第二章矩阵习题课
《线性代数》第二章矩阵(习题课)

13
8. 用初等变换法求矩阵的逆矩阵
定理: 可逆矩阵可以经过若干次初等行变换化为单位矩阵. 推论1: 可逆矩阵可以表示为若干个初等矩阵的乘积
第二章 矩阵习题课
一. 主要内容 二. 典型例题 三. 测验题
1
一. 主要内容
1. 矩阵的定义
由m n个数 aij (i 1,2,,m; j 1,2,,n)
排成的m行n列的数表, a11 a12 a1n
简称m n矩阵.
记作
A
a 21
a 22
a 2n
例1:设矩阵
A
1 0
1
1
,
求与A可交换的所有矩阵。
分析:根据乘法定义及矩阵相等定义求
解:设所求矩阵为 X 由 AX XA,
a
c
b
d
,
得
ac
c
b
d
d
a c
a b
c
d
c 0,a d
X
a 0
矩阵加(减)法:两个同型矩阵,对应元素相加(减)
加法满足
1 交换律:A B B A.
2 结合律:A B C A B C . 3 A 0 A,其中A与O是同型矩阵. 4 A A O.
3
线性代数讲解习题课

place定理 place定理 是一个n阶行列式 中取某K行 或列 或列), 是一个 阶行列式, 中取某 定义 设D是一个 阶行列式,在D中取某 行(或列 则含于此k阶行 或列)中的所以 阶行(或列 中的所以k阶子式与其代数余子 则含于此 阶行 或列 中的所以 阶子式与其代数余子 式的乘积之和恰好等于D.即 式的乘积之和恰好等于 即
设排列 该排列中在 ai右边比 (i=1,2,---,n). 于是
ai小的数有 ai −1− ki个
τ (anan−1 ⋯a2a1 ) = (a1 −1− k1 ) + (a2 −1− k2 ) +⋯+ (an −1− kn )
= (a1 + a2 +⋯+ an ) − n − (k1 + k2 +⋯+ kn )
1 对 、 角行 式 列 λ1 D= λ2 ⋱ λn
λ1 D= λn λ2 ⋰ = (−1)
n(n−1) 2
= λ1λ2 ⋯λn ;
λ1λ2 ⋯λn.
2、上、下 三角行列 式。 a11 a12 ⋯ a1n 0 a22 ⋯ a2n ⋮ 0 ⋮ 0 ⋱ ⋮ ⋯ ann a11 0 ⋯ a21 a22 ⋯ 0 0
D = N 1 A1 + N 2 A2 + ⋯ + N t At
其中 N1 , N 2 ,⋯ N t是D的被选定的k行(或列)所含的K阶 的被选定的k 或列)所含的K 子式, 子式, A1 , A2 ,⋯ At 分别是它们的代数余子式. t = C k 分别是它们的代数余子式.
n
二.几个重要的公式
3.设 3.设A是m阶方阵,B是n阶方阵,则 阶方阵, 阶方阵,
a11 ⋯ a1m ⋮ ⋮ am1 ⋯ amm D= c11 ⋯ c1m ⋮ ⋮ cn1 ⋯ cnm 0 ⋮ ⋯ 0 ⋮
矩阵及其运算课后习题答案(最新整理)

用数学归纳法证明:
当 k 2 时,显然成立. 假设 k 时成立,则 k 1时,
k
Ak 1
Ak
A
0
0
kk 1
k 0
k
(k 1) k 2 kk 1 k
2
0 0
1 0
0 1
k1 0 0
k 由数学归纳法原理知: Ak 0 0
kk 1
k 0
k(k 1) k2
2 kk 1
k
(k 1)k1
k 1 0
(k 1)k k1
2 (k 1)k1
k 1
9.设 A, B 为 n 阶矩阵,且 A 为对称矩阵,证明 BT AB 也是对称矩阵.
证明 已知: AT A
则
( ) ( ) BT AB T BT BT A T BT AT B BT AB
从而 BT AB 也是对称矩阵.
2 y3,
x3 4 y1 y2 5 y3,
y1 y2
3z1 z2 2z1 z3 ,
,
y3 z2 3z3,
求从 z1, z2 , z3 到 x1, x2 , x3 的线性变换.
解 由已知
x1 x2 x3
2 2 4
0 3 1
152
y1 y2 y2
2 2 4
0 3 1
y2 y2
故
y1 y2 y2
2 3 3
2 1 2
11 x1
53
x2 x3
7 6 3
4 3 2
9 7 4
y1 y2 y3
y1 y2
7x1 4x2 9x3 6x1 3x2 7x3
y3 3x1 2x2 4x3
2.已知两个线性变换
x1 x2
矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

