瞬态电压抑制二极管
tvs二极管原理

tvs二极管原理Tvs二极管原理Tvs二极管,也被称为瞬态电压抑制二极管(Transient Voltage Suppression Diode),是一种用于保护电子设备免受过电压损害的重要元件。
在电子工程领域,我们经常会遇到各种电压的干扰和突波,这些突波可能对电路和设备造成严重的损坏。
Tvs二极管的原理正是通过抑制这些突波,保护电子设备的正常运行。
Tvs二极管的工作原理是基于PN结的电压特性。
它由PN结构成,其中P区为阳极,N区为阴极。
当输入电压低于设定的工作电压时,Tvs二极管处于截止状态,不导电。
而当输入电压高于设定的工作电压时,Tvs二极管会进入导通状态,形成低阻抗通路,使过电压得到抑制。
Tvs二极管的工作电压一般通过Zener效应实现。
Zener效应是指在达到某一特定电压时,PN结会出现电击穿现象,导致电流大幅增加。
利用这一效应,Tvs二极管可以在电压超过设定值时迅速导通,将过电压通过二极管引流到地,以保护其他电子器件免受损害。
Tvs二极管的工作特点是响应速度快,能够快速导通和截止。
这是由于它的结构设计使得载流子扩散速度加快,使其具有低电阻的特性。
此外,Tvs二极管的电压特性稳定,具有较高的电压容限,能够抵御较大的电压冲击。
在实际应用中,Tvs二极管广泛用于各种电子设备中,如电源电路、通信设备、计算机设备等。
以电源电路为例,当电网发生过电压突波时,Tvs二极管能够迅速导通,将过电压引流到地,保护电源和其他电子器件免受损害。
在通信设备中,Tvs二极管同样起到了保护作用,保证设备的正常运行。
Tvs二极管还有一些特殊应用,比如用于防雷击保护。
雷击是指雷电产生的高电压和大电流,当雷电击中建筑物或设备时,可能导致严重的损坏甚至起火。
在防雷击保护中,Tvs二极管可以有效地吸收雷电过电压,保护建筑物和设备的安全。
Tvs二极管的原理是通过利用PN结的电压特性,实现对过电压的抑制和保护。
它在电子设备中起到了重要的作用,保护设备免受突波和过电压的损害。
TVS瞬态电压抑制二极管(钳位二极管)原理参数

TVS瞬态电压抑制二极管(钳位二极管)原理参数瞬态电压抑制二极管(TVS)又叫钳位二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。
瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。
双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。
可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。
耐受能力用瓦特(W)表示。
瞬态电压抑制二极管的主要电参数(1)击穿电压V(BR)器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
(2)最大反向脉冲峰值电流IPP在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。
IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。
使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。
瞬态电压抑制二极管的分类瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特殊电路适用的专用型器件。
如:各种交流电压保护器、4~200mA电流环保器、数据线保护器、同轴电缆保护器、电话机保护器等。
若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线保护)、贴片式、组件式和大功率模块式等。
瞬态电压抑制二极管的应用目前已广泛应用于计算机系统、通讯设备、交/ 直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、I/O、LAN、ISDN 、ADSL、USB、M P3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱动接收保护、电机电磁波干扰抑制、声频/视频输入、传感器/变速器、工控回路、继电器、接触器噪音的抑制等各个领域。
tvs瞬态抑制二极管参数

TVS瞬态抑制二极管参数1. 介绍瞬态抑制二极管(Transient Voltage Suppressor Diode,简称TVS二极管)是一种用于保护电子电路免受瞬态电压干扰的器件。
