多元时间序列建模分析

合集下载

多元时间序列分析方法在金融中的应用

多元时间序列分析方法在金融中的应用

多元时间序列分析方法在金融中的应用时间序列分析是一种研究时间上连续观测数据的方法,通过挖掘数据的内在规律和趋势,可以帮助我们理解和预测金融市场的动态变化。

在金融领域,多元时间序列分析方法被广泛应用于股票市场预测、经济决策支持和风险管理等领域。

本文将介绍多元时间序列分析方法在金融中的应用,并讨论其优势和局限性。

一、多元时间序列分析方法概述多元时间序列分析方法是对多个变量随时间变化的模式进行建模和分析的方法。

常见的多元时间序列分析方法包括向量自回归模型(VAR)、向量误差修正模型(VECM)和协整关系模型等。

这些方法通过考虑多个变量之间的互动关系,能够更全面地捕捉金融市场的复杂性和动态性。

二、多元时间序列分析方法在股票市场预测中的应用在股票市场预测中,多元时间序列分析方法被广泛用于建立模型并预测股票价格的走势。

以VAR模型为例,该模型通过估计变量之间的相互影响关系,可以捕捉到各种变量对股票价格的影响。

通过使用VAR模型,研究人员可以将多个宏观经济指标和金融市场指标纳入模型,以提高股票价格预测的准确性。

此外,VECM模型和协整关系模型也能够帮助我们发现股票价格与其他变量之间的长期均衡关系,为投资者提供更为可靠的决策支持。

三、多元时间序列分析方法在经济决策支持中的应用多元时间序列分析方法在经济决策支持中的应用主要体现在经济政策的制定和评估方面。

以VAR模型为例,该模型可以用于估计不同经济政策对经济增长、通货膨胀率和就业率等宏观经济变量的影响。

通过对不同政策进行模拟和分析,决策者可以更好地评估政策的潜在影响,从而制定出更为合理和有效的经济政策。

四、多元时间序列分析方法在风险管理中的应用多元时间序列分析方法在风险管理中的应用主要体现在金融市场风险的度量和预测方面。

以VAR模型为例,该模型可以通过对金融市场不同变量之间的关系进行估计,计算出各个变量的价值风险和风险敞口。

通过对风险敞口的度量和风险敞口的预测,投资者和金融机构可以更好地管理市场风险,降低投资风险。

第05章多元时间序列分析方法

第05章多元时间序列分析方法

第05章多元时间序列分析⽅法142第五章多元时间序列分析⽅法[学习⽬标]了解协整理论及协整检验⽅法;掌握协整的两种检验⽅法:E-G 两步法与Johansen ⽅法; ? 熟悉向量⾃回归模型VAR 的应⽤; ? 掌握误差修正模型ECM 的含义及检验⽅法; ? 掌握Granger 因果关系检验⽅法。

第⼀节协整检验前⾯介绍的ARMA 模型要求时间序列是平稳的,然⽽实际经济运⾏中的⼤多数时间序列都是⾮平稳的,通常采取差分⽅法消除时间序列中的⾮平稳趋势,使得序列平稳后建⽴模型,这就是第四章所介绍的ARIMA 模型。

但是,变换后的时间序列限制了所要讨论问题的范围,并且有时变换后的序列由于不具有直接的经济意义,从⽽使得转换为平稳后的序列所建⽴的时间序列模型的解释能⼒⼤⼤降低。

1987年,Engle 和Granger 提出的协整理论及其⽅法,为⾮平稳时间序列的建模提供了另⼀种重要途径。

①⽬前,协整问题研究已经成为20世纪80年代末到90年代以来经济计量学建模理论的⼀个重⼤突破,在分析变量之间的长期均衡关系中得到⼴泛应⽤。

⼀、协整概念与定义在经济运⾏中,虽然⼀组(两个或两个以上)时间序列变量(例如⼈民币汇率与外汇储备、货币供应量和股票指数)都是随机游⾛,但它们的某个线性组合却可能是平稳的,在这种情况下,我们称这两个变量是平稳的,既存在协整关系。

