正方形,所以AC⊥BD,因为BB1∩BD=B,BB1,BD⊂平面BB1D1D,因此AC⊥平面BB1D1D,因为EF⊂平面BB1D1D,所以EF⊥AC;(2)在CC1上取点M使得CM=2MC1,连接DM,MF,EC1,因为D1E=2ED,DD1∥CC1,DD1=CC1,所以ED=MC1,ED∥MC1,所以四边形DMC1E为平行四边形,所以DM∥EC1,因为MF∥DA,MF=DA,所以四边形MFAD为平行四边形,所以DM∥AF,所以EC1∥AF,因此点C1在平面AEF内.【补偿训练】如图,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=BC=CC1=2CD,E为线段AB的中点,F是线段DD1上的动点.(1)求证:EF∥平面BCC1B1;(2)若∠BCD=∠C1CD=60°,且平面D1C1CD⊥平面ABCD,求平面BCC1B1与平面DC1B1所成角(锐角)的余弦值.【解析】(1)如图,连接DE,D1E.因为AB∥CD,AB=2CD,E是AB的中点,所以BE∥CD,BE=CD,所以四边形BCDE是平行四边形,所以DE∥BC.又DE⊄平面BCC1B1,BC⊂平面BCC1B1,所以DE∥平面BCC1B1.因为DD1∥CC1,DD1⊄平面BCC1B1,CC1⊂平面BCC1B1,所以D1D∥平面BCC1B1.又D1D∩DE=D,DE⊂平面DED1,D1D⊂平面DED1,所以平面DED1∥平面BCC1B1.因为EF⊂平面DED1,所以EF∥平面BCC1B1.(2)如图,连接BD.设CD=1,则AB=BC=CC1=2.因为∠BCD=60°,所以BD==.所以CD2+BD2=BC2,所以BD⊥CD.同理可得,C1D⊥CD.因为平面D1C1CD⊥平面ABCD,平面D1C1CD∩平面ABCD=CD,C1D⊂平面D1C1CD,所以C1D ⊥平面ABCD,因为BC⊂平面ABCD,所以C1D⊥BC,所以C1D⊥B1C1.在平面ABCD中,过点D作DH⊥BC,垂足为H,连接C1H,如图.因为C1D∩DH=D,所以BC⊥平面C1DH.因为C1H⊂平面C1DH,所以BC⊥C1H,所以B1C1⊥C1H,所以∠DC1H为平面BCC1B1与平面DC1B1所成的角.因为在Rt△C1CD中,C1D=,在Rt△BCD中,DH=CD·sin 60°=,所以在Rt△C1DH中,C1H==,所以cos ∠DC1H==.所以平面BCC1B1与平面DC1B1所成角(锐角)的余弦值为.21.(12分)在三棱锥P-ABC中,AB=BC,PA⊥平面ABC,D为PC的中点,E为AC的中点.(1)求证:BD⊥AC;(2)若M为AB的中点,请问线段PC上是否存在一点N,使得MN∥平面BDE?若存在,请说明点N 的位置,并说明理由.若不存在,也请说明理由.【解析】(1)因为AE=EC,PD=CD,所以DE∥AP.又因为PA⊥平面ABC,所以DE⊥平面ABC.因为AC⊂平面ABC,所以DE⊥AC.因为AB=BC,AE=EC,所以BE⊥AC.因为AC⊥DE,AC⊥BE,BE∩DE=E,所以AC⊥平面BDE.又因为BD⊂平面BDE,所以BD⊥AC.(2)PC上存在点N,使得MN∥平面BDE.理由如下:取AE的中点Q,连接MQ,NQ.因为MB=MA,AQ=QE,所以MQ∥BE.又因为MQ⊄平面BDE,BE⊂平面BDE,所以MQ∥平面BDE.因为MN⊂平面MNQ,MQ⊂平面MNQ,MN∩MQ=M,MN∥平面BDE,MQ∥平面BDE,所以平面MNQ∥平面BDE.又因为NQ⊂平面MNQ,所以NQ∥平面BDE.因为平面PAC∩平面BDE=DE,NQ∥平面BDE,NQ⊂平面PAC,所以NQ∥DE.又因为AQ=QE,NQ∥DE,所以N为线段PD的中点.故线段PC上存在一点N,使得MN∥平面BDE,此时点N是线段PC上靠近点P的四等分点.22.(12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,E为侧棱PD上一点.(1)求证:CD∥平面ABE;(2)求证:CD⊥AE;(3)若E为PD中点,平面ABE与侧棱PC交于点F,且PA=PD=AD=2,求四棱锥P-ABFE的体积. 【解析】(1)因为底面ABCD是正方形,所以AB∥CD.因为AB⊂平面ABE,CD⊄平面ABE,所以CD∥平面ABE.(2)因为底面ABCD是正方形,所以CD⊥AD,又侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,而AE⊂平面PAD,所以CD⊥AE.(3)由AB∥CD,CD⊂平面PCD,AB⊄平面PCD,得AB∥平面PCD,而AB⊂平面ABFE,且平面ABFE∩平面PCD=FE,可得FE∥CD∥AB.又E为PD的中点,可得EF=CD.由(2)知CD⊥平面PAD,则AB⊥平面PAD,得AB⊥PD.因为三角形PAD是等边三角形,E为PD 的中点,所以PD⊥AE.又AE∩AB=A,所以PD⊥平面ABFE.在等边三角形PAD中,求得AE=. 所以S梯形ABFE=(1+2)×=.则四棱锥P-ABFE的体积V=S梯形ABFE·PD=×××2=.【补偿训练】在直三棱柱ABC-A1B1C1中,D,E分别为AC1,B1C的中点.(1)证明:DE∥平面A1B1C1;(2)若A1B1=B1C=2,AA1=AC=2,证明:C1E⊥平面ACB1.【证明】(1)连接A1C,如图.因为四边形ACC1A1是平行四边形,D为AC1的中点,所以A1D=DC.因为B1E=EC,所以DE∥A1B1.又因为A1B1⊂平面A1B1C1,DE⊄平面A1B1C1,所以DE∥平面A1B1C1.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1B1⊂平面A1B1C1,所以A1A⊥A1B1,同理AC⊥CC1,BC⊥CC1.因为A1A=2,A1B1=2,所以AB1=2.又因为AC=2,B1C=2,所以AC2+B1C2=A,得AC⊥B1C.因为CC1∩B1C=C,CC1,B1C⊂平面BB1C1C,所以AC⊥平面BB1C1C,又C1E⊂平面BB1C1C,所以AC⊥C1E,同理AC⊥BC.因为AC⊥BC,AC=2,AB=2,所以BC=2.又因为CC1=2,BC⊥CC1, 所以平行四边形BB1C1C为正方形.因为E为B1C的中点,所以C1E⊥B1C,又AC∩B1C=C,AC,B1C⊂平面ACB1,所以C1E⊥平面ACB1.。