它可以有效地抑制过电压和过电流,保护电路中的其他元件不受损坏。
本文将重点介绍TVS瞬态抑制二极管的参数,包括其电气参数、封装参数和可靠性参数。
2. 电气参数2.1 额定电压(Vr)额定电压是指TVS二极管能够正常工作的最大电压。
当电压超过额定电压时,TVS二极管将开始导通,以保护电路免受过电压的影响。
2.2 尖峰脉冲功率(Ppp)尖峰脉冲功率是指TVS二极管能够吸收的瞬态脉冲能量。
它表示了TVS二极管在瞬态电压出现时能够承受的最大功率。
通常情况下,尖峰脉冲功率越大,TVS二极管的抑制能力越强。
2.3 最大反向峰值电流(Ipp)最大反向峰值电流是指TVS二极管能够承受的最大反向电流。
当电路中的电压超过额定电压时,TVS二极管将导通,使电流通过,以保护电路。
最大反向峰值电流越大,TVS二极管的抑制能力越强。
2.4 动态电阻(Rd)动态电阻是指TVS二极管在导通状态下的电阻。
动态电阻越小,TVS二极管的抑制能力越强。
因此,低动态电阻是衡量TVS二极管性能好坏的重要指标之一。
3. 封装参数3.1 封装类型TVS瞬态抑制二极管有多种封装类型可供选择,常见的封装类型有DO-214、SMA、SMB等。
不同的封装类型适用于不同的应用场景。
选择合适的封装类型可以提高电路的可靠性和稳定性。
3.2 封装尺寸封装尺寸是指TVS二极管的外部尺寸。
在进行电路设计时,需要考虑TVS二极管的封装尺寸是否符合电路板的布局要求,以确保TVS二极管能够正确安装在电路板上。
3.3 焊接温度焊接温度是指TVS二极管在焊接过程中所能承受的最高温度。
在进行电路组装时,需要控制焊接温度,避免超过TVS二极管的最大焊接温度,以免影响其性能和可靠性。
4. 可靠性参数4.1 工作温度范围工作温度范围是指TVS二极管能够正常工作的温度范围。
瞬态电压抑制二极管(TVS)特点及主要参数

瞬态电压抑制二极管(TVS)特点及主要参数一、TVS器件的特点瞬态(瞬变)电压抑制二级管简称TVS器件,在规定的反向应用条件下,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低的导通值,允许大电流通过,并将电压箝制到预定水平,从而有效地保护电子线路中的精密元器件免受损坏。
TVS能承受的瞬时脉冲功率可达上千瓦,其箝位响应时间仅为1ps(10-12S)。
TVS允许的正向浪涌电流在T =25℃,T=10ms条件下,可达50~200A 。
双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压箝制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。
二、TVS器件的电特性1、单向TVS的V-I特性如图1-1所示,单向TVS的正向特性与普通稳压二极管相同,反向击穿拐点近似“直角”为硬击穿,为典型的PN结雪崩器件。
从击穿点到Vc值所对应的曲线段表明,当有瞬时过压脉冲时,器件的电流急骤增加而反向电压则上升到箝位电压值,并保持在这一水平上。
2、双向TVS的V-I特性如图1-2所示,双向TVS的V-I特性曲线如同两只单向TVS“背靠背”组合,其正反两个方向都具有相同的雪崩击穿特性和箝位特性,正反两面击穿电压的对称关系为:0.9≤V(BR)(正) /V(BR)(反) ≤1.1,一旦加在它两端的干扰电压超过箝位电压Vc就会立刻被抑制掉,双向TVS在交流回路应用十分方便。
三、TVS器件的主要电参数1、击穿电压V(BR)器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
2、最大反向脉冲峰值电流I PP在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。
I PP与最大箝位电压Vc(MAX)的乘积,就是瞬态脉冲功率的最大值。
使用时应正确选取TVS,使额定瞬态脉冲功率P PR大于被保护器件或线路可能出现的最大瞬态浪涌功率。
瞬态电压抑制二极管符号

瞬态电压抑制二极管符号瞬态电压抑制二极管(TVS管)的电路原理图符号与普通二极管的符号相似,但在箭头旁边加上了一个斜杠和一个横线,表示其具有抑制瞬态过电压的功能。
常见的瞬态抑制二极管电路原理图符号有:VBR、IPP、IR、VRWM、VC、PM、CP。
其中,VBR代表击穿电压,IPP代表反向脉冲峰值电流,IR代表漏电流,VRWM代表反向关态电压(截止电压)或反向工作电压,VC代表钳位电压,PM代表反向脉冲峰值功率,CP代表电容。
