TL431与光耦反馈回路设计

合集下载

TL431与光耦反馈回路设计光耦转换前后的电压增益。。。

TL431与光耦反馈回路设计光耦转换前后的电压增益。。。

前言:回授迴路的設計需要仔細地思考與分析。

未被發現的不良回授路徑很容易被忽略,並且會危害電路設計。

本文將探討一種常見的回授電路,與設計人員所面臨的潛在問題,並將提出這些問題的解決方案。

TL431/光耦合器回授電路TL431與光耦合器是電源轉換器設計人員常用的一種組合。

但若不謹慎思考與設計,此組合會讓工程師感到十分棘手。

本文將討論許多經驗不足甚至連部份有經驗的設計人員皆容易落入的窠臼。

圖1是典型電路。

R1與R2組成的電阻分壓器在輸出電壓達到目標值時,會讓R1與R2的接點電壓剛好等於TL431的內部參考電壓。

電阻R3以及電容C1與C2提供TL431所需的回授迴路補償以便穩定控制迴路。

迴路增益值決定後,即可計算這些元件值並將它們加在一起。

圖1:典型的TL431回授電路。

圖1的TL431電路增益可由下列公式計算:其中Zfb等於:ω則代表角速度(radians/sec)。

光耦合器迴路增益=(R6/R4)×光耦合器電流轉換比(Current Transfer Ratio;CTR),設計人員必須知道光耦合器的電流轉換比,才能計算該增益。

但實際轉移函數是由光耦合器的LED電流決定,所以圖1的TL431電路總增益還包括另一因數。

該函數是(Vout-Vcathode)/R4,其中Vout等於進入TL431的Vsense電壓,這使得TL431與光耦合器的「總增益方程式」等於:上式的+1項在本文裡代表「隱藏」的回授路徑,只要Zfb/R1遠大於1即可忽略。

在後面的示波器圖片中,將進一步解釋和顯示該項的影響,我們現在先假設這個公式是正確的。

設計人員只要將電源轉換器的各項增益元素相乘,就能得到不考慮回授電路影響下的轉換器開迴路增益。

這些元素包括:變壓器圈數比;PWM主動輸出濾波器元件效應和TL431增益以外的相關負載效應;以及光耦合器的影響。

轉換器會在特定的開關頻率下操作。

設計人員知道開迴路總增益須在低於該頻率6分之1的某個點跨過0dB,因此多數設計人員會留下適當的元件公差,其它人則會將跨越點設計在大約該頻率10分之1的位置。

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。

它可以作为一个误差放大器,用于控制开关电源的输出电压。

以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。

具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。

连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。

选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。

稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。

需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。

此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。

利用光耦搭建TL431反馈回路

利用光耦搭建TL431反馈回路

利用光耦搭建TL431反馈回路
课程介绍光耦左边的部分我们已经设计完成了,我们开始设计右边的部分。

右边的电压我们要想对这个15V进行一个精准的调节。

如果超过15V,比如15.5V或者16V就会转换成一个电流的变化。

而光耦是电流型的,我们说过所有电流型的器件包括二极管和三极管等,都会受到温度和湿度的影响。

尤其是二极管和三极管工作在放大区的时候,更容易受到温度的影响。

运放内部为什么可以呢,因为其内部做了对温度的补偿。

我们想要知道是不是真正的15V,可以采用一个内部电压,让外部电压和内部电压比较,从而推断出外部电压的大小。

所以我们必须要有一个器件,内部有一个很精准的参考电压,除了我们之前说过的555等芯片,还有一种器件就是大家之前经常用到的TL431。

学习获得:
学习隔离式反激开关电源设计
1、反激开关电源的设计思路,拓扑结构及原理框图讲解
2、驱动电路设计
3、经典驱动芯片UC3842 内部结构讲解
4、频率设计讲解
5、吸收电路设计及作用讲解
6、功率开关管MOSFET的开关速度,发热因素及选型讲解
7、输出电路设计
8、MOSFET选型,吸收电路器件选型,输出二极管选型,输入输出电容等重要器件参数计算。

