实验三 随机过程的计算机模拟

合集下载

蒙特卡洛法的基本原理

蒙特卡洛法的基本原理

2.3.2 蒙特卡洛法的基本原理蒙特卡洛模型的基本原理是模拟单个光子的传输过程,本质上是一系列随机作用和随机过程的计算机模拟,如光子吸收、散射、传输路径、步长等。

光子从发射到进入组织再到从组织中逸出要历经许多过程,以单个光子为例,首先是光子发射,即单个光子垂直入射到组织表面,光子质量W 被初始化为1,当组织与周围介质折射率不同时,在入射界面处要考虑镜面反射(界面不光滑时考虑漫折射),其反射比设为RSP ,因此进入介质的能量为1-RSP ,这部分能量就是接下来要进行蒙特卡洛模拟的部分。

进入组织后光子继续运动,首先要确定其运动步长s ,根据光子的运动步长和运动方向,可以得到光子与组织发生相互作用的坐标位置,并以此坐标为起点开始下一运动步长的模拟。

光子在与组织发生相互作用时有(μa/μt)W 的能量被吸收,剩余部分能量的光子被散射,并继续重复上述过程,直到光子运动到边界处,此时,它有可能被返回到组织内部或者透过组织进入到周围介质。

如果光子被反射,那么它将继续传播,即重复上述运动;如果光子穿透组织,根据其穿透的是前表面还是后表面,则相应被记入透射量和反射量。

由于蒙特卡洛模型的精确性是建立在大量模拟的基础上,因此这一方法耗时长,这与光谱技术的实时特性相矛盾。

“查表法”的提出为这一问题提供了一种很好的解决途径,查表法的基本思想在于事先将一系列组织光学特性所对应的模拟结果存储到一个表格中,这样在对每一个光子进行模拟时,能够从这一表格中直接提取最终的模拟结果,从而节省了大量的模拟时间。

对于组织光子传输蒙特卡洛模型的研究已经开展了很多年,目前学术界广为接受和采用的是美国圣路易斯华盛顿大学华人教授Lihong Wang所提出的模型[1],此模型是前向模型,即在已知组织吸收和散射特性的前提下对光子在组织中的传输分布进行模拟;美国杜克大学助理教授Gregory Palmer等在前向模型的基础上开发出了所谓的后向模型[2],这一模型是在已知光谱反射特性的基础上,通过多次随机假定光学特性并调用前向模型进行光谱拟合,从而筛选出与实际测量结果最为匹配的一组假定数据作为组织的光学特性参数。

通过编程实现poisson过程的模拟

通过编程实现poisson过程的模拟

《应用随机过程》实验报告实验序号:1-4 日期:2013年5月30 日 姓名梁光佐 学号 201005050110 实验题目 应用随机过程综合实验实验所用软件及版本 MATLAB 20081、 实验目的(1)通过编程实现poisson 过程的模拟,运用matlab 画图这样更直观的了解poisson 过程,(2)运用计算机通过编程来辅助解题,这样解决了解题的繁琐, 使解题的效力提高了,也节约了时间。

2、实验内容实验一实验问题1.编制程序产生并输出100个二项分布的随机数,6.0,10==p n .2.进行三次Poisson 过程的模拟,3=λ,200,100,50===n n n 作图:(在同一直角坐标系下,作出‘)(,n n t N t ’的关系图实验二一、泊松过程的模拟1.基本原理根据服务系统接受服务顾客数服从泊松分布这一模型可知,{X(n),t }是一个计数过程,{,n 是对应的时间间隔序列,若(n)(n=1,2,...)是独立同分布的均值为的指数分布,则{X(n),t}是具有参数为λ的泊松。

2.具休实现过程实现步骤如下:(1).由函数random(‘exponential’,lamda)构造服从指数分布的序列。

(2).根据服务系统模型,=+。

(3).对任意t(,),X(t)=n,由此得到泊松过程的模拟。

3.过程模拟验证(1)设定t=0时刻,计数为0,满足X(0)=0这一条件。

(2) 是由random(‘exponential’,lamda)生成,间相互独立。

二、泊松过程的检验1.检验方法Kolmogorov-Smirnov检验(柯尔莫哥洛夫-斯摩洛夫),亦称拟合优度检验法,用来检用来检验模拟所得的数据的分布是不是符合一个理论的已知分布。

