磁芯小气隙加工数据分析报告
变压器气隙

变压器气隙电感是开关电源中重要的元件之一,其合理设计有利于提高电源效率和可靠性。
为防止电感饱和,需要在磁芯中加入气隙。
铁粉芯的气隙均匀分布在磁芯中。
如果采用高导磁材料来绕制电感,传统的做法是采用集中气隙。
为了减少由气隙附近的扩散磁通引起的绕组损耗,绕组布置需避开气隙3个左右的气隙长度。
然而对于较大的气隙,那样做将使磁芯窗口的利用率大大降低,此时可应用多个小气隙来构成分布气隙。
文献[1]提出利用交错气隙以减少旁路磁通,从而减少绕组损耗。
前人的研究成果对电感设计具有指导意义,但对某些方面没有进行详细研究,特别是多气隙中各小气隙之间磁柱的长度对扩散磁通的影响,气隙布置在磁芯拐角附近对扩散磁通的影响,以及分布气隙的个数如何选择等。
近年来,电磁场有限元分析软件得到广泛的应用,分析结果的正确性得到了大量的证实[2]。
本文在前人研究的基础上,利用电磁场有限元软件对上述问题进行详细的研究。
2 气隙在磁芯柱上不同位置对绕组损耗的影响根据文献[1]的分析,在电感中的磁通可分成以下三个部分(如图1所示):(1)在磁芯中构成回路的主磁通;(2)气隙附近进入磁芯窗口的扩散磁通;(3)穿越磁柱之间窗口内的旁路磁通。
由于主磁通未深入磁芯窗口内,故它不会在绕组上感应出涡流。
扩散磁通则会在气隙附近的绕组上感应出涡流。
旁路磁通穿越磁柱间的磁芯窗口,将在绕组上感应出涡流。
气隙在磁芯柱上的不同位置对磁芯窗口内的扩散磁通和旁路磁通都可能产生影响。
对绕组由漆包线构成的电感,气隙在磁芯柱上不同位置对磁芯窗口内旁路磁通的影响在文献[1]中已有详细分析。
本节主要分析对扩散磁通的影响,并分析气隙在磁芯柱上的位置对铜箔与漆包线绕制的电感所产生的不同影响。
对于高频电感,相对气隙设在磁芯中部,如气隙设在磁芯拐角处,会使此处的扩散磁通更容易深入到磁芯窗口内(如图2(a)、(b)所示),这是因为磁通的分布,与所通过路径的磁阻分布有关。
相对气隙设在磁芯中部,气隙设在拐角处,扩散磁通经过路径的磁阻要比气隙设在磁芯窗口中部要小。
ec4215磁芯参数

ec4215磁芯参数1.引言1.1 概述磁芯是一种常见的电子元件,广泛应用于各种电气设备中。
磁芯的参数是指其物理性质和特性,对于磁芯的使用和性能具有重要的影响。
本文将对磁芯参数进行详细介绍和分析。
首先,磁芯的参数可以分为几个方面。
一是磁导率,磁导率是衡量材料导磁性能的重要参数,可以反映磁芯对磁场的响应能力。
它的大小决定了磁芯在电磁场中的感应电流和电磁能量的转换效果,因此磁导率的选择和优化对于提高磁芯的性能至关重要。
第二,磁芯的磁阻也是一项重要参数。
磁阻是磁通通过磁芯时所遇到的阻力,对于磁芯的导磁能力和传导磁场的效果有着直接的影响。
通过合理地选择磁芯的材料和尺寸,并控制磁芯的磁阻,可以提高磁芯的磁场传输效率,从而提高电气设备的性能。
此外,磁芯的磁化特性也是需要关注的参数之一。
磁化特性涵盖了磁芯的磁感应强度、矫顽力和剩磁等方面。
这些参数直接关系到磁芯在正常工作状态下的磁化效果和稳定性。
通过调整磁芯的磁化特性,可以满足不同电磁场条件下的工作要求,提高磁芯的适应性和可靠性。
综上所述,磁芯的参数是衡量磁芯性能和应用效果的重要指标。
磁导率、磁阻和磁化特性等参数相互影响,需要综合考虑和优化才能达到更好的性能。
在后续的文章中,我们将对磁芯参数进行进一步的详细介绍和分析,以便读者更好地理解和应用磁芯技术。