9、电流环设计
10、电压环设计
11、经典基准电压源TL431 内部结构讲解
12、光耦的应用讲解
13、TL431、光耦组合电路参数计算。

tl431和光耦计算

tl431和光耦计算

TL431和光耦的参数计算涉及多个方面,包括输出电压、电流和电阻等。

首先,关于TL431,其典型的应用是通过配置不同的R1和R2的值得到从2.5V到36V范围内的任意电压输出(Vo<Vin)。

输出电压的公式是Vout=(R1+R2)*2.5/R2。

特别地,当R1=R2时,Vo=5V。

需要注意的是,在选择电阻时必须保证TL431工作的必要条件,即通过阴极的电流要大于1mA。

另外,为了保证TL431的R端吸取电流对R3和R4分压影响最小,可以设置R4的电流大于TL431的R端吸取电流的100倍。

R4的电流最小为2uA*100=200uA,因R端电压为基准2.5V,所以R4最大为2.5V/200uA=1.25KΩ。

对于光耦PC817,其线性工作区在电流范围为5mA到20mA时,传输比始终处于120%-140%范围内。

在光耦的发光二极管正向压降未达到开启阈值情况下,R2承担保证431正常工作的重任。

此时光耦电流近似为0,R1压降为0,所以R2两端电压最大为1.2V。

但是,如果R2过大可能会使TL431不能正常工作。

总之,这些计算需要根据具体的使用环境和电路需求来进行微调。

以上内容仅供参考,如需更准确的信息,建议咨询专业的电子工程师。

tl431与光耦配合的工作原理

tl431与光耦配合的工作原理

tl431与光耦配合的工作原理
TL431光耦合器是一种半导体可调电流源,它工作在自给电阻-回路下,由一个光耦合设备组成,它具有一个额定集电极与发射极,以
及一个光敏电阻(LDR)。

TL431的集电极与发射极之间的检测到的电
压由LDR的放电程度决定。

发射极将由LDR上的电流控制,当LDR上
的电流在一定程度上时,电流就会通过发射极向集电极流动,此时
TL431就会输出电压。

当LDR上的电流达到一定程度时,发射极开始向集电极流动,就
会使得电压在集电极与发射极之间升高,进而激发LDR中的光敏电路,导致电流经过发射极越来越大,但同时电压仍保持不变,所以TL431
就输出一定的电压。

而光耦合设备的作用就是隔绝电路中的差分电压,因为它的LDR
是一个隔绝的,所有的信号都通过光信号传输,从而把差分放大器前
后的电路隔绝开来,使得差分电压不会对其它线路造成污染。

因此,TL431光耦合器主要是由发射极、LDR以及集电极组成,
当LDR上的电流达到一定状态时,发射极向集电极流动,从而使TL431输出固定的电压,同时,LDR也隔绝了差分电压,使其不会对其它线路造成污染。

TL431是如何结合光耦PC817工作

TL431是如何结合光耦PC817工作

对于图1的电路,就是要确定R1、R3、R5及R6的值。

设输出电压V o,辅助绕组整流输出电压为12V。

该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。

因为被控对象是TOP管,因此首先要搞清TOP管的控制特性。

从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。

如图2所示。

可以看出,Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。

而Ice是受二极管电流If控制的,我们通过PC817的Vce与If的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If。

从图3可以看出,当PC817二极管正向电流If在3mA左右时,三极管的集射电流Ice在4mA左右变化,而且集射电压Vce在很宽的范围内线性变化。

符合TOP管的控制要求。

因此可以确定选PC817二极管正向电流If为3mA。

再看TL431的要求。

从TL431的技术参数知,Vka在2.5V-37V变化时,Ika可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。

不过对于TOP器件因为死负载很小,只选3-5mA 左右就可以了。

确定了上面几个关系后,那几个电阻的值就好确定了。

根据TL431的性能,R5、R6、Vo、Vr有固定的关系:V o=(1+ R5/R6) Vr式中,Vo为输出电压,Vr为参考电压,Vr=2.50V,先取R6一个值,例如R6=10k,根据Vo的值就可以算出R5了。