(0.0.3)
是 U + W 的一组基. 为此需要证明该向量组线性无关, 且 U + W 的任何向量均可由这些向量 线性表示.
设
k1α1 + k2α2 + · · · + krαr + br+1βr+1 + · · · + bsβs + cr+1γr+1 + · · · + ctγt = 0. (0.0.4)
0 = V0 ⊂ F α1 ⊂ (F α1 ⊕ F α2) · · · ⊂ (F α1 ⊕ · · · ⊕ F αm) ⊂ · · · ⊂ (F α1 ⊕ · · · ⊕ F αn) = V
显然是一个空间的真包含的链,其长度 m = n. 因此需证的等式成立。该等式说明线性空间的 维数是子空间按包含关系所形成的链的最大长度。
3. (1) 设 V 是线性空间, U 与 W 是 V 的两个子空间. 证明:
dim (U + W ) = (dim U + dim W ) − dim (U ∩ W ).
(2) 设 V 是有限维线性空间. 证明并解释下面的维数公式: dim V = max{m | 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V, Vi 是 Vi+1 的真子空间}
5. 设
112
A = 0 1 1 ,
134
求 A 的四个相关子空间. 解:
R(A) = [(1, 0, 1)T , (1, 1, 3)T ], R(AT ) = [(1, 0, 1)T , (0, 1, 1)T ], N (A) = [(−1, −1, 1)T ], N (AT ) = [(−1, −2, 1)T ]
线性代数第2章习题课

一般地, 注:一般地,对于 n 阶方阵 A 有 A = A
.
1 0 0 例6. 设 A = 2 2 0 ,则 (A* )-1 = 3 4 5
A/10
.
第一章
16
知识点6: 知识点 :矩阵的秩
k 1 1 1 k 1 1 1 k
例7. 设 A =
p.100 习题 习题27
第一章
7
分块矩阵的乘法
p.100 习题31 用分块矩阵乘法求下列矩阵的乘积: 习题31 用分块矩阵乘法求下列矩阵的乘积:
1 −2 0 0 1 −1 1 1 1 0 = A1 (1) A 0 3 2 0 −1 3
A2 B1 B2 A1 B1 = A B A4 O B4 3 1
A1B2 + A2 B4 A3 B2 + A4 B4
p.100 习题32 习题32
第一章
8
知识点2: 知识点 :转置与对称矩阵
例1. 设 A, B 均为 n 阶对称阵,则下列矩阵中不对称的是 B . 阶对称阵,
(A ) = A
* * n− 2
( A T )T = A
( A −1 ) −1 = A
三种运算符任意两个 任意两个可交换顺序 注:AT , A−1, A* 三种运算符任意两个可交换顺序
第一章
A P102 49
2
二、方阵的逆矩阵
1.方阵可逆的判定 1.方阵可逆的判定: 方阵可逆的判定: n 阶方阵 A 可逆 |A|≠0. A 是非奇异矩阵 . AB=I ( 或 BA =I ). A 与 In 相似, 相似, 即存在可逆阵P 即存在可逆阵 、Q,使得 ,使得PAQ= In. A 可以表示为若干初等矩阵的乘积 . r(A) = n . A 是满秩矩阵 .
分块矩阵、第二章矩阵习题课.doc