瞬态抑制二极管(TVS管)是一种用于保护电子设备免受瞬态过电压脉冲破坏的器件。
它具有非线性伏安特性,当其两端电压超过其击穿电压时,电流会迅速增加,形成一个低阻抗的导电路径,从而将瞬态过电压脉冲引入到地线中,从而保护电子设备免受损坏。
在电路原理图中,瞬态抑制二极管通常被标注为VBR、IPP、IR、VRWM、VC、PM、CP等符号。
这些符号代表了瞬态抑制二极管的主要参数和特性。
例如,VRWM代表反向关态电压(截止电压)或反向工作电压,这是瞬态抑制二极管能够承受的最大反向电压;VC代表钳位电压,这是瞬态抑制二极管在正常工作时所承受的最大正向电压;IPP代表反向脉冲峰值电流,这是瞬态抑制二极管在吸收瞬态过电压脉冲时能够承受的最大电流;PM代表反向脉冲峰值功率,这是瞬态抑制二极管在吸收瞬态过电压脉冲时所消耗的最大功率。
除了电路原理图符号外,瞬态抑制二极管还具有一些常见的命名规则。
例如,SMAJ表示系列名称和功率,15表示工作电压VRWM=15V;P6KE表示系列名称和功率,30表示工作电压Vbr=30V;UNS表示系列名,功率,2K表示8/20us=2KA,15表示工作电压15V等。
总之,瞬态抑制二极管是一种用于保护电子设备免受瞬态过电压脉冲破坏的器件,其电路原理图符号与普通二极管相似但具有特定的标注和命名规则。
瞬态电压抑制_TVS_二极管及其应用

1、TV S 二极管简介本文以P RO T E K 公司提供的5KW 系列硅瞬态电压抑制(TV S )二极管为例,介绍这类器件的主要特性。
利用这种器件可以避免过高的瞬态电压对电压敏感元件造成损坏。
TV S 二极管是一种硅PN 结器件,它能够吸收很高的瞬态电压。
该系列器件适用电压范围为5~110V ,公差为5~10%。
TV S 二极管能够承受很高的浪涌电压,响应时间非常短,内阻非常小。
由于瞬态电压是不可预测的,并且阻抗随瞬态电压而变化,没有确定的数值。
同时在器件承变很大的脉冲电流时,温度变化可造成最高钳位电压(V C )50~70%的测量误差。
因此规定最高阻抗无实际意义。
但是低电流状态下的最低电压(V B R )和在最高脉冲峰值电流状态下的最高钳位电压是可以确定的。
5KW TV S 系列二极管的峰值脉冲额定功率为5000W/ms ,因此可用于长距离的传输电路中,以避免雷电对电路系统造成危害。
TV S 二极管钳位作用的响应时间为1×10-12s 。
因此,它可用来保护集成电路、M O S 器件、混合电路以及其它对电压敏感的半导体元器件。
TV S 二极管可以串联或并联,以提高峰值功率。
主要特性:●5000W 峰值功耗;●电压范围5~110V ;●主要用于直流电源。
极限参数:●峰值脉冲功耗(25℃)5000W ;●工作和贮存温度为-55~175℃;●正向浪涌电流额定值为100A (1/120秒,25℃);●稳态功耗为5W (T L =75℃);●占空比为0.05%;●钳位响应时间,小于1×10-12秒。
主要性能:5k W TV S 系列二极管的电气参数如表1所列。
峰值脉冲功率与脉冲宽度的关系如图1所示。
2、TV S 二极管的应用由于TV S 二极管能够吸收很高的瞬态●新特器件应用图1峰值脉冲功率与脉冲宽度的关系瞬态电压抑制(TV S )二极管及其应用段景汉表1 5k W系列TV S二极管电气特性 (25℃)型 号额定电压(V)击穿电压V BR(V) I T(mA)最大工作电流I D(μA)钳位电压V C(V)最大脉冲电流I PP(A)最高温度系数%燉℃5KP5.0 5KP5.0A 5KP6.0 5KP6.0A 5.05.06.06.06.406.406.676.675050505020002000500050009.69.211.410.35205434394854.04.04.04.05KP6.5 5KP6.5A 5KP8.0 5KP8.0A 6.56.57.07.07.227.227.787.7850505050200020001000100012.311.213.312.04074473784174.04.05.05.05KP7.5 5KP7.5A 5KP8.0 5KP8.0A 7.57.58.08.08.338.338.898.89555525025015015014.312.915.013.63503883333676.06.06.06.05KP8.5 5KP8.5A 5KP9.0 5KP9.0A 8.58.59.09.09.449.4410.010.055555050202015.914.416.915.43143472953257.07.08.08.05KP10 5KP10A 5KP11 5KP11A 