再来确定R1和R3。

由前所述,PC817的If取3mA,先取R1的值为470Ω,则其上的压降为Vr1=If* R1,由PC817技术手册知,其二极管的正向压降Vf典型值为1.2V,则可以确定R3上的压降Vr3=Vr1+Vf,又知流过R3的电流Ir3=Ika-If,因此R3的值可以计算出来: R3= Vr3/ Ir3= (Vr1+Vf)/( Ika-If)根据以上计算可以知道TL431的阴极电压值Vka,Vka=Vo’-Vr3,式中V o’取值比V o大0.1-0.2V即可。

光耦加431组成反馈电路的工作原理

光耦是一种能够将电气信号转换为光信号,或将光信号转换为电气信号的器件。

它由光电器件(光电发射器和光电接收器)组成,常见的光电发射器有发光二极管(LED),光电接收器则一般使用光敏二极管或光电晶体管。

光耦的基本原理是光信号的耦合和隔离。

光耦可以应用于很多领域,包括电力电子、通信和自动控制等。

反馈电路是指在一个系统中,由系统的输出信号经过反馈传递回输入端,作为输入信号的一部分,从而影响系统的整体性能和稳定性的一种电路。

光耦可以结合其他元件(如电阻、电容和放大器等)组成反馈电路,用于信号的隔离、缓冲、放大或控制等功能。

光耦与431(TL431)组成的反馈电路常用于电源的稳压控制,其中431是一种广泛应用于电源管理和控制电路中的精密可调电压源。

这种反馈电路主要通过光耦实现输入信号与输出信号的隔离,并使用431将输出信号进行稳压控制。

光耦与431组成的反馈电路的基本工作原理如下:1.输入端的电压信号经过放大和隔直处理后驱动光电发射器(一般是LED),将电信号转换为光信号。

光信号经过光传导、光电耦合等过程,到达光电接收器。

2.光电接收器接收到光信号后,将其转换为电信号,并通过放大电路进行放大。

放大后的电信号经过滤波电路,得到稳定的参考电压。

这个参考电压就是反馈电路中的参考电压,用于与431进行比较。

3.将参考电压与431进行比较,根据比较结果,431会通过调整其输出,实现对输入信号的控制。

431的输出可以连接到电源调节电路(如开关管或线性调节管等),通过控制电源的输出电压来达到稳压的目的。

需要注意的是,反馈电路中的431对光耦输出的光信号进行检测和反馈控制,实现了输入和输出信号的隔离,从而保证了稳定的电源输出。

同时,光信号的传输也使得整个电路不会受到输入信号的干扰,提高了系统的抗干扰能力。

光耦与431组成的反馈电路的优势在于:1.隔离性能好:光信号可以实现输入和输出信号的隔离,避免了输入和输出之间的电气联系,具有很好的隔离性能,可以减小噪声、提高抗干扰能力和系统稳定性。

PC817光电耦合器与TL431配合设计计算

PC817光电耦合器与TL431配合设计计算
时间:2009-05-17 11:35:53来源:资料室作者:编号:1358更新日期20110302 073234
电源反馈隔离电路由光电耦合器PC817以及并联稳压器TL431所组成,如h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式4h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式为:IC=η. IF式2h8383参数-电子元器件符号
此时反馈电压信号为:Vf =Ic .R1式3h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
输出电压Vo,则由TL431内部2.5V之参考电压求得:h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式1h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
其中VF为二极管的正向压降,IF为二极管的电流。h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
若PC817之耦合效率为η,则所产生的集极电流IC会与IF之间关系h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
图1所示,其中R2为光耦的限流电阻,R3及R4为TL431的分压h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号