其基本思想是,如果两个(或两个以上)的时间序列变量是⾮平稳的,但它们的某种线性组合却表现出乎稳性,则这些变量之间存在长期稳定关系,即协整关系。

根据以上叙述,我们将给出协整这⼀重要概念。

⼀般⽽⾔,协整(cointegration)是指两个或两个以上同阶单整的⾮平稳时间序列的组合是平稳时间序列,则这些变量之间的关系的就是协整的。

为何会有协整问题存在呢?这是因为许多⾦融、经济时间序列数据都是不平稳的,但它们可能受到某些共同因素的影响,从⽽在时间上表现出共同趋势,即变量之间存在⼀定稳定关系,他们的变化受到这种关系的制约,因此它们的某种线性组合可能是平稳的,即存在协整关系。

多元时间序列 matlab

多元时间序列 matlab

多元时间序列 matlab多元时间序列(Matlab)在数据分析和预测中,多元时间序列是非常重要的一种数据类型。

它是指在各个时间点上,存在多个变量之间的关系和相互影响。

Matlab 作为一种强大的编程环境和数据处理工具,能够有效处理和分析多元时间序列数据。

一、多元时间序列简介多元时间序列是指在同一时间点上,有两个或两个以上的变量被观测到。

这些变量之间可以存在相互依赖的关系,或者通过某种方式相互影响。

多元时间序列分析的目标是探索和建模这些变量之间的关系,并进行预测和模拟。

二、Matlab在多元时间序列分析中的应用Matlab是一种功能强大的编程环境,具有丰富的数据处理和分析函数库,特别适用于多元时间序列的分析和建模。

以下是Matlab在多元时间序列分析中常用的几个函数和工具:1. 数据导入和预处理Matlab提供了多种数据导入函数,可以从不同的数据源中导入多变量的时间序列数据。

比如可以使用`xlsread`函数导入Excel表格中的数据,使用`readtable`函数导入CSV文件中的数据。

在导入数据之后,还可以使用Matlab的数据处理函数进行预处理,如去除异常值、填补缺失值等。

2. 时间序列模型建模Matlab提供了多种时间序列模型的建模和估计函数,可用于分析多元时间序列数据。

比如可以使用`arima`函数建立自回归移动平均(ARMA)模型,使用`var`函数建立向量自回归(VAR)模型,使用`varm`函数建立多元自回归移动平均(VARMA)模型等。

这些函数不仅可以估计模型参数,还可以进行模型诊断和模型选择。

3. 多元时间序列预测Matlab可以通过建立时间序列模型,进行多元时间序列的预测。

通过使用已建立的模型,可以根据历史数据进行预测,并得到未来一段时间内各个变量的取值。

预测结果可以通过可视化工具如绘图函数进行展示,帮助用户更好地理解和分析预测结果。

4. 多元时间序列分析工具包除了内置的函数,Matlab还提供了多个第三方工具包,如Econometrics Toolbox和Financial Toolbox,这些工具包专门用于时间序列分析和金融数据分析。