高中数学第6章立体几何初步 刻画空间点线面位置关系的公理基本事实4定理素养作业北师大版必修第二册

 高中数学第6章立体几何初步 刻画空间点线面位置关系的公理基本事实4定理素养作业北师大版必修第二册

第六章 3.2A组·素养自测一、选择题1.异面直线是指( D )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[解析]对于A,空间两条不相交的直线有两种可能,一是平行(共面),另一个是异面.∴A应排除.对于B,分别位于两个平面内的直线,既可能平行也可能相交也可异面,如图,就是相交的情况,∴B应排除.对于C,如图的a,b可看作是平面α内的一条直线a与平面α外的一条直线b,显然它们是相交直线,∴C应排除.只有D符合定义.∴应选D.2.正方体ABCD-A1B1C1D1中,P,Q分别为AA1,CC1的中点,则四边形D1PBQ是( B )A.正方形B.菱形C.矩形D.空间四边形[解析]设正方体棱长为2,直接计算可知四边形D1PBQ各边均为5,又四边形D1PBQ是平行四边形,所以四边形D1PBQ是菱形.3.已知空间两个角α,β,α与β的两边对应平行,且α=60°,则β等于( D )A.60°B.120°C.30°D.60°或120°[解析]由等角定理,知β与α相等或互补,故β=60°或120°.4.分别和两条异面直线平行的两条直线的位置关系是( D )A.一定平行B.一定相交C.一定异面D.相交或异面[解析]可能相交也可能异面,但一定不平行(否则与条件矛盾).5.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( D )A .梯形B .矩形C .平行四边形D .正方形[解析] 如图,因为BD ⊥AC ,且BD =AC ,又因为E ,F ,G ,H 分别为对应边的中点,所以FG 綊EH 綊12BD ,HG 綊EF 綊12AC .所以FG ⊥HG ,且FG =HG .所以四边形EFGH 为正方形.6.异面直线a ,b ,有a ⊂α,b ⊂β且α∩β=c ,则直线c 与a ,b 的关系是( D ) A .c 与a ,b 都相交 B .c 与a ,b 都不相交 C .c 至多与a ,b 中的一条相交 D .c 至少与a ,b 中的一条相交[解析] 若c 与a ,b 都不相交,∵c 与a 都在α内, ∴a ∥c .又c 与b 都在β内,∴b ∥c . 由基本事实4,可知a ∥b ,与已知条件矛盾. 如图,只有以下三种情况.二、填空题7.直线a 与直线b 为两条异面直线,已知直线l ∥a ,那么直线l 与直线b 的位置关系为 异面或相交 .[解析] 假设l ∥b ,又l ∥a ,根据基本事实4,可得a ∥b ,这与a 与b 异面直线相矛盾,故假设不成立,所以l 与b 异面或相交.8.(2021·广东省肇庆市期中)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥AB ,AA 1⊥AC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为 60° .[解析] 依题意,得BC ∥B 1C 1,故异面直线A 1C 与B 1C 1所成的角即BC 与A 1C 所成的角.连接A1B,在△A1BC中,BC=A1C=A1B=2,故∠A1CB=60°,即异面直线A1C与B1C1所成的角为60°.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论正确的为①③ .(填序号)[解析]把正方体的平面展开图还原成原来的正方体可知,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.三、解答题10.如图所示,在正方体ABCD-EFGH中,O为侧面ADHE的中心,求:(1)BE与CG所成的角;(2)FO与BD所成的角.[解析](1)因为CG∥BF,所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)如图,连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.B组·素养提升一、选择题1.下列说法中正确的是( B )A.若两直线无公共点,则两直线平行B.若两直线不是异面直线,则必相交或平行C.过平面外一点与平面内一点的直线,与平面内任一直线均构成异面直线D.和两条异面直线都相交的两直线必是异面直线[解析]对于A,空间两直线无公共点,则两直线可能平行,可能异面,故A不正确;对于C,过平面外一点与平面内一点的直线,和平面内过该点的直线是相交直线,故C不正确;对于D,和两条异面直线都相交的两条直线还可能是相交直线,如图的三棱锥A-BCD中,l1与l2为异面直线,BC与AC均与l1,l2相交,但BC与AC也相交,故D不正确.2.(多选)如图所示的是一个正方体的平面展开图,如果图示面为里面,将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有( ABC )A.AB与CD B.AB与GHC.EF与GH D.EF与CD题图答图[解析]将平面图形还原成正方体后如图所示,其中AB与CD异面,AB与GH异面,EF与GH异面.3.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,C1D的中点,则直线A1B与直线EF的位置关系是( A )A .相交B .异面C .平行D .垂直[解析] 如图所示,连接BD 1,CD 1,CD 1与C 1D 交于点F ,由题意可得四边形A 1BCD 1是平行四边形,在平行四边形A 1BCD 1中,E ,F 分别是线段BC ,CD 1的中点,所以EF ∥BD 1,所以直线A 1B 与直线EF 相交,故选A .4.空间四边形ABCD 中,AD =BC =2,E ,F 分别是AB ,CD 的中点,EF =3,则异面直线AD ,BC 所成的角为( C )A .45°B .120°C .60°D .60°或120°[解析] 取AC 的中点G ,连接EG ,FG .由三角形中位线可知,EG 綊12BC ,FG 綊12AD ,所以∠EGF 或其补角即为异面直线AD 与BC 所成的角.在△EGF 中,cos ∠EGF =EG 2+FG 2-EF 22·EG ·FG =12+12-322×1×1=-12.所以∠EGF =120°.由异面直线所成角的范围可知应取其补角60°.故选C . 二、填空题5.在四棱锥P -ABCD 中E ,F ,G ,H 分别是PA ,PC ,AB ,BC 的中点,若EF =2,则GH = 2 . [解析] 由题意知EF 綊12AC ,GH 綊12AC ,故EF 綊GH ,故GH =2.6.如图,若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AA 1所成角的正弦值是33 ,异面直线BD 1与AD 所成角的正弦值是 306. [解析] 因为AA 1∥DD 1,所以∠DD 1B 即为异面直线BD 1与AA 1所成的角,连接BD ,在Rt △D 1DB 中,sin ∠DD 1B =DB BD 1=2226=33. 因为AD ∥BC ,所以∠D 1BC 即为异面直线BD 1与AD 所成的角(或其补角), 连接D 1C ,在△D 1BC 中,因为正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,所以D 1B =26,BC =2,D 1C =25,D 1B 2=BC 2+D 1C 2,所以∠D 1CB =90°, 所以sin ∠D 1BC =D 1C D 1B =2526=306, 故异面直线BD 1与AD 所成角的正弦值是306. 三、解答题7.如图所示,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.求证:(1)D 1E ∥BF ; (2)∠B 1BF =∠D 1EA 1.[解析] (1)取BB 1的中点M ,连接EM ,C 1M .在矩形ABB 1A 1中,易得EM =A 1B 1,EM ∥A 1B 1.因为A 1B 1=C 1D 1且A 1B 1∥C 1D 1,所以EM =C 1D 1且EM ∥C 1D 1. 所以四边EMC 1D 1为平行四边形. 所以D 1E ∥C 1M ,在矩形BCC 1B 1中,易知MB =C 1F ,且MB ∥C 1F ,所以四边形C 1FBM 为平行四边形,所以C 1M ∥BF ,所以D 1E ∥BF .所以D 1E ∥BF . (2)由(1)知,ED 1∥BF ,BB 1∥EA 1,因为∠B 1BF 与∠D 1EA 1的对应边方向相同,所以∠B 1BF =∠D 1EA 1.8.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点.求异面直线A 1M 与DN 所成的角的大小.[解析] 如图,过点M 作ME ∥DN 交CC 1于点E .连接A 1E ,则∠A 1ME 为异面直线A 1M 与DN 所成的角(或其补角).设正方体的棱长为a ,则A 1M =32a ,ME=54a ,A 1E =414a ,所以A 1M 2+ME 2=A 1E 2,所以∠A 1ME =90°,即异面直线A 1M 与DN 所成的角为90°.。