tl431和光耦环路补偿

tl431和光耦环路补偿TL431是一种广泛应用于电子电路中的稳压器元件,它具有高精度和低温漂移等特点,可用于电压参考和误差放大器等电路中。

而光耦环路补偿是一种常见的补偿技术,用于解决电路中的稳定性和误差问题。

本文将重点讨论TL431和光耦环路补偿的原理、应用以及优缺点。

我们来介绍一下TL431。

TL431是一种三端可编程稳压器,通过调整其参考电压来实现对输出电压的稳定控制。

它具有高精度的参考电压(通常为2.5V),并且在工作温度范围内具有较低的温度漂移。

它广泛应用于电源、电池充电管理、电压监测和开关电源等领域。

TL431的工作原理是通过内部的比较器将参考电压与外部反馈电压进行比较,然后调整控制端电流来稳定输出电压。

然而,由于外部电路中存在温度、电压和负载等因素的影响,TL431的稳定性和精度可能会受到一定的影响。

为了解决这些问题,可以采用光耦环路补偿技术。

光耦环路补偿是一种将光耦器应用于反馈环路中的方法,通过测量输出电压并将其传输到控制端,实现对输出电压的精确控制。

在光耦环路补偿中,光耦器充当了信号传输的介质。

它由发光二极管和光敏三极管组成,当发光二极管处于导通状态时,光敏三极管将接收到光信号,并将其转换为电信号。

这个电信号可以用来控制TL431的控制端电流,从而控制输出电压。

通过这种方式,光耦环路补偿可以实现对输出电压的精确控制,并提高稳定性和精度。

光耦环路补偿在电源和开关电源等领域得到了广泛的应用。

例如,在开关电源中,输出电压的稳定性对于保证电路正常工作至关重要。

通过采用光耦环路补偿技术,可以实现对输出电压的精确控制,提高系统的稳定性和响应速度。

另外,在电源管理和电池充电管理中,TL431和光耦环路补偿也可以用于精确控制输出电压,从而提高系统的性能和可靠性。

然而,光耦环路补偿也存在一些缺点。

首先,由于光耦器的响应速度有限,可能会对系统的动态响应产生一定的影响。

其次,光耦器的稳定性和精度也可能受到环境因素的影响,例如温度和光照强度等。

光电耦合器和TL431组成的稳压电路分析

光电耦合器和TL431组成的稳压电路分析
用TL431和光电耦合器组成的稳压调整电路,在开关电源中经常能看到,很常见的电路,这个电路看明白,好多的电源稳压电路就都明白了!
开关电源输出的电源电压变化,一般都是经过电阻分压,检测到电压变化的信号,加到了TL431参考极,当输出电压升高时,通过电阻分压加到TL431参考极的电压就会升高,引起TL431阴极到阳极导通。

那么TL431导通,又引起光电耦合器的1脚和2脚间的发光二极管有电流通过,引起3脚和4脚之间的光敏三极管导通,这个光敏三极管导通又会通过电路控制使开关管导通时间变短,使输出电压降低下来!
这个光电耦合器在电路中,也起到了隔离的作用,你看它的名称“光电耦合”看名称都知道它的工作原理了吧!
同时,这个光电耦合器也属于集成电路的一种,所以电路符号也是用:IC 或者N来表示的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:回授迴路的設計需要仔細地思考與分析。

未被發現的不良回授路徑很容易被忽略,並且會危害電路設計。

本文將探討一種常見的回授電路,與設計人員所面臨的潛在問題,並將提出這些問題的解決方案。

TL431/光耦合器回授電路
TL431與光耦合器是電源轉換器設計人員常用的一種組合。

但若不謹慎思考與設計,此組合會讓工程師感到十分棘手。

本文將討論許多經驗不足甚至連部份有經驗的設計人員皆容易落入的窠臼。

圖1是典型電路。

R1與R2組成的電阻分壓器在輸出電壓達到目標值時,會讓R1與R2的接點電壓剛好等於TL431的內部參考電壓。

電阻R3以及電容C1與C2提供TL431所需的回授迴路補償以便穩定控制迴路。

迴路增益值決定後,即可計算這些元件值並將它們加在一起。

圖1:典型的TL431回授電路。

圖1的TL431電路增益可由下列公式計算:
其中Zfb等於:
ω則代表角速度(radians/sec)。

光耦合器迴路增益=(R6/R4)×光耦合器電流轉換比(Current Transfer Ratio;CTR),設計人員必須知道光耦合器的電流轉換比,才能計算該增益。