检验步骤及过程:(1)条件设定:H1:实验产生模拟泊松分布数据的总体分布服从泊松分布。

H0:实验产生模拟泊松分布数据的总体分布不服从泊松分布。

(2)检验准备:对于H1,已经假定所产生模拟泊松过程数据()X n服从泊松分布,而强度λ未知,利用函数poissfit(x,alpha)估算出模拟泊松过程的强度λ,再利用函数poisscdf(x,lamda)得到泊松分布的累积分布函数P。

matlab讲义

matlab讲义

matlab讲义随机过程实验讲义刘继成华中科技大学数学与统计学院前言 (1)第一章Matlab 简介 (2)第二章简单分布的模拟 (6)第三章基本随机过程 (9)第四章Markov过程 (12)第五章模拟的应用和例子 (16)附录各章的原程序 (51)参考文献 (75)若想检验数学模型是否反映客观现实,最自然的方法是比较由模型计算的理论概率和由客观试验得到的经验频率。

不幸的是,这两件事都往往是费时的、昂贵的、困难的,甚至是不可能的。

此时,计算机模拟在这两方面都可以派上用场:提供理论概率的数值估计与接近现实试验的模拟。

模拟的第一步自然是在计算机程序的算法中如何产生随机性。

程序语言,甚至计算器,都提供了“随机”生成[0,1]区间内连续数的方法。

因为每次运行程序常常生成相同的“随机数”,因此这些数被称为伪随机数。

尽管如此,对于多数的具体问题这样的随机数已经够用。

我们将假定计算机已经能够生成[0,1]上的均匀随机数。

也假定这些数是独立同分布的,尽管它们常常是周期的、相关的、……。

……本讲义的安排如下,第一章是Matlab简介,从实践动手角度了解并熟悉Matlab环境、命令、帮助等,这将方便于Matlab的初学者。

第二章是简单随机变量的模拟,只给出了常用的Matlab 模拟语句,没有堆砌同一种变量的多种模拟方法。

对于没有列举的随机变量的模拟,以及有特殊需求的读者应该由这些方法得到启发,或者参考更详细的其他文献资料。

第三章是基本随机过程的模拟。

主要是简单独立增量过程的模拟,多维的推广是直接的。

第四章是Markov过程的模拟。

包括服务系统,生灭过程、简单分支过程等。

第五章是这些模拟的应用。

例如,计算概率、估计积分、模拟现实、误差估计,以及减小方差技术,特别给读者提供了一些经典问题的模拟,通过这些问题的模拟将会更加牢固地掌握实际模拟的步骤。

平稳过程的模拟、以及利用平稳过程来预测的内容并没有包含在本讲义之内,但这丝毫不影响该内容的重要性,这也是将会增补进来的主要内容之一。

实验三随机信号分析应用在窄带信号及包络和相位检波中

实验三随机信号分析应用在窄带信号及包络和相位检波中

实验三 《随机信号分析》应用在窄带信号及包络和相位检波中⒈ 实验目的主要涉及窄带滤波器的设计,高斯窄带信号包络的均值和方差的测定、相位的概率密度函数的测定等。

⒉ 实验原理在一般无线电接收机中,通常都有高频或中频放大器,它们的通频带往往远小于中心频率0f ,既有10<<∆f f 这种线性系统通称为窄带线性系统。

在通信、雷达等许多电子系统中,都常常用一个宽带平稳随机过程来激励一个窄带滤波器,这是在滤波器输出端得到的便是一个窄带随机过程。

若用示波器观测此波形,则可看到,它接近一个正弦波,但此正弦波的幅度和相位都在缓慢的随机变化。

我们可以证明,任何一个实窄带随机过程X(t)都可以表示为:))(cos()()(0t t t A t X ϕω+=式中,0ω 是固定值,对于窄带随机过程来说,0ω一般取窄带滤波器的中心频率或载波频率。