1010111111.111.112.212.255551515101018.817.020.118.22662942492749.09.010105KP12 5KP12A 5KP13 5KP13A 1212131313.313.314.414.455551010101022.019.923.821.5227251210232111112125KP14 5KP14A 5KP15 5KP15A 1414151515.615.616.716.755551010101025.823.226.924.4194215188206131315155KP16 5KP16A 5KP17 5KP17A 1616171717.817.818.918.955551010101028.826.030.527.6176192164181181619185KP18 5KP18A 5KP20 5KP20A 1818202020.020.022.222.255551010101032.229.235.832.4155172139154201924225KP22 5KP22A 5KP24 5KP24A 2222242424.424.426.726.755551010101039.435.543.038.9127141116128272430275KP26 5KP26A 5KP28 5KP28A 2626282828.928.931.131.155551010101046.642.150.145.510711999110332934305KP30 5KP30A 5KP33 5KP33A 3030333333.333.336.736.755551010101053.548.459.053.3931038594383541385KP36 5KP36A 5KP40 5KP40A 3636404040.040.044.444.455551010101064.358.171.464.578867078454050455KP43 5KP43A 5KP45 5KP45A 4343454547.847.850.050.055551010101076.769.480.372.765726269544957515KP48 5KP48A 5KP51 5KP51A 4848515153.353.356.756.755551010101085.577.491.182.45865556162556560续表1型 号额定电压(V)击穿电压V BR(V) I T(mA)最大工作电流I D(μA)钳位电压V C(V)最大脉冲电流I PP(A)最高温度系数%燉℃5KP54 5KP54A 5KP58 5KP58A 5454585860.060.064.464.455551010101096.387.1103.093.652574953706477695KP60 5KP60A 5KP64 5KP64A 6060646466.766.771.171.1555510101010107.096.8114.0103.047524449797085755KP70 5KP70A 5KP75 5KP75A 7070757577.877.883.383.3555510101010125113134121404437419384100905KP78 5KP78A 5KP85 5KP85A 7878858586.786.794.494.455551010101013912615113736403336104941131025KP905KP90A 5KP100 5KP100A 9090100100100100111111555510101010160146179162313428311201091341225KP11011012251019626147电压,并可在承受很大的脉冲电流时钳位浪涌电压,因此,TV S二极管有着非常广泛的应用范围,在各种电路、传输线路及电器设备中,都可提供浪涌电压保护。
瞬态电压抑制二极管参数

瞬态电压抑制二极管参数【原创实用版】目录1.瞬态电压抑制二极管的概念与作用2.瞬态电压抑制二极管的结构与工作原理3.瞬态电压抑制二极管的参数及其特性4.瞬态电压抑制二极管的应用领域与优势5.瞬态电压抑制二极管的选用与安装注意事项正文一、瞬态电压抑制二极管的概念与作用瞬态电压抑制二极管(Transient Voltage Suppression Diode,简称 TVS),又称为钳位二极管,是一种高效能的电路保护器件。
它可以保护电器设备不受导线引入的电压尖峰破坏,有效地将瞬态电压信号限制在正常范围内,从而避免电路元件受到瞬态电压的损害。