多元时间序列分析与协整关系的建模与解释

多元时间序列分析与协整关系的建模与解释

多元时间序列分析与协整关系的建模与解释1. 引言多元时间序列分析在经济学、金融学、气象学等领域中具有重要的应用价值。

它可以帮助我们理解变量之间的相互关系,并进行未来预测和政策制定。

其中协整关系的建模与解释更是多元时间序列分析的核心内容之一。

本文将探讨多元时间序列表现的协整关系,并介绍一种常用的建模方法。

2. 单变量时间序列分析在进行多元时间序列分析之前,我们首先要了解单变量时间序列分析的基本概念和方法。

单变量时间序列分析主要通过观察和分析时间序列的平稳性、自相关性和偏自相关性等来建模和预测未来数据。

3. 多元时间序列分析在多元时间序列分析中,我们需要考虑多个变量之间的相互关系。

常用的方法有向量自回归模型(VAR)和误差修正模型(VEC)。

VAR模型假设多个变量之间存在互相影响的关系,通过估计每个变量对其过去值和其他变量的过去值的回归系数来建模。

VEC模型则进一步考虑了协整关系,它通过引入误差修正项来建立变量之间的长期均衡关系。

4. 协整关系的概念与解释协整关系指的是在多变量时间序列中,存在一个线性组合能够使得得到的新序列是平稳的,即存在一个平稳的协整方程。

协整关系的存在表明变量之间具有长期的均衡关系,而不是短期的冲击关系。

协整关系的解释有助于我们深入理解多元时间序列数据背后的经济机制。

5. 建模与解释在进行多元时间序列分析时,我们首先需要进行平稳性检验和相关性检验,以确定是否需要进行协整分析。

如果变量之间存在协整关系,则可以使用VEC模型进行建模和解释。

建模的过程主要包括选择滞后阶数、估计模型参数和进行残差检验等步骤。

解释时需要注意控制其他因素的影响,分析变量之间的长期和短期关系。

6. 实证研究为了验证多元时间序列分析与协整关系建模的实际应用,我们选取了XX指数、YY指数和ZZ指数作为研究对象,通过建立VEC模型来分析它们之间的关系。

实证结果显示,XX指数和YY指数之间存在显著的协整关系,而XX指数和ZZ指数之间则不存在协整关系。

多元时间序列分析

多元时间序列分析

多元时间序列分析时间序列分析是一种用于研究随时间变化的数据的统计方法。

它可以帮助我们理解数据的趋势、周期性和相关性等特征。

在实际应用中,多元时间序列分析是一种更为复杂和有挑战性的方法,它可以用于分析多个变量之间的关系和相互影响。

多元时间序列分析的基本假设是,观测到的时间序列是由多个相互关联的变量组成的。

这些变量之间可能存在着因果关系,或者彼此互相影响。

通过对这些变量进行建模和分析,我们可以揭示它们之间的相互作用,从而更好地理解数据的本质。

在进行多元时间序列分析时,我们通常需要考虑以下几个方面:1. 数据的平稳性:平稳性是时间序列分析的基本假设之一。

一个平稳的时间序列在统计性质上是不随时间变化的,它的均值和方差保持不变。

如果数据不平稳,我们需要对其进行差分或其他处理,以使其满足平稳性的要求。

2. 自相关性:自相关性是指时间序列中当前观测值与过去观测值之间的相关性。

通过自相关函数(ACF)和偏自相关函数(PACF)的分析,我们可以确定时间序列中的滞后项,进而选择适当的模型。

3. 多元模型选择:在多元时间序列分析中,我们需要选择适当的模型来描述变量之间的关系。

常用的模型包括向量自回归模型(VAR)、向量误差修正模型(VECM)等。

选择合适的模型需要考虑数据的特点和研究目的。

4. 参数估计和模型诊断:一旦选择了模型,我们需要对模型的参数进行估计。

常用的方法包括最大似然估计和贝叶斯估计等。

同时,我们还需要对模型进行诊断,检验模型的拟合程度和残差的独立性等。

5. 预测和决策:多元时间序列分析的最终目的是对未来的趋势和变化进行预测。

通过建立合适的模型,我们可以进行预测,并基于预测结果做出相应的决策。

在实际应用中,多元时间序列分析被广泛应用于经济学、金融学、环境科学和医学等领域。

例如,在宏观经济学中,我们可以利用多元时间序列分析来研究经济增长、通货膨胀和失业率等变量之间的关系;在金融学中,我们可以利用多元时间序列分析来预测股票价格和汇率等变量的变化。