教案(首页)备课笔记附后urj二、分块矩阵的运算(与矩阵类似)特别地分块对角矩阵(与对角矩阵类似)0 03 00、 0-2 -b 求 |4 A 10,A -1 ,A4r 提示:|a| = |a』a 』=)0、 AA T=0、0、 /〔0 A)<0 A, 〔0 A,\AA 7' o*例 求证 A = 0^> A 1A = 0证明:必要性=> 显然充分性 <=设A = (。
] a 2… %)T"%)% 0 a; a 2 …% % a[a x • • a\ % • • ♦ …就% ♦ • • ♦特别地 a 1i a i = 0 (顶= 1,2,…〃) J J / c \"1 j即 用灼=(c 如,%,…勾)"?二嫌+出+…站=0.\a nl )得。
u = a 2j = = a nj = 0 (J = 1,2,…〃)所以 A = 0JJJ§矩阵的分块法(简介)一、矩阵的分块矩阵按行按列分块 A =(O| a 2… a n ) =A -1l0=3,0•.•人以二=0 故矿 0Cj= 0第三章矩阵习题课例2 设1 = (1,2,3),” = (1,?,!)电二6/”,求妃一本章小结1、矩阵概念特殊矩阵0,",A,行矩阵、列矩阵2、矩阵运算3、线性方程组的矩阵形式AX =b4、逆矩阵可逆的充要条件证明矩阵可逆的方法(1) AB = E (2) |ApO (3)可逆阵之积可逆5、解矩阵方程AX = B,XB = C二典型例题讲解「2 1]例1 设人= ,矩阵8满足BA = B + 2E求B-1 2提示B(A — E) = 2EB A-E =22 E B =2L 1 1)1 ——2 37提示A = a T j3= 2 \ —,时=33 - 1I 2 )= a T/3 [••• 0 =a T(/3 a’)。
…(时)』=3卜' W/3 = 3卜' A例3 设〃阶方阵+ B都可逆,求证人一】+3一'可逆,并求其逆矩阵提示A-】+ B'l = A" E + EB-i = + A^AB'1 = + (A"1 + Bi )-1 = (A-1 (A + B)B-】尸=B(A + A(2)\0 1)。
线性代数第二章习题课

3. 设A , B为 n 阶方阵,若E – AB 可逆,则E -BA 可 逆。 证:∵ (E – AB )A = A – ABA = A( E – BA ) ∴ (E – AB )A = A( E – BA ) 1 又 E – AB 可逆,上式左乘 (E AB) ∴ A = (E - AB)1 A( E – BA) 而 E = E – BA + BA = E – BA + B (E - AB) A( E – BA) 1 = [E +B (E - AB) A](E – BA ) ∴ E – BA 可逆,且
17. (P80-10) 解法1:直接求
A B B (BA E)
-1
1
1
1
B (B A)A
-1 1 1 -1
1
1
1 1
(A B ) [B (B A)A ]
A(A B) B
验证: (A1 B1 )A(A B) 1 B (E B1A)A-1A (A B) 1 B B1 (B A)E(A B) 1 B E
-1
A B = 6E + B
而A - E =
-1
-1
( A - E ) B = 6E
-1
3
4 7
-
1 0 0 0 1 0 0 0 1
2
=
3 6
∵ |A-1 - B| = 36≠0, ∴ ( A -1 - B)可逆,
故 B=6(A
-1
-1
2
-1
-E) = 6
3
6
=6
3
1 1 2 3 1 6
=
2 1
* *
1 *
1 1 A | A |n2 A | A | |A| |A|
矩阵及其运算习题