在实际应用中,常常需要检测出包络)(t A 和)(t ϕ的信息。

若将窄带随机过程X(t)送入包络检波器,则在检波器的输出端可得到包络)(t A ;若将窄带随机过程X(t)送入一个相位检波器,便可检测出相位信息)(t ϕ。

如下图所示:图中,在相位检波器之前加入一个理想限幅器,其作用是消除包络起伏对相位检波器的影响。

根据上图,我们要做:⒊实验任务与要求⑴窄带系统使用实验三设计的低通滤波器。

⑵包络检波器使用实验三设计的平方率检波器。

⑶设计一相位检波器⑷设计理想带通限幅器。

将设计好的电路连接好之后,将信号源连接到窄带低通滤波器的输入端,分别将包络检波器的输出端和相位检波器的输出端连接到A/D输入端,A/D输出端连接到计算机上。

运行实验一主程序具有采样函数的哪个程序, 计算包络检波器的输出和相位检波器的输出信号的相关特性。

运行主程序之后退出C系统,再激活虚拟示波器,将其相关特性显示在虚拟示波器上进行观察并纪录。

⑷产生限带白噪声,限带白噪声分为低通型和带通型两种。

将白噪声通过一个低通滤波器来产生低通型限带白噪声。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性系统的分析一、实验目的1 模拟产生特定相关函数的连续随机序列或者离散的随机序列,考察其特性。

2 模拟高斯白噪声环境下信号通过系统的问题,实现低通滤波。

3 掌握系统输出信号的数字特征和功率谱密度的求解。

二、实验设备1计算机2 Matlab 软件三、实验原理随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和 自相关函数)和线性系统的特性,求输出函数。

如下图所示,H 为线性变换,信号X (t )为系统输入, Y (t )为系统的输出,它也是随机信号。

图3.1 随机信号通过系统的示意图并且满足: H [X (t )] = Y (t )在时域:若X(t)时域平稳,系统冲激响应为h(t),则系统输入和输出的关系为:()()*()()()()()Y t X t h t X h t d h X t d ττττττ∞∞-∞-∞==-=-⎰⎰ 输出期望:∑∞===0m XY )m (h m )]t (Y [E m 输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-在频域:输入与输出的关系:)(H )(X )(Y ωω=ω输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω四、实验内容与步骤1已知平稳随机过程X(n)的相关函数为:5),()(22==σδσm m R ; 线性系统的单位冲击响应为111,0,)(+-=≥=实验者学号后两位r k r k h k 。

编写程序求:1)输入信号的功率谱密度、期望、方差、平均功率;2)利用时域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;3)利用频域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;4)利用频域分析法或时域分析法求解输入输出的互相关函数、互功率谱密度。

随机信号分析与处理课程概述


17
8 维纳滤波
第一讲 课程概述 教学组织
教学内容 课堂教学(精讲) 学时 26学时 所占比例 81.25%
实验
6学时
18.75%
18
第一讲 课程概述 四、参考书
(1)、《随机信号分析》、哈尔滨工业大学,赵淑清
(2)、《随机信号分析》、清华大学,杨福生
(3)、“Probability,Random Variables and Stochastic Processes ”,Papoulis,(有中译本) (4)《An introduction to Statistical Signal Processing with Applications》,Srinath M.D. John Wiily & Sons INC,1979. (5)《Detection of Signals in Noise》,Anthony D.Whalen,Academic Press。1995 (6)《信号检测理论》、哈尔滨工业大学,段凤增,2002 19
6学时
4学时
5 窄带随机过程
4学时 习题课、仿真实验
合计
6学时
54学时
16
第一讲 课程概述
本课程的仿真作业和实验安排
1 图象直方图均衡 随机变量函数和概率密度估计的应用
2 随机过程的分布特性*
3 随机过程的特征估计*
用MATLAB编写各种分布函数并显示
用MATLAB实现对均值方差相关函数和功率谱 的估计
第一讲 课程概述
五、学好本课程应把握好的几个问题 (1)注意掌握与信号分析与处理前后课程之间的联系 信号可以分为确定性信号与随机信号(包括连 续的和离散的),信号与系统分析、时域离散 时间信号分析两门课程学习了连续信号、离散

