有理数单元:相反数与绝对值

合集下载

有理数的绝对值与相反数的教学指导

有理数的绝对值与相反数的教学指导

有理数的绝对值与相反数的教学指导有理数是我们在数学学习中经常接触到的概念之一。

而其中涉及到的绝对值和相反数的概念是我们需要特别关注和掌握的内容。

本文将围绕有理数的绝对值和相反数展开教学指导,并针对不同年级和学生的特点提供相应的教学方法和技巧。

一、绝对值的概念与性质绝对值是一个数的非负值,即一个数到原点的距离。

在教学中,我们可以通过生活中的例子来引入绝对值的概念,比如一个人走了20米的路程,那么他离起点的距离是多少?接下来,我们可以引入绝对值的符号记法,即|a|表示a的绝对值。

例如,|5|表示5的绝对值为5,|-3|表示-3的绝对值也是3。

在教学中,我们可以引导学生探索绝对值的性质,例如:1. 任何数的绝对值都不小于0。

2. 正数的绝对值等于它本身。

3. 负数的绝对值等于它的相反数。

4. 两个数的绝对值的和等于它们的和的绝对值。

通过实际的计算和练习题,学生可以加深对绝对值概念和性质的理解和掌握。

二、相反数的概念与性质相反数是指绝对值相等、但符号相反的两个数。

在教学中,我们可以通过类似于以下的例子来引入相反数的概念:小明手里有5元钱,他往花瓶里丢了1元,那么他手里还剩下多少钱?这个问题引导学生思考正数和负数之间的关系,从而引入相反数的概念。

然后,我们可以引入相反数的符号记法,即-a表示a的相反数。

例如,5的相反数是-5,-3的相反数是3。

在教学中,我们可以引导学生探索相反数的性质,例如:1. 一个数和它的相反数的和等于0。

2. 相反数的相反数等于原数本身。

通过实际的计算和练习题,学生可以巩固对相反数概念和性质的理解和运用。

三、教学方法与技巧针对不同年级和学生的特点,我们可以采用不同的教学方法和技巧来进行有理数的绝对值与相反数的教学。

以下是一些建议:1. 初级阶段:在初级阶段,学生可能对负数的概念和运算还不够熟悉,可以通过具体的实物和图形来引导学生理解绝对值和相反数的概念,例如通过表示温度的正负号来引导学生理解绝对值的概念。

有理数的相关概念-相反数和绝对值(教案)

有理数的相关概念-相反数和绝对值(教案)
同时,我也在思考如何将信息技术融入教学中,以增强学生的学习兴趣和课堂参与度。例如,利用多媒体课件展示数轴的动态变化,让学生更直观地理解相反数和绝对值的含义。
3.空间观念:借助数轴,让学生直观地理解绝对值的概念,培养空间观念和几何直观。
4.问题解决:通过实际问题的引入,使学生能够运用相反数和绝对值知识解决问题,提高解决问题的能力和数学应用意识。
5.沟通交流:在小组讨论和课堂互动中,培养学生清晰表达观点、倾听他人意见的能力,增强合作交流素养。
三、教学难点与重点
-难点四:理解相反数和绝对值在不同情境下的应用,如符号的转换、距离的计算等。
-突破方选择合适的数学工具解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的相关概念-相反数和绝对值》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和距离的概念?”(例如,温度的变化,数轴上的移动)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相反数和绝对值的奥秘。
有理数的相关概念-相反数和绝对值(教案)
一、教学内容
本节课选自七年级数学上册《有理数》章节,主要内容包括:
1.相反数的定义:相反数是指两个数绝对值相等,符号相反的数。如,+3的相反数是-3,-4的相反数是+4。
2.相反数的性质:一个数的相反数加上该数等于0。
3.绝对值的定义:绝对值是指一个数在数轴上对应的点到原点的距离。如,|+3|=3,|-3|=3。
1.教学重点
-重点一:相反数的定义及其性质。理解相反数的概念,掌握一个数的相反数就是符号相反的数,且它们的和为零。
-举例:强调+3和-3互为相反数,且(+3)+(-3)=0。