二、瞬态电压抑制二极管的结构与工作原理瞬态电压抑制二极管的外形与普通二极管相同,但其内部结构具有特殊的设计。
当承受一个高能量的大脉冲时,瞬态电压抑制二极管的工作阻抗会立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平。
其响应时间仅为 10-12 毫秒,因此可以有效地保护电子线路中的精密元器件。
三、瞬态电压抑制二极管的参数及其特性瞬态电压抑制二极管的主要参数包括最大钳位电压、最小击穿电压、最大浪涌电流等。
其中最大钳位电压是指瞬态电压抑制二极管在反向应用条件下,能够限制电压的最大值;最小击穿电压是指瞬态电压抑制二极管开始导通的最小电压值;最大浪涌电流是指瞬态电压抑制二极管允许通过的正向浪涌电流的最大值。
瞬态电压抑制二极管具有响应速度快、箝位电压低、大脉冲承受能力高等优点,可以有效地保护电路免受瞬态电压的干扰和损害。
四、瞬态电压抑制二极管的应用领域与优势瞬态电压抑制二极管广泛应用于通信、计算机、家电、工业控制等领域。
它可以有效地保护电路元件免受瞬态电压的损害,降低故障率,节省人工和物料成本,提高工作效率。
五、瞬态电压抑制二极管的选用与安装注意事项在选择瞬态电压抑制二极管时,需要根据被保护电路的电压、电流等参数选择合适的型号。
瞬态电压抑制二极管参数

瞬态电压抑制二极管参数瞬态电压抑制二极管(Transient Voltage Suppression Diode,TVS)是一种用于抑制电路中瞬态电压峰值的重要电子组件。
在电力系统、通信设备、汽车电子以及各种电子设备中起到了至关重要的保护作用。
瞬态电压抑制二极管参数的合理选择对于电路的可靠性和稳定性具有重要意义。
本文将深入探讨瞬态电压抑制二极管参数的相关内容,希望能够对读者进行全面、深刻和灵活的理解。
一、瞬态电压抑制二极管的概述瞬态电压抑制二极管,又称为TVS二极管,主要用于对电路中的瞬态电压进行保护。
它的主要作用是通过提供一个低阻抗的路径,将瞬态电压引导到地或其他低电压点,以保护电路中的敏感元件不受损坏。
瞬态电压抑制二极管的参数主要包括最大峰值电压(Vc),最大峰值电流(Ipp),保护电压(Vr),响应时间(tr),以及功率耗散能力等。
二、瞬态电压抑制二极管参数的影响因素1. 最大峰值电压(Vc):Vc是瞬态电压抑制二极管能够承受的最大电压,在选择时应考虑电路中可能出现的最高电压,以确保其能够提供有效的保护。
根据电路的需求,Vc的值应略高于电路中最高电压值。
2. 最大峰值电流(Ipp):Ipp是瞬态电压抑制二极管能够承受的最大电流,也是保护电路的重要参数。
在电路中发生瞬态电压过冲时,瞬态电流会通过二极管,因此选择具有足够大的Ipp值的二极管可以确保其正常工作。
3. 保护电压(Vr):Vr是指瞬态电压抑制二极管对于保护电路中敏感元件的保护电压。
当瞬态电压超过Vr时,二极管将开始导通,将瞬态电压引导到地或其他低电压点。
根据电路中敏感元件的额定工作电压,选择合适的Vr值非常重要。
4. 响应时间(tr):响应时间是瞬态电压抑制二极管从正常工作状态到完全导通所需的时间。
较短的响应时间可以更快地保护电路中的敏感元件,因此在选择二极管时需要注意其响应时间。
5. 功率耗散能力:功率耗散能力是指瞬态电压抑制二极管在正常工作状态下能够耗散的最大功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬态电压抑制二极管Transient Voltage Suppressors(TVS)概述电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。
这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。
幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。
TVS的特性及其参数(参数表见附表)S的特性如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。
如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。
但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS 的全部特性。
这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。
图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。
曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。
2、TVS的参数TVS在电路中和稳压管一样,是反向使用的,图2所示为单向TVS的工作曲线图。
各参数说明如下:A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。
B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。
一般情况下IT取1MA。
C.反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。
此参数也可被认为是所保护电路的工作电压。
D.最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。
E.最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。
F.最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。
浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。
最大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为1.2~1.4。
G.峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。
最大峰值脉冲功率:最大峰值脉冲功率为:PN=VC·IPP。
显然,最大峰值脉冲功率愈大,TVS所能承受的峰值脉冲电流IPP愈大;另一方面,额定峰值脉冲功率PP确定以后,所TVS能承受的峰值脉冲电流IPP,随着最大箝位电压VC的降低而增加。
TVS 最大允许脉冲功率除了和峰值脉冲电流和箝位电压有关外,还和脉冲波形、脉冲持续时间和环境温度有关。
对于几种不同的脉冲波形PN=K·VC·IPP,其中K为功率因数,图3给出了几种典型脉冲波形的K值。
图4所示为最大允许脉冲功率和脉冲时间的关系曲线。
图中描绘了500W和1.5KW系列TVS的最大允许脉冲功率随脉冲持续时间增加的降额曲线,典型的脉冲时间为1ms。
500W和1.5KW即为脉冲持续时间为1ms时的最大允许脉冲功率。
图5所示为最大允许脉冲功率随环境温度增高的降额曲线,曲线表明,环境温度超过25℃,最大允许脉冲功率呈线性下降:在150℃时,脉冲功率为零。
TVS所能承受的瞬时脉冲峰值可达数百安培,其箝位响应时间仅为1*10-12 秒;TVS所允许的正向浪涌电流,在25℃,1/120秒的条件下,也可达50-200安培。
一般地说,TVS所能承受的瞬时脉冲是不重复的脉冲。
而实际应用中,电路里可能出现重复性脉冲。
TVS器件规定,脉冲重复率比(脉冲持续时间和间歇时间之比)为0.01%。
如不符合这一条件,脉冲功率的积累有可能使TVS烧毁。
电路设计人员应注意这一点。
TVS的工作是可靠的,即使长期承受不重复性大脉冲的高能量的冲击,也不会出现"老化"问题。
试验证明,TVS安全工作于10000次脉冲后,其最大允许脉冲功率仍为原值的80%以上。
TVS的分类TVS管按功率分类,可分为500W、600W、1500W及5000W。
也可按极性分类。
按极性分为单极性及双极性两种。
双极性尾标中缀以C。
按TVS管VBR的值对标称值的离,散程度,可以把TVS分为两类,即离散程度为±5%和±10%的,离散程度为±5%的,型号中尾标缀以A,如SA5.0 CA。
TVS的应用TVS主要用于对电路元件进行快速过电压保护。
它能"吸收"功率高达数千瓦的浪涌信号。
TVS具有体积小、功率大、响应快、无噪声、价格低等诸多优点,它的应用十分广泛,如:家用电器;电子仪器;仪表;精密设备;计算机系统;通讯设备;RS232、485及 CAN等通讯端口;ISDN的保护;I/O端口;IC电路保护;音、视频输入;交、直流电源;电机、继电器噪声的抑制等各个领域。
它可以有效地对雷电、负载开关等人为操作错误引起的过电压冲击起保护作用,下面是几个TVS在电路应用中的典型例子。
TVS用于交流电路:见图6,这是一个双向TVS在交流电路中的应用,可以保护整流桥及负载中所有的元器件。
图7所示为用单向TVS并联于整流管旁侧以保护整流管不被瞬时脉冲击穿。
图8中TVS1是一只双向TVS管,它正负两个方向均可"吸收"瞬时大脉冲,把电路电压箝制到预定水平。
这类双向TVS用于交流电路是极方便的。
它可以保护变压器以后的所有电路元件。