但實際轉移函數是由光耦合器的LED電流決定,所以圖1的TL431電路總增益還包括另一因數。

該函數是(Vout-Vcathode)/R4,其中Vout等於進入TL431的Vsense電壓,這使得TL431與光耦合器的「總增益方程式」等於:
上式的+1項在本文裡代表「隱藏」的回授路徑,只要Zfb/R1遠大於1即可忽略。

在後面的示波器圖片中,將進一步解釋和顯示該項的影響,我們現在先假設這個公式是正確的。

設計人員只要將電源轉換器的各項增益元素相乘,就能得到不考慮回授電路影響下的轉換器開迴路增益。

這些元素包括:變壓器圈數比;PWM主動輸出濾波器元件效應和TL431增益以外的相關負載效應;以及光耦合器的影響。

轉換器會在特定的開關頻率下操作。

設計人員知道開迴路總增益須在低於該頻率6分之1的某個點跨過0dB,因此多數設計人員會留下適當的元件公差,其它人則會將跨越點設計在大約該頻率10分之1的位置。

在此例中,我們假設開關頻率固定為100kHz。

由於已知控制到輸出增益(control-to-output gain)在目標跨越頻率點的增益值,接下來只要讓TL431回授迴路和光耦合器的增益等於該增益值的倒數即可。

設計人員已知道要在什麼樣的頻率下,才能讓TL431的迴路在相位增益大於45度的位置跨越0dB,因此他們現在可以選擇該迴路的零件。

如果TL431的電路增益必須超過20dB,那只要選擇正確的R3電阻以及C1和C2電容,就能決定TL431增益曲線。

此時設計人員可將+1項忽略,因為它遠小於TL431的增益。

圖2是轉換器的控制到輸出增益圖,它在10kHz目標跨越點的增益為0.1或-
20dB,這表示回授迴路在零跨越點的增益必須等於+20dB或10倍。

圖2:轉換器的控制到輸出增益圖。

設計人員現能決定他們所想要的迴路響應,然後選擇適當的R1﹐R2﹐R3﹐R4﹐R6﹐C1和C2。

為了簡化設計起見,此處讓R4等於R6,同時選擇電流轉換比等於100的光耦合器(亦即通過LED的每個毫安培電流都會讓電晶體輸出1個毫安培電流)。

為讓10kHz增益值等於10,R3必須等於10倍的R1。

TL431增益曲線在0dB點後應逐漸下滑,但由於設計人員仍需一定程度的相位增益,所以選擇C2時應令其20kHz
阻抗值等於R3。

設計人員要求低頻部份的增益較高,但0dB跨越點的相位增益要大於45度,所以選擇1kHz阻抗等R3的C1值。

圖3:控制到輸出、TL431和總系統迴路增益的頻率關係圖。

圖3顯示控制到輸出(實線)、補償增益(點線)和系統總增益(虛線)的最初開迴路增益圖。

這份設計在此例中工作很理想:總迴路增益會在10kHz處跨越0dB(在圖3中,垂直座標值等於1之處),每10倍頻的增益斜率則為20dB,這能提供設計人員所要的相位邊限。

然而實際應用不一定能達到這些理想條件。

我們將以一個控制到輸出增益為+20dB 的例子做為說明,發現就算遵守前面例子的同樣規則,並忽略增益方程式的+1項,結果卻有很大不同。

區別在於根據設計,+1項會使TL431與光耦合器的增益,絕不會降到光耦合器本身增益以下。

這是由於TL431感測的訊號,同樣會出現在提供電流給光耦合器的電壓源,這也就是所謂的「隱藏迴路」。

隨著TL431增益值降到0dB以下,它會變成很穩定的電壓。

然而電壓源(圖1的+Vout)上的任何訊號,仍會透過光耦合器在電流上產生訊號。

對設計人員而言,選擇R3等於1/10 R1,意味著圖1電路的+Vout點若出現
10kHz 100mV弦波訊號,TL431陰極就會產生與+Vout訊號反相的10mV訊號。