1 2 1
A 3 4 5 14
201
4 2 6
A1
1 A
A*
1 14
13 8
3 4
2 2
例7:设
2
A
1 0
0 1 0
0 0 1
0
0
4
0 0 1 2
求 A1
把A分块为
A
A1 0
1n 2 3 1n 6
例5:设
(1, 2,3),
(1,
1 2
,
1 3
),
A
T,
其中
T
为 的转置,求 An
解:
1
A
T
2
1
1 2
3
1
1 2
1 3
1
3
2
1
2 3
3
3 2
1
1
1 2
1 3
2 1
A21 0
2, 1
1 1
A22 0
3, 1
1 2
A23 2
4, 0
2 1
1 1
A31 4
6, 5
A32 3
2, 5
1 2
A33 3
2, 4
4 2 6
A*
13
3
2
8 4 2
第二章 矩阵及其运算习题课 术洪亮
矩阵是线性代数中非常重要理论 之一,它贯穿线性代数内容的始终, 在本章中首先介绍了矩阵的一些基础 知识,其主要内容可概括为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a1n a2 n
.
2、数乘矩阵的运算规律
(设A、B为m n矩阵,、为数)
1 A A; 2 A A A; 3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的 线性运算.
s
i 1,2,m; j 1,2,, n,
并把此乘积记作
k 1
C Ams Bsn .
2、矩阵乘法的运算规律
1 ABC A BC ; 2 A B C AB AC , 4 AE EA A;
k个
B C A BA CA;
两个矩阵A aij 与B bij 为同型矩阵, 且对应元素相等
aij bij i 1,2,, m; j 1,2,, n,
则称A与B相等,记为A B.
几种特殊矩阵 (1)行数与列数都等于n的矩阵 A ,称为n阶 方阵.也可记作An. (7)对角阵
1 2
1 A B B A; 2 A B C A B C .
a11 a 21 3 A a m1 a12 a 22 am1 a1 n a2n aij , a mn
运算性质
1 AT A;
2 A n A;
( 4) AB BA .
3 AB A B ;
定义 行列式 A 的各个元素的代数余子式Aij 所 构成的如下矩阵
A11 A12 A A 1n
性质
A21 A22 A2 n
An1 An 2 Ann
第二章
矩阵
主要内容
典型例题 课后习题
基本概念
定义 1 m n个数ai j (i 1, 2, , m; j 1, 2, 排成的一个m行n列矩形数表:
, n)
a11 a21 am1
a12 a22 am 2
a1n a2 n amn
称为m行n列矩阵或m n矩阵,简称矩阵。
矩阵的代数运算
1.两个矩阵的行数相等,列数相等时,称为同型矩阵.
称为矩阵A的负矩阵.
4 A A 0, A B A B .
二、数与矩阵相乘 1、定义 数与矩阵A的乘积记作 A或A , 规定为
a11 a A A 21 am 1
a12 a22 am 1
amn
T
4 AB BT AT .
T
设A为n阶方阵,如果满足A AT ,即 aij a ji ( i 1, 2, , n), 那么A称为对称阵
说明: 对称阵的元素以主对角线为对称轴对应相 等.
如果 AT A 则矩阵A称为反对称的.
五、方阵的行列式
定义 由n阶方阵A的元素构成的行列式 叫做方阵A的行列式,记作|A|或det(A).
二、逆矩阵的概念和性质
定义 对于n阶矩阵A,如果有一个n阶矩阵B 使得AB=BA=E,则说矩阵A 可逆的,并把矩阵B 称为A的逆矩阵, A的逆矩阵记作 A1 . 定理1 若A是可逆矩阵,则A的逆矩阵是唯一的. 定理2 矩阵A 可逆的充要条件是 A 0 ,且 1 1 A A, A
三、矩阵与矩阵相乘
1、定义
B bij 是一个 设 A a ij 是一个m s 矩阵, s n 矩阵,那末规定矩阵 A与矩阵 B 的乘积 是一个m n 矩阵 C c ij ,其中
cij ai 1b1 j ai 2 b2 j ais bsj aik bkj
四、矩阵转置
定义
设A (ai j )是m n矩阵,矩阵 a11 a 12 a1n a21 a22 a2 n am1 am 2 amn
为矩阵A的转置,记为AT .
转置矩阵的运算性质
1 A
T T
A;
T
2 A B AT BT ; 3 A AT ;
(其中 为数);
3 AB AB AB
5 若A是 n 阶矩阵,则 A k
为A的 k 次幂,即 m k m k mk k A A A A 并且 A A A ,A Amk .
m , k为正整数
注意 矩阵不满足交换律,即:
AB BA , k AB Ak B k .
称为矩阵 A 的伴随矩阵.
AA A A A E .
六、共轭矩阵
(aij)为复矩阵时,用aij 表示aij的共 定义 当A 轭复数,记 A (aij ),称为 A A的共轭矩阵.
运算性质
(设A, B为复矩阵,为复数,且运算都是可行的):
1 A B A B; 2 A A; 3 AB A B.
矩阵A与B的和记为作A B,规定为
a11 b11 a b 21 21 A B am 1 bm 1
a12 b12 a22 b22 am 2 bm 2
a1n b1n a2 n b2 n amn bmn
2、矩阵加法的运算规律
主对角线元素为1,2, n, 其余元素为0的方阵称为对角阵.
diag 1 , 2 , , n n 0 1 0 0 1 0 E En 0 0 1
(8)方阵
称为单位矩阵(或单位阵).
矩阵的加法
1、定义 设有两个m n矩阵,A ( Aij ), B ( Bij ), 那么矩阵