新教材高中数学第6章第2课时平面与平面垂直的判定学案含解析北师大版必修第二册

新教材高中数学第6章第2课时平面与平面垂直的判定学案含解析北师大版必修第二册

新教材高中数学学案含解析北师大版必修第二册:第2课时平面与平面垂直的判定学习任务核心素养1.掌握平面与平面垂直的判定定理.(重点) 2.掌握空间中线、面垂直关系的相互转化关系.(难点)1.通过发现平面与平面垂直的判定定理,培养学生数学抽象素养.2.通过利用平面与平面垂直的判定定理证明平面与平面垂直,培养学生逻辑推理素养.在日常生活中,我们对平面与平面垂直有很多感性认识,比如墙面与地面、长方体纸箱的侧面与底面,门打开时,门面始终与地面垂直等都给我们以平面与平面垂直的形象.阅读教材,结合上述情境回答下列问题:问题1:你能举出平面与平面垂直的实例吗?问题2:如何判断两个平面垂直?知识点平面与平面垂直的判定定理文字语言如果一个平面过另一个平面的垂线,那么这两个平面垂直图形语言符号语言l⊂α,l⊥β⇒α⊥β1.若两个平面所成的二面角为90°,这两个平面有什么位置关系?提示:垂直2.过已知平面的垂线,有几个平面和已知平面垂直?提示:有无数多个.思考辨析(正确的画“√”,错误的画“×”)(1)应用面面垂直的判定定理的关键在于,在其中一个平面内找到或作出另一个平面的垂线,即实现面面垂直向线面垂直的转化.()(2)已知α,β,γ是平面,且α⊥β,若α⊥γ,则β⊥γ. ()(3)已知α,β,γ是平面,且α∥β,若α⊥γ,则β⊥γ. ()[提示](1)正确.(2)错误.β和γ可能平行,也可能相交.(3)正确.[答案](1)√(2)×(3)√类型1平面与平面垂直的判定【例1】(教材北师版P234例8改编)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.证明:平面AEC⊥平面AFC.[证明]如图,连接BD,设BD∩AC于点G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=2 2.在Rt△FDG中,可得FG=6 2.在直角梯形BDFE中,由BD=2,BE=2,DF=22,可得EF=322.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,所以EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(1)证明平面与平面垂直的方法①利用定义:证明二面角的平面角为直角;②利用面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(2)根据面面垂直的定义判定两平面垂直,实质上是把问题转化成了求二面角的平面角,通常情况下利用判定定理要比定义简单些,这也是证明面面垂直的常用方法,即要证面面垂直,只要转证线面垂直,其关键与难点是在其中一个平面内寻找一直线与另一平面垂直.[跟进训练]1.在边长为a的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,求证:平面PDB⊥平面P AC.[证明]∵PC⊥平面ABCD,BD⊂平面ABCD,∴PC⊥BD.∵四边形ABCD为菱形,∴AC⊥BD,又PC∩AC=C,∴BD⊥平面P AC.∵BD⊂平面PBD,∴平面PDB⊥平面P AC.类型2空间垂直关系的综合应用【例2】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,侧面△P AD 为等边三角形.(1)求证:AD⊥PB;(2)若E为BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.1.空间中线、面的垂直关系是如何转化的?[提示]转化关系如下:2.证明直线与直线垂直的方法有哪些?[提示](1)利用平面几何的知识:如勾股定理的逆定理,等腰三角形的性质,菱形的性质等;(2)证明一条直线垂直另一条直线所在的平面.3.(1)直线与直线垂直→直线与平面垂直→直线与直线垂直(2)利用(1)的条件AD⊥平面PGB→找到过点F的平面和平面PGB平行→确定F的位置[解](1)证明:设G为AD的中点,连接PG,BG,如图.因为△P AD为等边三角形,所以PG⊥AD.在菱形ABCD中,∠BAD=60°,G为AD的中点,所以BG⊥AD.又因为BG∩PG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(2)当F为PC的中点时,满足平面DEF⊥平面ABCD.如图,设F为PC的中点,连接DF,EF,DE,则在△PBC中,EF∥PB.在菱形ABCD中,GB∥DE,而EF⊂平面DEF,DE⊂平面DEF,EF∩DE=E,所以平面DEF∥平面PGB.由(1),得AD⊥平面PGB,而AD⊂平面ABCD,所以平面PGB⊥平面ABCD.所以平面DEF⊥平面ABCD.(1)空间中的垂直关系有线线垂直、线面垂直、面面垂直,这三种关系不是孤立的,而是相互关联的.(2)空间问题化成平面问题是解决立体几何问题的一个基本原则,解题时,要抓住几何图形自身的特点,如等腰(边)三角形的三线合一、中位线定理、菱形的对角线互相垂直等.还可以通过解三角形,产生一些题目所需要的条件,对于一些较复杂的问题,注意应用转化思想解决问题.[跟进训练]2.如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且AEAC=AFAD=λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时,平面BEF⊥平面ACD?[解](1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.∵CD ⊥BC ,AB ∩BC =B ,∴CD ⊥平面ABC . 又∵AE AC =AFAD=λ(0<λ<1),∴无论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴无论λ为何值,总有平面BEF ⊥平面ABC . (2)由(1)知BE ⊥EF ,∵平面BEF ⊥平面ACD ,平面BEF ∩平面ACD =EF , ∴BE ⊥平面ACD .又∵AC ⊂平面ACD ,∴BE ⊥AC .∵BC =CD =1,∠BCD =∠ABD =90°,∠ADB =60°, ∴BD =2,∴AB =2tan 60°=6, ∴AC =AB 2+BC 2=7.由Rt △AEB ∽Rt △ABC ,得AB 2=AE ·AC , ∴AE =67,∴λ=AE AC =67.故当λ=67时,平面BEF ⊥平面ACD .1.直线l ⊥平面α,l ⊂平面β,则α与β的位置关系是( ) A .平行 B .可能重合 C .相交且垂直D .相交不垂直C [由面面垂直的判定定理,得α与β垂直,故选C.]2.对于直线m ,n 和平面α,β,能得出α⊥β的一组条件是( ) A .m ⊥n ,m ∥α,n ∥β B .m ⊥n ,α∩β=m ,n ⊂β C .m ∥n ,n ⊥β,m ⊂αD .m ∥n ,m ⊥α,n ⊥βC [A 与D 中α也可与β平行,B 中不一定α⊥β,故选C.]3.如图,BCDE 是一个正方形,AB ⊥平面BCDE ,则图中(侧面,底面)互相垂直的平面共有( )A .4组B .5组C .6组D .7组B[由AB⊥平面BCDE,可得平面ABC⊥平面BCDE,平面ABE⊥平面BCDE,又因为BCDE是一个正方形,所以BC⊥平面ABE⇒平面ABC⊥平面ABE,同理可得平面ACD⊥平面ABC,平面ADE⊥平面ABE,故共有5组,故选B.]4.如果规定:x=y,y=z,则x=z,叫作x,y,z关于相等关系具有传递性,那么空间三个平面α,β,γ关于相交、垂直、平行这三种关系中具有传递性的是________.平行[由平面与平面的位置关系及两个平面平行、垂直的定义、判定定理,知平面平行具有传递性,相交、垂直都不具有传递性.]5.在正方体ABCD-A1B1C1D1中,E是CC1的中点,则平面EBD与平面AA1C1C的位置关系是________.(填“垂直”“不垂直”其中的一个)垂直[如图,在正方体中,CC1⊥平面ABCD,∴CC1⊥BD.又AC⊥BD,CC1∩AC=C,∴BD⊥平面AA1C1C.又BD⊂平面EBD,∴平面EBD⊥平面AA1C1C.]回顾本节内容,自我完成以下问题:面面垂直的判定定理应用的思路是什么?[提示]平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.。