多元时间序列数据建模与分析

多元时间序列数据建模与分析

多元时间序列数据建模与分析随着科技不断发展,数据分析已经成为了我们生产生活中不可或缺的工具。

然而,单一的时间序列数据往往并不能完全反映出事物的真实状态,因此,我们需要对多元时间序列数据进行分析。

本文将从多元时间序列建模的角度来探讨如何对多元时间序列数据进行建模和分析。

一、多元时间序列数据的基本概念多元时间序列数据是指在不同时间点上对多个变量进行测量的数据。

例如,我们可以通过不同时间点上对于股票价格、财务指标等多个变量的测量,来构建一个多元时间序列数据集。

通常情况下,多元时间序列数据集可以用一个矩阵来表示,其中行代表时间,列代表变量。

二、多元时间序列预处理在进行多元时间序列数据分析之前,我们需要对原始数据进行一系列的预处理工作。

这些工作包括缺失值的填充、异常值的处理、平稳性检验等。

1. 缺失值的填充由于实际数据采集过程中出现了各种各样的问题,导致我们采集到的数据中可能会存在缺失值。

造成缺失值的原因很多,例如仪器故障、采样频率不够等。

在对多元时间序列数据进行处理时,我们需要采用一些有效的方法对缺失值进行填充,以确保后续分析结果的准确性。

2. 异常值的处理多元时间序列数据中的异常值通常指的是那些与其它数据明显不相符的值。

如果不对异常值进行处理,它们会严重地影响时间序列模型的建立和预测结果的准确性。

因此,在进行多元时间序列数据分析时,必须采用一些有效的方法对异常值进行处理。

3. 平稳性检验平稳性是指在同一时间点上不同变量之间的均值和方差都是稳定的。

我们通常需要对多元时间序列数据的平稳性进行检验,以确保时间序列不会出现季节性和趋势性变化,从而保证预测结果的准确性。

三、多元时间序列建模在进行多元时间序列建模之前,需要先对数据进行一系列的预处理工作,包括缺失值的填充、异常值的处理、平稳性检验等。

预处理工作完成后,我们就可以开始进行多元时间序列建模。

1. 时间序列模型常见的时间序列模型有ARIMA、VAR、VMA、ARMA、VARMA等。

VAR模型建模步骤

VAR模型建模步骤

VAR模型建模步骤向量自回归模型(Vector Autoregression, VAR)是多元时间序列分析中的一种模型。

VAR模型可以捕捉多个时间序列之间的内在动态关系。

以下是建立VAR 模型的基本步骤:1. 数据准备选择变量:选择你想要分析的时间序列变量。

数据清洗:确保数据没有缺失值,并对异常值进行处理。

数据转换:如果需要,可以对数据进行对数转换、差分等,以确保时间序列的平稳性。

导入数据:File > Open > Foreign Data as Workfile,选择数据文件并导入。

2. 确定模型的滞后阶数使用诸如AIC (赤池信息准则)、BIC (贝叶斯信息准则) 等标准来确定最佳的滞后阶数。

查看AIC和BIC:选择Quick > Estimate VAR。

输入所需的变量并选择滞后的最大阶数。

在输出结果中,可以看到不同滞后阶数的AIC和BIC。

3. 模型估计使用OLS (普通最小二乘法) 估计VAR模型的参数。

估计VAR模型:在之前的VAR估计窗口中,选择最佳滞后阶数,并点击"OK"。

(选择“*”号最多的那行对应的滞后阶数作为该VAR模型的最优滞后阶数。

)4. 检查模型诊断残差的白噪声检验:确保残差是白噪声,即它们没有自相关性。

在VAR结果窗口中,点击View > Residual Diagnostics > Portmanteau (Q) test。

稳定性检验:所有模型的特征根应在单位圆内,以确保模型的稳定性。

在VAR结果窗口中,点击View > Stability Diagnostics > Inverse Roots of AR Characteristic Polynomial。

5. Granger因果检验通过Granger因果检验来检查时间序列之间的因果关系。

在VAR结果窗口中,点击View > Granger Causality。

多元时间序列分析及其应用

多元时间序列分析及其应用
• 长期以来,研究者常用的解决办法是对非平稳序列数 据进行差分,然后用差分项序列建模。但是,建立在 差分基础上的计量模型往往丢失了数据中包含的长期 信息,无法判断变量间的长期协方差变动情况。
• 格兰杰引入的协整理论能够把时间序列分析 中短期与长期模型的优点结合起来,为非平 稳时间序列的建模提供了较好的解决方法。 在80年代发表的一系列重要论文中,格兰杰 教授提出了单整阶数(degree of integration)概 念,并证明若干非平稳时间序列(一阶单整 )的特定线性组合可能呈现出平稳性,即它 们之间存在“协整关系”
多元时间序列分析 及其应用
1 协整理论的产生背景
• Engle and Granger在1978年首先提出协整的概念 ,并将经济变量之间存在的长期稳定关系成为“ 协整关系”。
• 克莱夫·格兰杰1934年生于英国威尔士的斯旺西 。1955年获得诺丁汉大学颁发的首批经济学与 数学联合学位,随后留校担任数学系统计学教 师。1959年获诺丁汉大学统计学博士学位。 1974年移居美国后,格兰杰在加州大学圣迭戈 分校经济学院任教,是该学院经济计量学研究 的开创者,现为该校的荣誉退休教授。格兰杰 曾担任美国西部经济学联合会主席,并于2002 年当选为美国经济学联合会杰出资深会员。
Y(t–1)<βZ(t–1),误差纠正项会使 Y朝着向 均衡返回的方向有一个正的变化。
• 因此 ,被解释变量的波动分成了短期波动和长 期均衡两部分。对误差修正模型的参数做估 计时 ,只需做ΔYt 对ΔZt 和St - 1 = Y(t–1)βZt的回归就可以了。
3 协整理论在国内外的应用
(1)协整理论在国内的发展:
(2)协整检验。对协整关系进行检验 双变量通常用EG两步法 ,而多变量则用Johansen 法(见
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用时间序列分析实验报告
实验过程记录(含程序、数据记录及分析和实验结果等):时序图如下:
单位根检验输出结果如下:
序列x的单位根检验结果:
序列y的单位根检验结果:
序列y和序列x之间的相关图如下:
残差序列自相关图:
自相关图显示。