专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(解析版)

专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(解析版)

专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

考点2 有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

两个符号:符号相同是正数,符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。

2.1 认识有理数 第2课时 相反数、绝对值

2.1 认识有理数 第2课时 相反数、绝对值

置,分别记作
3
千米和 -5 千米.这样,利用有理数就可
以明确表示每辆汽车在公路上的位置了。
我们知道,出租汽车是计程收费的,这时我们只需要考虑
汽车行驶的距离,不需要考虑方向,当不考虑方向时,两辆汽
车行驶的距离就可以记为
3
千米和
做+3的绝对值,5叫做-5的绝对值。
5
千米,这里的3叫
新知小结
一个数的数量大小叫作这个数的绝对值,0的绝对
(2)你能仿照气温的比较将下列这组数按照从小到大的顺序进行
排列吗?
-1,0,-3,2.5,-1.5,4。
-3<-1.5<-1<0<2.5
典例精析
(3)你认为负数和正数应怎样比较大小?负数和0呢?两个负数呢?
与同伴进行交流。
正数大于0,负数小于0,正数大于负数。
两个负数,绝对值大的反而小。
典例精析
2
2
数量相等。我们称其中一个数为另一个数的相反数,也称这两个数
互为相反数。特别地,0的相反数是0。
思考
如何求一个数的相反数呢?
求一个数的相反数,就是在这个数的前面添上“-”号。
一般地,a的相反数是 -a
;-a的相反数是 a

即a和-a互为相反数。
针对练习:
(1)如果a=13,那么-a=____;(2)如果a=-5.4,那么-a=____;
5.已知a,b互为相反数,则a+b= 0

6.比较大小:-|- |

或“=”填空)




-(- ).(用“>”、“<”

课堂总结
相反

相反
数、
绝对

绝对

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

《1.3绝对值与相反数》

《1.3绝对值与相反数》

练一练
1.填空
(1)绝对值等于0的数是___, 0
(2)绝对值等于5.25的正数是_____, 5.25 (3)绝对值等于5.25的负数是______, -5.25 (4)绝对值等于2的数是_______. 2或-2
2.判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. ×
(2)|3|>0. √
3 5
5
-5 -4
3
3 5
3
1 2 3 4
5
5
-3 -2 -1
0
(2)观察各点在数轴上的位置,得到
3 3 3 3 |3|=3,|-3|=3;|5|=5,|-5|=5; | | ,| | . 5 5 5 5
二 相反数
观察与思考
观察例1中的三组数在数轴上的位置和绝对值的大小, 想一想这三组数的共同特点是什么? 符号不同
课后作业
见教材本课时习题
x x 3x 5. 的相反数是_____ ,-3x的相反数是___. 2 2
6.判断并改错: (1) 相反数等于它本身的数只有0; ﹙ (2) 符号不同的两个数互为相反数;﹙ ﹚ ﹚ ( )
(3)一个数的绝对值等于本身,则这个数一定是正数;
(4)一个数的绝对值等于它的相反数,这个数一定是负数;(
(5)如果两个数的绝对值相等,那么这两个数一如果两个数不相等,那么这两个数的绝对值一定不等;(
(7)有理数的绝对值一定是非负数. ( )
)
7. 化简下列各数,并求出它们的绝对值. (1)-(+10) (2)+(-0.15) (3)+(+3)
(4)-(-12)
解:
(5)+[-(-1.1)]