随机信号分析实验:随机过程通过线性系统的分析

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

MATLAB中的随机过程模拟与分析技巧

MATLAB中的随机过程模拟与分析技巧随机过程是描述一系列随机事件演变的数学模型,在实际问题中有广泛的应用。

MATLAB作为一款功能强大的数值计算软件,提供了丰富的工具和函数来模拟和分析随机过程。

本文将介绍在MATLAB中进行随机过程模拟与分析的一些常用技巧。

一、随机变量的生成在随机过程分析中,随机变量是基本的概念,它描述了随机事件的取值情况。

在MATLAB中,可以通过随机数生成函数来生成服从各种分布的随机变量,如均匀分布、正态分布等。

例如,可以使用rand函数生成0到1之间的均匀分布随机变量,使用randn函数生成符合标准正态分布的随机变量。

二、随机过程的模拟通过生成随机变量,可以进一步模拟随机过程。

随机过程的模拟可以通过生成一系列随机变量来实现。

例如,可以使用rand函数生成一组服从均匀分布的随机变量,并通过随机过程模型来描述这组随机变量的演变过程。

在MATLAB中,可以使用循环语句和数组来实现随机过程的模拟。

三、随机过程的统计分析在对随机过程进行模拟后,通常需要对其进行进一步的统计分析。

MATLAB提供了一系列用于随机过程统计分析的函数,如均值、方差、自相关函数、功率谱密度等。

这些函数可以帮助我们从时间域和频率域两个角度来分析随机过程的特性。

通过统计分析,我们可以得到随机过程的均值、方差、平稳性等重要信息。

四、随机过程的仿真实验MATLAB还提供了强大的仿真实验工具,可以通过模拟大量的随机过程样本来研究其统计规律。

仿真实验通常涉及到随机过程的多次模拟和统计分析。

在MATLAB中,可以使用循环语句和向量化操作来进行高效的仿真实验。

通过对仿真实验结果的分析,可以验证理论模型的正确性,评估系统的性能,以及优化系统参数等。

五、随机过程的滤波与预测在实际应用中,随机过程通常具有噪声干扰,对其进行滤波与预测是很重要的任务。

MATLAB提供了多种滤波与预测方法的函数,如卡尔曼滤波、递归最小二乘法等。

这些方法可以帮助我们提取有用信息,消除噪声干扰,并对未来的随机过程变量进行预测。

《概率论与数理统计》课件-随机过程

《概率论与数理统计》经典课件 -随机过程
目录
• 随机过程基础 • 随机过程的基本类型 • 随机过程的分析与变换 • 随机过程的应用 • 随机过程的计算机模拟 • 随机过程的未来发展与挑战
01
随机过程基础
随机过程的定义与分类
定义
随机过程是由随机变量构成的数 学结构,每个随机变量对应一个 时间点或位置。
分类
根据不同的特性,随机过程可以 分为离散随机过程和连续随机过 程,平稳随机过程和非平稳随机 过程等。
随机过程的统计特性
均值函数
方差函数
自相关函数
谱密度函数
描述随机过程的平均行 为。
描述随机过程的波动程 度。
描述随机过程在不同时 间点的相关性。
描述随机过程的频率特 性。
随机过程的概率模型
01
02
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,通过模 拟离散事件的发生和影响来逼 近真实系统。
离散事件模拟方法适用于描述 离散状态变化的过程,如交通 流模拟、排队系统模拟等。
离散事件模拟方法的关键在于 事件的时间点和顺序的确定, 以及事件影响的计算。
连续时间模拟方法
连续时间模拟方法是一种基于时间连 续变化的模拟方法,通过模拟时间连 续变化的过程来逼近真实系统。
连续时间模拟方法的关键在于时间步 长的选择和状态变化的计算,需要保 证模拟结果的准确性和稳定性。
连续时间模拟方法适用于描述连续状 态变化的过程,如人口增长模拟、生 态系统模拟等。
06
随机过程的未来发展与挑战
控制系统
利用随机过程理论,分析和设计 控制系统,提高系统的稳定性和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三随机过程的计算机模拟
实验目的
1、理解伪随机序列的产生原理,掌握产生伪随机序列的算法;
2、提高用计算机程序实现算法的能力;
3、进一步掌握Matlab的使用和程序设计方法;
4、增强独立设计能力。