文章结构:本文主要介绍了ec4215磁芯的参数。
文章分为引言、正文和结论三个部分。
引言部分包括以下内容:1.1 概述:介绍磁芯在电子设备中的重要性和应用领域。
同时指出ec4215磁芯的特点和优势。
1.2 文章结构:说明文章的整体结构和各个部分的内容安排。
1.3 目的:阐明本文的写作目的,即介绍ec4215磁芯的参数并对其进行分析和总结。
正文部分分为2.1和2.2两个子节,分别介绍了磁芯参数1和磁芯参数2的内容。
2.1 磁芯参数1:详细介绍ec4215磁芯的某个重要参数,例如磁感应强度、矫顽力、饱和磁感应强度等。
阐述这些参数的意义和影响因素,并给出具体数值和对应的实验结果或理论推导。
气隙磁芯电感(赵修科)

气隙的边缘磁通
磁没有绝缘,空气隙周围空间也是磁路的一部分 -边缘磁通。气隙越大,边缘磁通范围越大。 边缘磁通与气隙磁通并联, 论坛 om 器 t.c 在线圈包围的磁芯中磁通增 bi 压 变 g子 bi 加,总磁链ψ增加,电感量 电 s. 特 bb 加大。 比 // 大 p: tt h
维持电感量措施
直流滤波电感设计要点
直流滤波电感量(Buck) 式中:
反激连续模式,不仅考虑直流,也要考虑交流邻近效 应损耗。 断续模式按损耗100mW/cm3(自冷)选取磁通密度,既 要考虑线圈损耗,也要考虑磁芯损耗。
坛 m U 器论 o +o U R =U cΔ t. 压 bi ' Dmin = U o 子U i max / 变 ig 电 s.b 特 bb 参数选取:市售功率磁芯 B ≤ 0.9 Bs100 比 // 大 p: 损耗:主要是铜损:直流滤波电感只考虑直流损耗; tt h
气隙磁芯电感 坛
论 com 器 t. 压 bi 南京航空航天大学 变 g子 bi 电 赵修科 s. 特 bb 比 // 大 jops@ p: tt h
gelblion@
电感定义
坛 m i 器论 .co ψ 是线圈主磁链与散磁链总和, bit 压 变 g子 bi 不存在‘漏磁’。 电 s. 特 bb 比 // 如果是环形闭合磁路磁芯 大 p: ψ NBA t ht = N 2 μ0 μr A L= = i Hl / N l
电感能量
电流产生磁场,即建立磁场能量(环形为例)
VBH LI Wm = ∫ AlHdB = V ∫ HdB = 坛 = 0 0 论 2com 2 器 t. 压 bi 环形气隙磁场能量子变 ig电 B 2s.b 2 Vc B比特Vδ bb Wm = 大 +:// 2 μ0 μttp 2 μ0 hr
气隙存储能量分析

气隙存储能量分析模型:反激变压器为例,内部磁芯磁路长度L1,气隙长度L2,面积S。
前提:线圈通电流I后,φ相等,同时B近似相等。
磁芯到达B1H1,气隙到达B1,H2。
能量分布:磁芯能量密度为OB1C所围面积(0.5*B1*H1),气隙能量密度为OB1E所围面积(0.5*B1*H2)具体看另一篇《磁滞损耗与磁滞曲线面积对应关系积分推导》。
上图可以看出气隙能量密度明显高于磁芯。
磁芯能量=0.5*B1*H1*L1*S=0.5*Ur*H1*H1*L1*S=0.5*B1*B1*L1/Ur*S气隙能量=0.5*B1*H2*L2*S=0.5*Uo*H2*H2*L2*S=0.5*B1*B1*L2/Uo*S存储能量大小取决于L1/Ur L2/Uo两者。