2021_2022学年新教材高中数学第6章立体几何初步§2直观图学案含解析北师大版必修第二册 (1)

2021_2022学年新教材高中数学第6章立体几何初步§2直观图学案含解析北师大版必修第二册 (1)

§2 直观图学习任务核心素养1.用斜二测画法画水平放置的平面图形的直观图.(重点)2.用斜二测画法画常见的柱、锥、台以与简单组合体的直观图.(难点)1.通过对用斜二测画法画直观图的学习,培养学生直观想象素养.2.借助于斜二测画法的相关计算,培养学生数学运算素养.美术与数学有着千丝万缕的联系,在美术图中,空间图形或实物在画板上既要有立体感,又要表现出各主要局部的位置关系和度量关系.空间图形或实物如何在画板上表示出来?如何反映它们的主要特征呢?这就是空间几何体的直观图,画好空间几何体的直观图应首先从水平放置的平面图形入手.阅读教材,结合上述情境回答如下问题:问题1:在画实物图的平面图形时,其中的直角在图中一定画成直角吗?问题2:正方形、矩形、圆等平面图形在画实物图时习惯画成什么?为什么?问题3:水平放置的平面图形中的线段在直观图中长度不变吗?知识点1 平面图形直观图的画法1.相等的角在直观图中还相等吗?[提示] 不一定.例如正方形的直观图为平行四边形.1.如下关于用斜二测画法画直观图的说法中,正确的答案是( )A.水平放置的正方形的直观图不可能是平行四边形B.平行四边形的直观图仍是平行四边形C.两条相交直线的直观图可能是平行直线D.两条垂直的直线的直观图仍互相垂直B[选项A错误,水平放置的正方形的直观图一定是平行四边形;选项B正确;选项C错误,两条相交直线的直观图仍然是相交直线;选项D错误,两条垂直的直线的直观图不一定垂直.]知识点2 空间图形直观图的画法(斜二测画法)步骤(1)在的空间图形中取水平平面和互相垂直的轴Ox,Oy;再取Oz轴,使∠xOz=90°,且∠yOz=90°.(2)画直观图时,把Ox,Oy,Oz画成对应的O′x′,O′y′,O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°.x′O′y′所确定的平面表示水平平面.(3)图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴,y′轴或z′轴的线段.(4)图形中平行于x轴和z轴的线段,在直观图中保持原长度不变;平行于y轴的线段长度为原来的一半.(5)擦去辅助线,并将被遮线画成虚线.2.空间几何体的直观图是唯一的吗?[提示] 不唯一.作直观图时,由于选轴的不同,画出的直观图也不一样.2.思考辨析(正确的画“√〞,错误的画“×〞)(1)用斜二测画法画水平放置的∠A时,假如∠A的两边分别平行于x轴和y轴,且∠A=90°,如此在直观图中,∠A=45°.( )(2)用斜二测画法画平面图形的直观图时,平行的线段在直观图中仍平行,且长度不变.( )(3)建立z轴的一般原如此是让z轴过空间图形的顶点.( )[提示](1)错误.∠A也可能等于135°.(2)错误.用斜二测画法画平面图形的直观图时,平行的线段在直观图中仍平行,但长度可能改变.(3)正确.[答案](1)×(2)×(3)√类型1 水平放置的平面图形的直观图【例1】(教材北师版P201例1改编)用斜二测画法画边长为4 cm的水平放置的正三角形(如图)的直观图.[解](1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y 轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA,连接A′B′,A′C′,如此三角形A′B′C′即为正三角形ABC的直观图,如图②所示.在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键之一,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.关键之二是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.[跟进训练]1.画一个锐角为45°的平行四边形ABCD 的直观图(尺寸自定).[解] (1)画轴.如图①,建立平面直角坐标系xOy ,再建立坐标系x ′O ′y ′,其中∠x ′O ′y ′=45°.(2)描点.如图②,在x ′轴上截取O ′A ′=OA ,O ′B ′=OB ,在y 轴上截取O ′D ′=12OD ,过点D ′作D ′C ′∥x ′轴,且D ′C ′=DC .(3)连线.连接B ′C ′,A ′D ′.(4)成图.如图③,四边形A ′B ′C ′D ′即为一个锐角为45°的平行四边形ABCD 的直观图. 类型2 空间几何体的直观图【例2】(教材北师版P 202例2改编)用斜二测画法画长、宽、高分别为4 cm 、3 cm 、2 cm 的长方体ABCD ­A ′B ′C ′D ′的直观图.[解](1)画轴.如图,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连接A ′,B ′,C ′,D ′(去掉辅助线,将被遮挡的局部改为虚线),就得到长方体的直观图.空间几何体的直观图的画法:(1)对于一些常见几何体(柱、锥、台、球)的直观图,应该记住它们的大致形状,以便可以较快较准确地画出.(2)画空间几何体的直观图时,比画平面图形的直观图增加了一个z′轴,表示竖直方向.(3)z′轴方向上的线段,方向与长度都与原来保持一致.[跟进训练]2.画出一个上、下底面边长分别为1,2,高为2的正三棱台的直观图.[解] (1)画轴.如图,画x轴、y轴、z轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画下底面.以O为线段中点,在x轴上取线段AB,使AB=2,在y轴上取线段OC,使OC=32.连接BC,CA,如此△ABC为正三棱台的下底面的直观图.(3)画上底面.在z轴上取OO′,使OO′=2,过点O′作O′x′∥Ox,O′y′∥Oy,建立坐标系x′O′y′.在x′O′y′中,类似步骤(2)的画法得上底面的直观图△A′B′C′.(4)连线成图.连接AA′,BB′,CC′,去掉辅助线,将被遮住的局部画成虚线,如此三棱台ABC-A′B′C′即为要求画的正三棱台的直观图.类型3 直观图的相关计算【例3】如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.x轴平行的线段AB=2,和y轴平行的线段CD=4,那么用斜二测画法画出线段AB,CD 的直观图A ′B ′和C ′D ′的长度分别是什么?[提示] A ′B ′=2,C ′D ′=2.2.如下列图,水平放置的矩形ABCD 中,AB =4,AD =2,其直观图A ′B ′C ′D ′的面积是多少?[提示] 由斜二测画法可知,矩形ABCD 的直观图A ′B ′C ′D ′的面积为S =12×2×22×4=22.3.建立平面直角坐标系xOy →画原图形OABC →计算平行四边形OABC 的周长和面积[解] 如图,建立直角坐标系xOy ,在x 轴上取OA =O ′A ′=1 cm ;在y 轴上取OB =2O ′B ′=22cm ;在过点B 的x 轴的平行线上取BC =B ′C ′=1 cm.连接O ,A ,B ,C 各点,即得到了原图形.由作法可知,OABC 为平行四边形,OC =OB 2+BC 2=8+1=3 cm ,∴平行四边形OABC 的周长为(3+1)×2=8 cm ,面积为S =1×22=22cm 2.把例3中的正方形O ′A ′B ′C ′换为如下列图的等腰直角三角形A ′B ′O ′,假如O ′B ′=1,求原三角形ABO 的面积.[解]直观图中等腰直角三角形直角边长为1,因此面积为12,又直观图与原平面图形面积比为2∶4,所以原图形的面积为 2.由直观图复原为平面图形的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段复原时长度不变,平行于y ′轴的线段复原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.由此可得,直观图面积是原图形面积的24倍.[跟进训练]3.△ABC 是正三角形,且它的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .34a 2B .38a 2C .68a 2D .616a 2D [如图①,建立如下列图的平面直角坐标系xOy .如图②,建立坐标系x ′O ′y ′,使∠x ′O ′y ′=45°,由直观图画法知:A ′B ′=AB =a ,O ′C ′=12OC =34a ,过C ′作C ′D ′⊥O ′x ′于D ′,如此C ′D ′=22O ′C ′=68a .所以△A ′B ′C ′的面积是S =12·A ′B ′·C ′D ′=12·a ·68a =616a 2.]1.根据斜二测画法的规如此画直观图时,把Ox ,Oy ,Oz 轴画成对应的O ′x ′,O ′y ′,O ′z ′,如此∠x ′O ′y ′与∠x ′O ′z ′的度数分别为( )A .90°,90°B .45°,90°C .135°,90°D .45°或135°,90°D [根据斜二测画法的规如此,∠x ′O ′y ′的度数应为45°或135°,∠x ′O ′z ′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.]2.如下列图为某一平面图形的直观图,如此此平面图形可能是如下图中的( )A [由直观图知,原四边形一组对边平行且不相等,为梯形,且梯形两腰不能与底垂直,应当选A.]3.利用斜二测画法画边长为1 cm 的正方形的直观图,可能是下面的( )C [正方形的直观图是平行四边形,且边长不相等,应当选C.]4.有一个长为5 cm ,宽为4 cm 的矩形,如此其用斜二测画法得到的直观图的面积为________cm 2.52[该矩形直观图的面积为24×5×4=5 2.]△ABC 的直观图如下列图,如此原△ABC 的面积为______.9 [由题意,易知在△ABC 中,AC ⊥AB ,且AC =6,AB =3.∴S △ABC =12×6×3=9.]回顾本节内容,自我完成以下问题:1.如何画水平放置的平面图形的直观图?[提示] 画水平放置的平面图形的直观图,关键是确定直观图的顶点.确定点的位置,可采用直角坐标系.建立恰当的坐标系是迅速作出直观图的关键,常利用图形的对称性,并让顶点尽量多地落在坐标轴上或与坐标轴平行的直线上.2.用斜二测画法画直观图时应注意哪些问题?[提示] 用斜二测画法画直观图时要紧紧把握住“一斜〞、“二测〞两点:(1)一斜:平面图形中互相垂直的Ox,Oy轴,在直观图中画成O′x′,O′y′轴,使∠x′O′y′=45°或135°.(2)二测:在直观图中平行于x轴的长度不变,平行于y轴的长度取一半,记为“横不变,纵折半〞.。