实验原理
参见附图“4.4随机信号的计算机模拟”。

实验内容
1、用Matlab语言实现“乘同余法”,用“乘同余法”产生1000个(0,1)区间内均匀分布的随机数,并根据这1000个随机数的统计规律画出概率密度曲线;同时画出均匀分布的理论概率密度曲线,二者进行比较;
源代码:
A=ones(1,10000);
M=2^32-1;
A(1)=45165;
a=32719;
for i=1:1:10000
A(i+1)=mod((a*A(i)),M);
end
for i=1:1:10000
A(i)=A(i)/M;
end;
x=linspace(0+0.0125,1-0.0125,40);
yx=hist(A,x); %计算各个区间的个数
yy=(yx/10000)/(x(2)-x(1));
plot(x,yy) %画出概率密度分布图
●概率密度函数曲线
●理论概率密度曲线
●比较:
用“乘同余法”产生1000个(0,1)区间内均匀分布的随机数比较剧烈变化,改成了10000个之后依然不变。

2、用Matlab语言实现“混合同余法”,用“混合同余法”产生1000个(0,1)区间内均匀分布的随机数,并根据这1000个随机数的统计规律画出概率密度曲线;同时画出均匀分布的理论概率密度曲线,二者进行比较;
●源代码
(1)先建立M文件
function r=suijishu1(x0,n)
format long;
m=power(2,35);
a=power(5,15);
c=1;
r=zeros(n,1);
x=zeros(n+1,1);
x(1)=x0;
for i=2:n+1
y=a*x(i-1)+c;
x(i)=mod(y,m);
r(i-1)=x(i)/m;
end
format short;
(2)在窗口中输入以下程序:
>> r=suijishu1(1,1000)
●得出的随机数作图呈随机分布
●概率密度曲线
●比较
大部分和理想曲线一致,比乘同余法要好一些。

3、用“反函数法”产生1000个指数分布的随机数,并根据这1000个随机数的统计规律画出概率密度曲线;同时画出指数分布的理论概率密度曲线,二者进行比较;
●源代码
R=rand(1,1000);
lambda=0.5;
X=-log(1-R)/lambda;
subplot(2,1,1);
plot(X,'k');
xlabel('n');
ylabel('X(n)');
axis tight;
●随机数
●概率密度曲线
●理想概率密度曲线
f=0.5*exp(-0.5*(X));
plot(X,f);
4、用“反函数法”产生1000个瑞利分布的随机数,并根据这1000个随机数的统计规律画出概率密度曲线;同时画出瑞利分布的理论概率密度曲线,二者进行比较;
●源代码
R=rand(1,1000);
sigma=2
s=sigma^2
x=0:0.01:5
X=sigma*sqrt(-2*log(R));
plot(X,'k');
xlabel('n');
ylabel('X(n)');
axis tight;
●随机数分布
●概率密度曲线
●理想曲线
f= x/s.*exp(-x.^2/s)
plot(x,f)
5、用“变换法”产生1000个均值为0,方差为1的正态分布的随机数,并根据这1000个随机数的统计规律画出概率密度曲线;同时画出正态分布的理论概率密度曲线,二者进行比较。

●源代码
r1=rand(1,1000);
r2=rand(1,1000);
x=sqrt(-2.*log(r1)).*cos(2*pi*r2);
plot(x);
●随机数序列
●概率密度曲线
●理想正态分布曲线
《应用统计与随机过程》课程实验指导老师:杜青松
实验总结
这次的实验内容较多,但是通过分析和讨论,终于完成了所有的部分。

第11页。

相关文档
最新文档