延迟6阶之后自相关系数都在2倍标准差范围之内,可以认为残差序列平稳。

对残差序列进行2阶自相关单位根检验,检验结果显示残差序列显著平稳,如下图:残差序列单位根检验结果:
残差序列平稳,说明序列Y与序列X之间具有协整关系,我可以大胆的在这两个
序列之间建立回归模型而不必担心虚假回归问题。

考察残差序列白噪声检验结果,如下图:
残差序列白噪声检验结果:
输出结果显示,延迟各阶LB 统计量的P 值都大于显著水平0.05,可以认为残差序列为白噪声检验结果,结束分析。

出口序列拟合的模型为:lnx t ~ARIMA(1,1,0),具体口径为:
1
ln 0.1468910.38845t t x B
ε∇=+-
进口序列拟合的模型为 lny t ~ARIMA(1,1,0) ,具体口径为:
1
ln 0.1467210.36364
t t y ε∇=+-
lny t 和lnx t 具有协整关系。

协整模型为:
1ln 0.99179ln 0.69938t t t t y x εε-=+-
误差修正模型为:
1ln 0.9786ln 0.22395t t t y x ECM -∇=∇-
SAS 程序如下:
data example6_4; input x y@@; t=_n_; cards ;
1950 20.0 21.3 1951 24.2 35.3 1952 27.1 37.5 1953 34.8 46.1 1954 40.0 44.7 1955 48.7 61.1 1956 55.7 53.0 1957 54.5 50.0 1958 67.0 61.7 1959 78.1 71.2 1960 63.3 65.1 1961 47.7 43.0 1962 47.1 33.8 1963 50.0 35.7 1964 55.4 42.1 1965 63.1 55.3 1966 66.0 61.1
1967 58.8 53.4
1968 57.6 50.9
1969 59.8 47.2
1970 56.8 56.1
1971 68.5 52.4
1972 82.9 64.0
1973 116.9 103.6
1974 139.4 152.8
1975 143.0 147.4
1976 134.8 129.3
1977 139.7 132.8
1978 167.6 187.4
1979 211.7 242.9
1980 271.2 298.8
1981 367.6 367.7
1982 413.8 357.5
1983 438.3 421.8
1984 580.5 620.5
1985 808.9 1257.8
1986 1082.1 1498.3
1987 1470.0 1614.2
1988 1766.7 2055.1
1989 1956.0 2199.9
1990 2985.8 2574.3
1991 3827.1 3398.7
1992 4676.3 4443.3
1993 5284.8 5986.2
1994 10421.8 9960.1
1995 12451.8 11048.1
1996 12576.4 11557.4
1997 15160.7 11806.5
1998 15223.6 11626.1
1999 16159.8 13736.5
2000 20634.4 18638.8
2001 22024.4 20159.2
2002 26947.9 24430.3
2003 36287.9 34195.6
2004 49103.3 46435.8
2005 62648.1 54273.7
2006 77594.6 63376.9
2007 93455.6 73284.6
2008 100394.9 79526.5
run;
proc gplot;
plot x*t=1 y*t=2/overlay;
symbol1c=black i=join v=none;
symbol2c=red i=join v=none w=2l=2;
run;
proc arima data=example6_4;
identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1);
run;
proc arima;
identify var=y crrosscorr=x;
estimate methed=ml input=x plot;
forecast lead=0id=t out=out;
proc aima data=out;
identify varresidual stationarity=(adf=2); run;
注:实验报告电子版命名方式为:学号+实验名称,实验结束后发至:****************邮箱。

相关文档
最新文档