這個
設計會在R4電阻兩端造成110mV訊號(其中100mV來自電阻的+Vout端,10mV來自TL431陰極)。

電路需要10mV訊號才能在10kHz得到0dB增益值,這使總迴路增益在所要求的10kHz跨越點仍為+20dB。

隨著頻率繼續升高,誤差放大器輸出訊號會越來越弱。

但來自訊號源的訊號依然不變,通過電阻R4的電流也繼續由+Vout電壓主導。

這表示隨著誤差放大器的增益通過0dB,由TL431和光耦合器電路組成的回授迴路增益曲線將逐漸平坦,並如下圖4所示固定於1或0dB (點線)。

圖4:增益元件控制到輸出、回授電路和總開迴路增益的增益圖。

解決此問題的方法是在R4與Vout間增加一個濾波器,讓R4有穩定的電壓源。

在此例中使用濾波器和串聯穩壓器的典型做法如圖5所示。

圖5:包含濾波電路的回授迴路。

圖6是增加濾波電路後的增益曲線,可以看出它產生我們所要的TL431增益曲線。

圖6:在R4與Vout之間增加濾波器所得到的效果。

我們還建立一個電路,來展示增加濾波器的效果並進行測試。

圖7即為測試所用的電路。

圖7:測試電路。

為了測量電路的迴路增益,先在R9兩端加上一個訊號,然後測量兩個電路點之間的電壓。

第一個要測量的電路點是R9與R7的接點。

第二個電路點則視測量對象為TLV431增益或光耦合器輸出而定。

若要測量
TLV431增益就將它接到TLV431的陰極,若要測量CNY17就連接到光電晶體的射極。

圖8顯示TLV431的增益與相位圖,圖9則是CNY17射極的增益與相位圖。

圖8:TLV431的增益。

圖9:CNY17的增益。

圖10:測試電路的增益圖。

圖11:測試電路的相位圖。

測量過程中以不同頻率得到的增益值,顯示於之後的示波器圖上。

圖12與13顯示增益值的相對改變情形。

圖12:10Hz的電壓。

圖13:50Hz的電壓。

最上面的波形是以差動方式將訊號加到R9兩端(圖7中的A點),然後測量R9與R7的連接點所得到的波形。

下面的波形是加到TLV431陰極的訊號(圖7中的B點),中間的波形則是光耦合器的射極電壓波形(圖7中的C點)。

可以看出光耦合器射極與TLV431陰極的電壓相位剛好相差180度,TLV431訊號振幅也略大於光耦合器的光電晶體射極,這正是電流轉換比小於1所造成的影響。

最後,我們還看到TLV431與光耦合器的50Hz波形振幅都小於10Hz時的振幅。

圖14:100Hz的電壓。

圖15:500Hz的電壓。

增益會隨著頻率升高而逐漸下降。

但從迴路響應圖形可以看出光耦合器的增益或振幅會逐漸穩定,TLV431的增益則會繼續下降。

從圖10可以看出這應出現在500Hz左右。

為了更方便觀察這些效應,接下來的幾張示波器圖片都使用較大的輸入訊號。

圖16:1kHz的電壓。

圖17:5kHz的電壓。

TLV431的輸出會隨著頻率進一步升得更高而繼續下降。

到了5kHz時,示波器上幾乎已看不到漣波。

然而,光耦合器輸入訊號與輸出訊號則幾乎同樣大小。

圖18:10kHz的電壓。

到了10kHz時,TLV431的電壓看起來就像一條直線,光耦合器的輸出則仍可看出輸入弦波的形狀。

這些結果都吻合本文前面討論的測量值與計算結果。

結論:直流電源轉換器採用這類回授設計時,常需對提供光耦合器電流的電壓源進行濾波。

它有助於除去這個「隱藏」路徑,並利用TL431附近的元件控制回授迴路增益。

相关文档
最新文档