高中新教材数学人课件必修时平面与平面垂直的判定定理

高中新教材数学人课件必修时平面与平面垂直的判定定理

注意事项及误区提示
01
注意事项:在应用判定定理二时,需要确保两个平面都垂直于第三个 平面,并且这三个平面的交线是同一条直线。
02
误区提示
03
不能仅凭两个平面都垂直于第三个平面就直接断定这两个平面互相垂 直,需要验证它们是否交于同一直线。
04
在证明过程中,要正确使用线面垂直和面面垂直的性质和判定定理, 避免出现逻辑错误。
由于$alpha perp gamma$,根据面面垂直的性质,存在过点$P$的直 线$PB subset alpha$,使得$PB perp gamma$。
定理表述及证明
同理,在$beta$内可以作出过点$P$ 的直线$PC subset beta$,使得$PC perp gamma$。
又因为$PB subset alpha$且$PC subset beta$,所以$alpha perp beta$。
01
如果两个平面相交,且它们的交 线与第三个平面垂直,则称这两 个平面与第三个平面垂直。
02
如果两个平面分别与第三个平面 垂直,则这两个平面互相垂直。
平面与平面垂直的性质
如果一条直线同时垂直于两个相交平面,则这条直线与这两个平面的交线也垂直。 如果两个平面互相垂直,则它们的法线也互相垂直。
垂直于同一平面的两条直线互相平行。
及到较为抽象的空间概念和逻辑推理,学生 在理解和掌握上可能存在一定的困难。因此,在教学中应注重直观演示和实例 分析,帮助学生更好地理解和应用定理。
教学目标与重难点
• 情感态度与价值观
• 过程与方法
通过直观演示、实例分析和小组 讨论等方式,培养学生的空间想 象能力和逻辑推理能力。
05
判定定理三:如果两 个平面的二面角是直 二面角,则这两个平 面互相垂直