由于加上TVS1,电路保险丝容量要加大。
TVS2也是一只双向 TVS管,它可以对桥式整流器及以后的电路元件实行过电压保护。
它的Vb 值及VC值应与变压器副边输出电压相适应。
TVS3是一只单向TVS管,因为加在它上面的电压是已整流后的流电直压,TVS3 只保护负载不受过电压冲击,电路中可以根据需要使用三个TVS 管中的一只或几只。
TVS和其它浪涌保护元件的比较现在国内不少需要进行浪涌保护的设备上使用的是压敏电阻,TVS与压敏电阻这种金属氧化物变阻器相比具有极其优越的性能。
下面列表进行比较。
关键参数或极限值TVS 电阻器反应速度10-12 秒 50*10E-9秒是否会老化否是最高使用温度 175 115元件极性单极性与双极性单极性反向漏电典型值 5uA 200 uA箝位因子(VC/BV)≯1.5 最大可达7-8封装性质密封不透气透气价格贵便宜TVS的选用选用TVS的步骤如下:1.确定待保护电路的直流电压或持续工作电压。
如果是交流电,应计算出最大值,即用有效值*1.414。
S的反向变位电压即工作电压(VRWM)--选择TVS的VRWM等于或大于上述步骤1所规定的操作电压。
这就保证了在正常工作条件下TVS吸收的电流可忽略不计,如果步骤1所规定的电压高于TVS的VRWM ,TVS将吸收大量的漏电流而处于雪崩击穿状态,从而影响电路的工作。
3.最大峰值脉冲功率:确定电路的干扰脉冲情况,根据干扰脉冲的波形、脉冲持续时间,确定能够有效抑制该干扰的TVS峰值脉冲功率。
4.所选TVS的最大箝位电压(VC)应低于被保护电路所允许的最大承受电压。
5.单极性还是双极性-常常会出现这样的误解即双向TVS用来抑制反向浪涌脉冲,其实并非如此。
双向TVS用于交流电或来自正负双向脉冲的场合。
TVS有时也用于减少电容。
如果电路只有正向电平信号,那麽单向TVS就足够了。
TVS操作方式如下:正向浪涌时,TVS处于反向雪崩击穿状态;反向浪涌时,TVS类似正向偏置二极管一样导通并吸收浪涌能量。
在低电容电路里情况就不是这样了。
应选用双向TVS以保护电路中的低电容器件免受反向浪涌的损害。
6.如果知道比较准确的浪涌电流IPP,那么可以利用VC来确定其功率,如果无法确定功率的概范围,一般来说,选择功率大一些比较好。
快恢复二极管(FRD)、超快恢复二极管(SRD)快恢复二极管FRD(Fast Recovery Diode)是近年来问世的新型半导体器件,具有开关特性好,反向恢复时间短、正向电流大、体积小、安装简便等优点。
超快恢复二极管SRD(Superfast Recovery Diode),则是在快恢复二极管基础上发展而成的,其反向恢复时间trr值已接近于肖特基二极管的指标。
它们可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管,是极有发展前途的电力、电子半导体器件。
1.性能特点(1)反向恢复时间反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。
它是衡量高频续流及整流器件性能的重要技术指标。
反向恢复电流的波形如图1所示。
IF为正向电流,IRM为最大反向恢复电流。
Irr为反向恢复电流,通常规定Irr=0.1IRM。
当t≤t0时,正向电流I=IF。
当t>t0时,由于整流器件上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。
然后整流器件上流过反向电流IR,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM值。
此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。
从t2到t3的反向恢复过程与电容器放电过程有相似之处。
(2)快恢复、超快恢复二极管的结构特点快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。
由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。
快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。
超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。
20A以下的快恢复及超快恢复二极管大多采用TO-220封装形式。
从内部结构看,可分成单管、对管(亦称双管)两种。
对管内部包含两只快恢复二极管,根据两只二极管接法的不同,又有共阴对管、共阳对管之分。