班课讲义有理数(二)绝对值相反数和比较大小

班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。

6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。

3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。

理解:代数定义:只有符号不同的两个数互为相反数。

0的相反数是0。

几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。

0的相反数是0。

说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。

“0的相反数是0”是相反数定义的一部分。

这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。

补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。

不能理解为只要符号不同的两个数就互为相反数。

另外,“0的相反数是0”也是相反数定义的一部分。

关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。

关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

如5与-5是互为相反数。

(3)0的相反数是0。

也只有0的相反数是它的本身。

2024秋七年级数学上册第2章有理数2.4绝对值与相反数2相反数说课稿(新版)苏科版

2024秋七年级数学上册第2章有理数2.4绝对值与相反数2相反数说课稿(新版)苏科版
7. 教学反馈表:准备一份教学反馈表,用于收集学生对课堂教学的反馈和建议,以便改进教学方法和内容。
五、教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
- 设计预习问题:围绕“相反数与绝对值”课题,设计一系列具有启发性和探究性的问题,引导学生自主思考。
重点:
1. 相反数的概念及其运用
2. 绝对值的定义及其性质
难点:
1. 相反数的推导和应用
2. 绝对值在不同情况下的计算方法
解决办法:
1. 对于重点内容,通过具体的例子和练习题,让学生反复练习,巩固概念。
2. 对于难点内容,可以通过分步骤讲解、引导学生自主探究和小组讨论,以动画或实物演示等方式,帮助学生形象理解。同时,设计具有梯度的练习题,让学生在练习中逐步克服困难,掌握知识点。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
作用与目的:
- 帮助学生提前了解“相反数与绝对值”课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过故事、案例或视频等方式,引出“相反数与绝对值”课题,激发学生的学习兴趣。
2024秋七年级数学上册 第2章 有理数2.4绝对值与相反数 2相反数说课稿(新版)苏科版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、课程基本信息
1.课程名称:七年级数学上册第2章 有理数2.4绝对值与相反数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版)2020七年级上册
有理数单元:相反数与绝对值
考点一:求一个数(或式子)的相反数
考点解读:先求出这个数(或式子),然后在其前面加“-”号
典型例题:﹣(﹣9)的相反数是_______
思路解析:﹣(﹣9)=9,所以其相反数是-9.
考点二:与倒数的结合
考点解读:求倒数是分子、分母交换位置
典型例题:如果一个数的倒数的相反数是3,那么这个数是()
A.B.C.﹣D.﹣
思路解析:本题需要运用逆推法,3化成假分数为,先求出它的相反数为-,再求出其倒数为-,所以选D。

考点三:运用绝对值比较负数的大小
考点解读:比较两个负数的大小的方法是比较它们的绝对值,其绝对值大的反而小
典型例题:用“>”或“<”填空:﹣________﹣
思路解析:因为﹣的绝对值是,﹣的绝对值是,<,所以填“>”号。

考点四:绝对值与相反数、倒数的结合
考点解读:互为相反数的两个数和为0,互为倒数的两个数积为1
典型例题:已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则a+b+mn-x=.思路解析:因为a、b互为相反数,所以a+b=0,因为m、n互为倒数,mn=1,因为x的绝对值为2,所以x=+2或-2,分别代入,所以原式得-1或3.
考点五:绝对值与字母的结合
考点解读:结合绝对值,得出字母取值的正负性和题目的其它限制条件
典型例题:已知|a|=3,|b|=5,且a+b>0,那么a-b的值等于__________
思路解析:因为|a|=3,所以a=3或-3,因为|b|=5,所以b=5或-5,因为a+b>0,则当a=3时,b=5;当a=-3时,b=5,所以a-b=-2或-8.
考点六:绝对值与数轴的结合
考点解读:结合数轴,得出字母取值的正负性和代数式取值的正负性
典型例题:已知有理数a、b、c在数轴上的位置如图,请化简:|c﹣b|+|a﹣b|﹣|a+c|
思路解析:由数轴可知,c>0,b>0,a<0,且|c|>|a|,所以c-b>0,a-b<0,a+c>0,根据绝对值的性质,化简原式得:-2a。

相关文档
最新文档