北师大版必修第二册第六章立体几何初步直线与平面垂直的证明技法课件共36张PPT

北师大版必修第二册第六章立体几何初步直线与平面垂直的证明技法课件共36张PPT

一、量化证明法
1.如图,四面体ABCD中,O是BD的中点, =
= = = 2, = = 2,
求证: ⊥ 平面.
证明:在 中, = = 2, = 2,O为BD
的中点, ⊥ ⋯ ①
在 ∆中, = = = 2,O为BD的中点,
A在PB上的射影为E,求证: ⊥ 平他.
证明: ⊥ , ⊂ , ⊥ . . . . . . ① ⊥
. . . . . ②, ∩ = ⋯ ⋯ 3 .由①②③可得,
⊥ .
⊂ , ⊥ , ∩ = ⋯ 3 .由①②③可
连接DE、AE.在 中,由于PD⊥平面ABCD,AB ⊂ 平面ABCD,
PD⊥AB,AB⊥AD、PD∩AD=D,AB⊥平面PAD,PA ⊂ 平面PAD,
⊥ ,所以,△PAB为直角三角形,又E为PB的中点, =
1
.连接BD,在△PBD中, ⊥ ,所以△PBD为直角三角形,
2
1
.
2
又E为PB的中点, =
于是,在 中, = ,F为AD的中点,所以 ⊥
, //,EF⊥BC……②, ∩ = ...③.由①②③可得,EF⊥
平面PBC.
3.如图在底面为直角梯形的四棱锥 − 中,

⊥底面ABCD, //, ∠ = 90 , = 2, =
2 3, = 6,求证: ⊥平面PAC,
证明: ⊥ , ⊂ , ⊥ ⋯ ⋯ ①,
在四边形ABCD中, //, ∠ = 90∘ ,所以,四
边形ABCD是直角梯形,在∆ABD中,AD=2, =

2 3,所以 ∠ = 30 ,
得, ⊥

新教材高中数学第6章立体几何初步4平行关系 平面与平面平行素养作业北师大版必修第二册

新教材高中数学第6章立体几何初步4平行关系 平面与平面平行素养作业北师大版必修第二册

第六章 4.2A组·素养自测一、选择题1.正方体ABCD-A1B1C1D1中,截面BA1C1与直线AC的位置关系是( A )A.AC∥截面BA1C1B.AC与截面BA1C1相交C.AC在截面BA1C1内D.以上答案都错误[解析]∵AC∥A1C1,又∵AC⊂/面BA1C1,∴AC∥面BA1C1.2.已知直线l、m,平面α、β,下列结论正确的是( D )A.l∥β,l⊂α⇒α∥βB.l∥β,m∥β,l⊂α,m⊂α⇒α∥βC.l∥m,l⊂α,m⊂β⇒α∥βD.l∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β[解析]如右图所示,在长方体ABCD-A1B1C1D1中,直线AB∥CD,则直线AB∥平面DC1,直线AB⊂平面AC,但是平面AC与平面DC1不平行,所以选项A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.又EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以选项B错误;直线AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,但平面AC与平面BC1不平行,所以选项C错误;很明显选项D是两个平面平行的判定定理,所以选项D正确.3.如右图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB 的位置关系是( B )A.异面B.平行C.相交D.以上均有可能[解析]∵A1B1∥AB,AB⊂平面ABC,A1B1⊂/平面ABC,∴A1B1∥平面ABC.又A1B1⊂平面A1B1ED,平面A1B1ED∩平面ABC=DE,∴DE∥A1B1.又AB∥A1B1,∴DE∥AB.4.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系是( C )A.平行B.相交C.平行或相交D.以上都不对[解析]如下图中的甲、乙分别为两个平面平行、相交的情形,∴应选C.5.(多选)下列选项,正确的是( CD )A.若a⊂α,b⊂β,a∥b,则α∥βB.c为直线,α,β为平面,若c∥α,c∥β,则α∥βC.若a⊂α,b⊂β,α∥β,则a、b无交点D.若a⊂α,α∥β,则a∥β[解析]AB中的α、β可能平行也可能相交;CD正确.6.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC 于A′,B′,C′,若PA′AA′=23,则△A′B′C′与△ABC面积的比为( D )A .25B .38C .49D .425[解析] ∵平面α∥平面ABC ,平面PAB ∩α=A ′B ′,平面PAB ∩平面ABC =AB ,∴A ′B ′∥AB .又∵PA ′AA ′=23,∴A ′B ′AB =PA ′PA =2 5.同理B ′C ′BC =A ′C ′AC =2 5.∴△A ′B ′C ′与△ABC 相似,∴S △A ′B ′C ′S △ABC =425.二、填空题7.已知平面α和β,在平面α内任取一条直线a ,在β内总存在直线b ∥a ,则α与β的位置关系是 平行 (填“平行”或“相交”).[解析] 假若α∩β=l ,则在平面α内,与l 相交的直线a ,设a ∩l =A ,对于β内的任意直线b ,若b 过点A ,则a 与b 相交,若b 不过点A ,则a 与b 异面,即β内不存在直线b ∥a .故α∥β.8.如图,在长方体ABCD -A 1B 1C 1D 1中,过BB 1的中点E 作一个与平面ACB 1平行的平面交AB于M ,交BC 于N ,则MN AC = 12.[解析] ∵平面MNE ∥平面ACB 1,由面面平行的性质定理可得EN ∥B 1C ,EM ∥B 1A ,又∵E 为BB 1的中点,∴M ,N 分别为BA ,BC 的中点,∴MN =12AC ,即MN AC =12.9.如图,a ∥α,A 是α的另一侧的点,B ,C ,D ∈a ,线段AB ,AC ,AD 分别交平面α于E ,F ,G ,若BD =4,CF =4,AF =5,则EG = 209.