整体拟合曲线的Ux如下:N*I=H1*L1+H2*L2=H平均*(L1+L2)L1*B1/U1+L2*B1/U0=(L1+L2)*B1/UxUx=(L1+L2)/(L1/U1+L2/Uo)整合曲线从能量角度证明:整合曲线围成的面积对应能量密度*(L1+L2)*S=0.5*B1*H平均*(L1+L2)*S=0.5*B1*(B1/Ux)*(L1+L2)*S=0.5*B1*B1*(L1/U1+L2/Uo)*S=0.5*B1*H1*L1*S+0.5*B1*H2*L2*S=磁芯能量+气隙能量磁芯作用讨论:如果磁芯磁导率很高趋于无穷,其作用应该是将磁路短路,将所有磁势加在气隙上,使气隙得到很高的H,从而储能。
N*I=H1*L1+H2*L2=L1*B1/U1+L2*B1/U0实际是磁芯与气隙都有储能,分布取决于L1/Ur L2/Uo两者大小比例,如磁芯长度比100倍,磁导率比1000倍,则气隙能量是磁芯能量10倍。
开关变压器磁芯气隙的选取

根据变压器的额定电压选取
总结词
额定电压越高,所需气隙越大。
详细描述
在高压应用中,为了防止磁芯饱和,需要适当增加气隙。气隙的大小应确保在最 大工作电压下,磁芯不会进入饱和状态。
根据变压器的额定电流选取
总结词
额定电流越大,所需气隙越小。
详细描述
电流越大,磁芯中的磁通密度越高,为了防止磁芯过热和磁饱和,需要减小气隙以减小励磁电感和磁通密度。
总结词:中等气隙
详细描述:对于100kHz的开关变压器,由于频率有所提高,磁芯的磁通密度相应增大,因此需要选择中等大小的气隙,通常 在0.5mm至1mm之间。中等的气隙可以在减小磁阻和提高效率之间取得平衡。
实例三:200kHz开关变压器的气隙选取
总结词:较大气隙
详细描述:对于200kHz及以上的开关变压器,由于频率较高,磁芯的磁通密度较大,因此需要选择 较大的气隙,通常在1mm至2mm之间。较大的气隙可以减小磁芯的磁饱和现象,提高变压器的可靠 性。
适用范围
适用于研发阶段,对未知气隙值进 行探索和优化。
经验法
根据经验数据
适用范围
根据以往的设计经验,对于特定类型 的磁芯和用途,选取合适的气隙值。
适用于成熟产品设计和生产过程中, 对气隙值的快速选取。
考虑因素
经验法依赖于过往的设计经验和实际 运行效果,可能无法适应新的应用场 景和变化的工作条件。
04
作用
气隙的主要作用是调节磁通量和 磁路磁阻,从而影响变压器的性 能。
气隙对开关变压器性能的影响
01
02
03
磁通量调节
通过改变气隙大小,可以 调节磁通量的大小,进而 影响变压器的输出电压和 电流。
磁路磁阻
磁芯材料分析

磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁芯如何开气隙

le/ue=24.2/2300=0.0105
le的单位是mm
电感跌落 L/Lg 气隙深度 lg
表三
1.1
1.5
0.01155 0.01575
2
3
0.021 0.0315
4
5
0.042 0.0525
电感跌落 L/Lg 气隙深度 lg
8
9
0.084 0.0945
10 0.105
12
15
0.126 0.1575
30
40
50
60
70
80
0.97305 1.2974 1.62175 1.9461 2.27045 2.5948
从以上可以看出:气隙深度正比于电感的跌落幅度;磁芯越小,气隙越小,加工越难.