[解析] ∵a ∥α,α∩平面ABD =EG ,∴a∥EG,即BD∥EG,∴EGBD=AFAF+FC,则EG=AF·BDAF+FC=5×45+4=209.三、解答题10.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E、F、H分别为AB、CD、PD的中点.求证:平面AFH∥平面PCE.[解析]因为F为CD的中点,H为PD的中点,所以FH∥PC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,所以AF∥平面PCE.由FH⊂平面AFH,AF⊂平面AFH,FH∩AF=F,所以平面AFH∥平面PCE.B组·素养提升一、选择题1.a,b,c为三条不重合的直线,α,β,γ为三个不重合平面,现给出六个结论.①a∥c,b∥c⇒a∥b;②a∥γ,b∥γ⇒a∥b;③α∥c,β∥c⇒α∥β;④α∥γ,β∥γ⇒α∥β;⑤α∥c,a∥c⇒α∥a;⑥a∥γ,α∥γ⇒α∥a.其中正确的结论是( C )A.①②③B.①④⑤C.①④D.①③④[解析]①平行公理.②两直线同时平行于一平面,这两条直线可相交、平行或异面.③两平面同时平行于一直线,这两个平面相交或平行.④面面平行传递性.⑤一直线和一平面同时平行于另一直线,这条直线和平面或平行或直线在平面内.⑥一直线和一平面同时平行于另一平面,这条直线和平面可平行也可能直线在平面内.故①④正确.2.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为( B )A .352B .92C .98D .358[解析]如图,取AA 1的中点N ,连接MN ,NB ,MC 1,BC 1,由于截面被平行平面所截,所以截面为梯形,且MN =12BC 1=2,MC 1=BN =5,所以梯形的高为32, 所以梯形的面积为12(2+22)×32=92.3.已知正方体ABCD -A ′B ′C ′D ′,点E ,F ,G ,H 分别是棱AD ,BB ′,B ′C ′,DD ′的中点,从中任取两点确定的直线中,与平面AB ′D ′平行的条数是( D )A .0B .2C .4D .6[解析] 连接EG ,EH ,EF ,FG ,GH ,∵EH ∥FG 且EH =FG ,∴四边形EFGH 为平行四边形,∴E ,F ,G ,H 四点共面.由EG ∥AB ′,EH ∥AD ′,EG ∩EH =E ,AB ′∩AD ′=A ,EG ⊂平面EFGH ,EH ⊂平面EFGH ,AB ′⊂平面AB ′D ′,AD ′⊂平面AB ′D ′,可得平面EFGH ∥平面AB ′D ′.故平面EFGH 内的每条直线都符合条件.故选D .4.(多选)如图是四棱锥的平面展开图,其中四边形ABCD 为正方形,E ,F ,G ,H 分别为PA ,PD ,PC ,PB 的中点,在此几何体中,给出下面四个结论,其中正确的是( ABC )A.平面EFGH∥平面ABCDB.BC∥平面PADC.AB∥平面PCDD.平面PAD∥平面PAB[解析]把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴AB∥平面PCD.同理平面BC∥PAD.故选ABC.二、填空题5.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足点M在FH上时,有MN∥平面B1BDD1.[解析]∵FH∥BB1,HN∥BD,FH∩HN=H,∴平面FHN∥平面B1BDD1,又平面FHN∩平面EFGH=FH,∴当M∈FH时,MN⊂平面FHN,∴MN∥平面B1BDD1.6.如图,四棱锥P-ABCD的底面是平行四边形,PA=PB=AB=2,E,F分别是AB,CD的中点,平面AGF∥平面PEC,PD∩平面AGF=G,且PG=λGD,则λ= 1 ,ED与AF相交于点H,则GH=3.2[解析] 因为ABCD 是平行四边形, 所以AB ∥CD ,且AB =CD .又E ,F 分别是AB ,CD 的中点,所以AE =FD , 又∠EAH =∠DFH ,∠AEH =∠FDH , 所以△AEH ≌△FDH ,所以EH =DH .因为平面AGF ∥平面PEC ,平面PED ∩平面AGF =GH ,平面PED ∩平面PEC =PE ,所以GH ∥PE ,则G 是PD 的中点,即PG =GD ,故λ=1.因为PA =AB =PB =2,所以PE =3,GH =12PE =32. 三、解答题7.如图所示,P 为□ABCD 所在平面外一点,点M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l .(1)求证:BC ∥l ;(2)MN 与平面PAD 是否平行?证明你的结论.[解析] (1)因为四边形ABCD 是平行四边形,所以BC ∥AD .又因为AD ⊂平面PAD ,BC ⊂/平面PAD ,所以BC ∥平面PAD .又因为平面PBC ∩平面PAD =l ,BC ⊂平面PBC ,所以BC ∥l .(2)MN ∥平面PAD .证明如下:如图所示,取PD 的中点E ,连接NE 、AE ,所以NE ∥CD ,NE =12CD .而CD 綊AB ,M 为AB 的中点,所以NE ∥AM ,NE =AM ,所以四边形MNEA 是平行四边形, 所以MN ∥AE .又AE ⊂平面PAD ,MN ⊂/平面PAD ,所以MN ∥平面PAD .8.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =2CD ,E ,E 1分别是棱AD ,AA 1上的点.设F 是棱AB 的中点.求证:直线EE1∥平面FCC1.[证明]因为F为AB的中点,所以AB=2AF 又因为AB=2CD,所以CD=AF,因为AB∥CD,所以CD∥AF,所以四边形AFCD为平行四边形,所以FC∥AD,又FC⊂/平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1,因为CC1∥DD1,CC1⊂/平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.。