3: 开气隙的难度处决于气隙大小,气隙越大,设备成本低,易达到客户要求,加工难度小; 气隙越小,要求加工用的设备精度高,不易达到客户要求,加工成本高,加工难度大.
10%
15%
20%
25%
30%
9.09% 13.04% 16.67% 20.00% 23.08%
气隙误差 △/lg: 是由加工气隙设备的精度△(数显磨床精度为0.02mm) 和气隙深度lg(处决于客户要求的电感受量大小和无气隙之感量)决定的.
b: 以磨床的精度0.02mm为例,在其它条件固定不变的情况下,
0.3 6.25%
0.35 5.41%
气隙深度 lg(mm) 电感误差 △/Lg
0.4 4.76%
0.45 4.26%
0.5 3.85%
0.55 3.51%
0.6 3.23%
气隙深度 lg(mm) 电感误差 △/Lg
0.65 2.99%
磁环的技术要求

磁环的技术要求
磁环的技术要求包括以下方面:
1. 磁导率:通常选择高磁导率的磁环,如铁氧体、铁氧化物等。
2. 温度系数:要求温度系数小,以保证电感值随温度变化的程度较小。
3. 矫顽力:要求矫顽力低,以提高电感器的性能。
4. 磁芯气隙:气隙越小,电感值越大,饱和电流越小。
5. 防磁干扰:考虑到磁场对周围电路的影响,需要考虑防磁干扰。
6. 其他性能参数:如电阻率、损耗、居里温度等也需要根据具体应用进行选择和优化。
在磁环的制造过程中,还需要注意以下方面:
1. 磁芯材料的选择:根据应用需求选择合适的磁芯材料,如锰锌铁氧体、镍锌铁氧体等。
2. 磁芯尺寸的确定:根据电感值和直流饱和电流的要求,确定磁芯的截面积、匝数等尺寸。
3. 线径和绕制方式的选择:根据直流电阻和自谐频现象的要求,选择合适的线径和绕制方式。
4. 装配工艺的控制:保证磁芯与线材的紧密装配,以减小直流电阻和自谐频现象。
5. 性能测试与验证:对制造完成的磁环进行性能测试和验证,确保满足设计要求。
以上技术要求和制造过程中的注意事项,将直接影响磁环的性能和质量。
因此,在进行磁环设计和制造时,需要充分考虑这些因素并进行优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【鼎阳硬件智库原创︱电源】
变压器磁芯小气隙加工数据分析报告
文档编号:HWTT0002
----某磁芯加工实例
鼎阳硬件设计与测试智库专家组成员张里根
进进按语:
刚从事研发工作时,有位业界超一流大佬给我们新人上课,他提出电源的最高境界是结构设计、热设计和EMC设计。
后来我就常拿这句话用在讲课上,一下子就显得很装X了,也一下子拉近了和电源行业的朋友们的距离。
那位大佬在讲这个论点的时候,我心里在想的是,“变压器的磁芯气隙设计才是最高境界呢!”每个从事电源研发的朋友可能都经历过这方面的苦与痛。
鼎阳硬件智库顺应时代发展的潮流,深切相信每个有爱心的人们都有分享自己宝贵的知识和经验,以能帮到其他人的愿望。
这就是爱的力量!鼎阳硬件智库以“爱”为原点,倡导“连接-分享-协作-创造”。
也因此,我们呼吁更多的一线硬件高手能挤出晚上9:00-12:00的时间,将内心深厚的沉淀转换为文字,惠及人人!
今天分享的这篇文章虽然只有真正在电源研发领域浸润过的人才能看懂,但其价值是不言而喻的!这样宝贵的经验总结和实例验证的文章将充分彰显鼎阳硬件智库坚持做一件“纯粹的事业”的意义!