新教材高中数学第6章立体几何初步6简单几何体的再认识 球的表面积和体积课件北师大版必修第二册

新教材高中数学第6章立体几何初步6简单几何体的再认识 球的表面积和体积课件北师大版必修第二册

关键能力•攻重难
题型探究
题型一
球的表面积
例 1 一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,试求球的表面积.
[分析] 求球的表面积或体积只需要求出球的半径,要求球的半径只 需解球的半径、截面圆半径和球心到截面的距离组成的直角三角形.
[解析] (1)当球心在两个截面同侧时,如右图,设OD=x,由题意知 π·CA2=49π,
(B)
4.把3个半径为R的铁球熔成一个底面半径为R的圆柱,则圆柱的高为
A.R
B.2R
(D)
C.3R
D.4R
[解析] 设圆柱的高为h,则πR2h=3·43πR3,∴h=4R.
4π 5.球的表面积为4πcm2,则其体积为______3_cm3.
[解析] 设球的半径为r,则4πr2=4π,∴r=1(cm). ∴V=43πr3=43π(cm3).
知识点2 球的表面积和体积公式 S球面=__4_π_R__2 __,V球=_____43_π_R_3.其中R为球的半径.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)球心和球的小圆圆心的连线和球的小圆垂直.
(2)球的表面积S和体积V的大小是关于半径R的函数.
2.球的体积是323π,则此球的表面积是
知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为 4
3 ,底面周长
为3,那么这个球的体积为___3_π__.
[分析] 要求球的体积,关键是求出其半径R,而正六棱柱外接球的 直径恰好是正六棱柱的体对角线长.
[解析] ∵底面是正六边形, ∴边长为12.∴AD=1. AD1为球直径,其长度为 3+1=2,∴R=1. ∴V=43πR3=43π.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 5.2A组·素养自测一、选择题1.如图所示,对于面面垂直的性质定理的符号叙述正确的是( D )A.α⊥β,α∩β=l,b⊥l⇒b⊥βB.α⊥β,α∩β=l,b⊂α⇒b⊥βC.α⊥β,b⊂α,b⊥l⇒b⊥βD.α⊥β,α∩β=l,b⊂α,b⊥l⇒b⊥β[解析]根据面面垂直的性质定理知,D正确.2.在棱长都相等的四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是( C )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC[解析]可画出对应图形,如图所示,则BC∥DF,又DF⊂平面PDF,BC⊂/平面PDF,∴BC∥平面PDF,故A成立;由AE⊥BC,PE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面PAE,故B成立;又DF⊂平面ABC,∴平面ABC⊥平面PAE,故D成立.3.(多选)在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中正确的是( ABD )A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PAD[解析]对于A选项,AB⊥PA,AB⊥AD,且PA∩AD=A,所以AB⊥平面PAD,又AB⊂平面PAB,所以平面PAB⊥平面PAD;对于B选项,由BC⊥AB,BC⊥PA,且AB∩PA=A,所以BC⊥平面PAB,又BC⊂平面PBC,所以平面PBC⊥平面PAB;对于D选项,CD⊥AD,CD⊥PA,且PA∩AD=A,所以CD⊥平面PAD,又CD⊂平面PCD,所以平面PCD⊥平面PAD.4.如图所示,在长方体ABCD-A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是( D )A.平行B.EF⊂平面A1B1C1D1C.相交但不垂直D.相交且垂直[解析]由于长方体中平面ABB1A1⊥平面ABCD,所以根据面面垂直的性质定理可知,EF⊥平面A1B1C1D1,相交且垂直.5.如图所示,三棱锥P-ABC中,平面ABC⊥平面PAB,PA=PB,AD=DB,则( B )A.PD⊂平面ABCB.PD⊥平面ABCC.PD与平面ABC相交但不垂直D.PD∥平面ABC[解析]∵PA=PB,AD=DB,∴PD⊥AB.又∵平面ABC⊥平面PAB,PD⊂平面PAB,平面ABC∩平面PAB=AB,∴PD⊥平面ABC.6.在二面角α-l-β中,A∈α,AB⊥平面β于B,BC⊥平面α于C,若AB=6,BC=3,则二面角α-l-β的平面角的大小为( D )A.30°B.60°C.30°或150°D.60°或120°[解析]如图,∵AB⊥β,∴AB⊥l,∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB为二面角α-l-β的平面角或补角,∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB=60°,∴二面角大小为60°或120°.二、填空题7.如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面共有 3 对.[解析]∵AB⊥平面BCD,且AB⊂平面ABC和AB⊂平面ABD,∴平面ABC⊥平面BCD,平面ABD⊥平面BCD.∵AB⊥平面BCD,∴AB⊥CD.又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC.∵CD⊂平面ACD,∴平面ABC⊥平面ACD.故图中互相垂直的平面有平面ABC⊥平面BCD,平面ABD⊥平面BCD,平面ABC⊥平面ACD.8.如图,在三棱锥P-ABC内,侧面PAC⊥底面ABC,且∠PAC=90°,PA=1,AB=2,则PB=5 .[解析]∵侧面PAC⊥底面ABC,交线为AC,∠PAC=90°(即PA⊥AC),∴PA⊥平面ABC,又AB⊂平面ABC,∴PA⊥AB,∴PB=PA2+AB2=1+4= 5.9.已知正四棱锥(底面为正方形各侧面为全等的等腰三角形)的高为3,底面对角线的长为26,则侧面与底面所成的二面角的大小为 60° .[解析] 设正四棱锥为S -ABCD , 如图所示,高为h ,底面边长为a ,则2a 2=(26)2, ∴a 2=12.设O 为S 在底面上的投影,作OE ⊥CD 于E ,连接SE , 可知SE ⊥CD ,∠SEO 为所求二面角的平面角. tan ∠SEO =h a 2=3×212=3,∴∠SEO =60°.∴侧面与底面所成二面角的大小为60°. 三、解答题10.如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA . [解析] (1)取EC 的中点F ,连接DF . ∵CE ⊥平面ABC , ∴CE ⊥BC .易知DF ∥BC , ∴CE ⊥DF . ∵BD ∥CE , ∴BD ⊥平面ABC . 在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB ,∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC的中点N,连接MN,BN,则MN綊CF.∵BD綊CF,∴MN綊BD,∴N∈平面BDM.∵EC⊥平面ABC,∴EC⊥BN.又∵AC⊥BN,EC∩AC=C,∴BN⊥平面ECA.又∵BN⊂平面BDM,∴平面BDM⊥平面ECA.B组·素养提升一、选择题1.下列命题中正确的是( C )A.若平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β[解析]当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A错;由直线与平面垂直的判定定理知B、D错,C正确.2.(多选)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD 沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论错误的是( ABC )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC[解析]由平面图形易知∠BDC=90°.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,且CD⊥BD,∴CD⊥平面ABD,∴CD⊥AB.又AB⊥AD,CD∩AD=D,∴AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.则A,B,C均错.3.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在( A ) A .直线AB 上 B .直线BC 上 C .直线AC 上 D .△ABC 内部[解析] 连接AC 1.∠BAC =90°,即AC ⊥AB ,又AC ⊥BC 1,AB ∩BC 1=B ,所以AC ⊥平面ABC 1.又AC ⊂平面ABC ,于是平面ABC 1⊥平面ABC ,且AB 为交线,因此,点C 1在平面ABC 上的射影必在直线AB 上,故选A .4.如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB A ′B ′等于( A )A .2 1B .3 1C .32D .43[解析] 由已知条件可知∠BAB ′=π4,∠ABA ′=π6,设AB =2a ,则BB ′=2a sin π4=2a ,A ′B =2a cos π6=3a ,∴在Rt △BB ′A ′中,得A ′B ′=a ,∴AB A ′B ′=21.二、填空题5.在三棱锥P -ABC 中,PA =PB =AC =BC =2,PC =1,AB =23,则二面角P -AB -C 的大小为 60° .[解析]取AB中点M,连接PM,MC,则PM⊥AB,CM⊥AB,∴∠PMC就是二面角P-AB-C的平面角.在△PAB中,PM=22-32=1,同理MC=1,则△PMC是等边三角形,∴∠PMC=60°.6.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD.底面各边都相等,M是PC上的一动点,当点M满足BM⊥PC(其他合理即可) 时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的条件即可)[解析]∵四边形ABCD的边长相等,∴四边形ABCD为菱形.∵AC⊥BD,又∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC,∴BD⊥PC.若PC⊥平面BMD,则PC垂直于平面BMD中两条相交直线.∴当BM⊥PC时,PC⊥平面BDM.∴平面PCD⊥平面BDM.三、解答题7.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.[解析]由长方体的性质可知A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=B1C21+MC21=2,同理BM =BC 2+CM 2=2, 又B 1B =2,所以B 1M 2+BM 2=B 1B 2, 从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,所以BM ⊥平面A 1B 1M , 因为BM ⊂平面ABM ,所以平面ABM ⊥平面A 1B 1M .8.如图,在四棱锥P -ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 的中点,过A ,D ,N 三点的平面交PC 于M ,E 为AD 的中点.求证:(1)EN ∥平面PDC ; (2)BC ⊥平面PEB ; (3)平面PBC ⊥平面ADMN .[证明] (1)∵AD ∥BC ,BC ⊂平面PBC ,AD ⊂/平面PBC ,∴AD ∥平面PBC .又∵平面ADMN ∩平面PBC =MN , ∴AD ∥MN .又∵BC ∥AD ,∴MN ∥BC .又∵N 是PB 的中点,∴点M 为PC 的中点. ∴MN ∥BC 且MN =12BC ,又∵E 为AD 的中点, ∴MN ∥DE 且MN =DE .∴四边形DENM 为平行四边形. ∴EN ∥DM ,且DM ⊂平面PDC . ∴EN ∥平面PDC .(2)∵四边形ABCD 是边长为2的菱形,且∠BAD =60°,∴BE ⊥AD . 又∵侧面PAD 是正三角形,且E 为中点, ∴PE ⊥AD ,又∵PE ∩BE =E , ∴AD ⊥平面PBE .又∵AD ∥BC ,∴BC ⊥平面PEB . (3)由(2)知AD ⊥平面PBE , 又PB ⊂平面PBE ,∴AD⊥PB.又∵PA=AB,N为PB的中点,∴AN⊥PB.且AN∩AD=A,∴PB⊥平面ADMN.又∵PB⊂平面PBC.∴平面PBC⊥平面ADMN.。

相关文档
最新文档