我们愿意在这个标题党阅读的时代坚持做一个“安静的美男子”!因为我们相信真正的工程师是乐于阅读带来沉静思考的好文章。
也许用英文来表达这种“静”更好:"DEEP QUIETNESS&STILLNESS"。
我们相信这种安静的力量会静水深流,感召更多有爱心的人愿意挤出晚上9:00-12:00的时间,加入到纯粹的分享的队伍!
`群策群力,连接所有硬件人。
相信行动的力量——呼吁您挤出晚上9:00-12:00的时间!
------------------------------------------------
前言:
一直以来磁芯粘接都是电源产品生产最为重要的工艺,研发样机试制验证阶段对磁芯粘接指标进行CPK 计算评估,生产环节要求作为重点工序控制、定岗定人。
与此同时,设计部门不断在应对产品性能提升所需求的高指标与限于可接受成本范围内的来料质量水平间的矛盾,努力通过各方面的改善来提升生产直通率、降低报废。
现阶段影响生产直通率最大的原因在于磁芯粘接固化前后感量的波动,即固化前可通过搓压、调节将感量控制在要求范围内,但固化后由于磁芯间胶厚度的波动变化导致磁芯气隙变化,感量波动,严重时超标。
很多公司迫切希望将感量精度控制在+(-)10%以内,最好是固化后磁芯感量等同于空感。
对有源嵌位等单端拓扑,因为感量变化会改变谐振周期,改变副边电压的上升下降时间,会影响效率,应力,太大,太小都不好;
对有ZVS要求的开环推挽拓扑,感量变化宽,很难实现管子的ZVS开通,应力会超标,开关损耗增大;以后的趋势希望感量范围变化窄10%以内,则模块的一致性,电源转换效率会更好。
磁芯小气隙开磨,中心柱点胶的精确控制磁芯感量方案确定后,我们进行小气隙磁芯加工影响电感量的影响度作试验分析,确定点胶后气隙引起电感量变化范围。
现来料无气隙的磁芯电感量偏差有55~75uH(无气隙) 6Ts 100kHz 1V,要将电感量可控制在50uH±10%以内,需要小气隙加工。
试验目的:
1. 对磁芯小气隙加工范围的加工工艺可行性方案确认;
2. 对小气隙点胶,加工装与隧道炉试验后的电感量一致性确认;
3. 对无气隙磁芯中心柱与端面点胶对电感量影响范围确认;
试验分组方法:
试验中我们分为三组试验:
A. 磁芯小气隙加工在50uH±10%以内,中心柱点胶,1kg压力工装,隧道炉120℃,1H;
B. 磁芯小气隙加工在50uH±10%以内,中心柱点胶,聚酰亚胺胶带固定,隧道炉120℃,1H;
C. 磁芯无气隙,55~75uH,中心柱点胶与端面点胶各一半,聚酰亚胺胶带固定,隧道炉120℃,1H;
采用G500灰胶点胶;6Ts线圈;3个工装6个位置,标示位置号;
试验结果:
1. 磁芯小气隙加工方案(磁芯均为E型,分有1). 印字标示与2).无印字标示二类):
①. 确认50uH±10%以内气隙范围为10um,故先将2).类磁芯进行精密气隙加工10um;
②. 装入6Ts线圈,确认工装测试与手工压力误差范围,若误差在2uH以内,可认为合格;
③. 装入6Ts线圈,与1).随机组合5次,电感量要求在中心值1uH偏差范围内为合格;若出现>2次超
出中心值2uH以上的,调整出现超差的1).类磁芯气隙;同时建立标准合格1). 2).类物料标本;
④. 依此,测试通过的1).磁芯认为合格,不再测试;
⑤. 每个2).类磁芯均需与标本1).先进行配对测试,再对新的1).类磁芯进行选对1个进行测试,范围在
2uH以内认为2).类合格;
⑥. ⑤点已选用的1).类磁芯再与标本2).进行配对测试,范围在2uH以内认为2).类合格;
⑦. 之后,依⑤⑥不断操作,直至生产完成。