激光加工技术
对激光加工技术的理解与认识

对激光加工技术的理解与认识一、激光加工技术的定义及原理激光加工技术是指利用激光器产生的高能量密度的激光束,对材料表面进行加工处理的一种先进制造技术。
其原理是利用激光器产生的高能量密度的激光束,通过聚焦透镜将激光束聚集到极小点上,使材料表面瞬间受热融化或汽化,从而实现对材料进行切割、打孔、焊接等各种加工处理。
二、激光加工技术的分类及应用1. 激光切割技术:主要应用于金属材料和非金属材料的切割处理。
2. 激光打孔技术:主要应用于金属板、塑料板、陶瓷等材料的打孔处理。
3. 激光焊接技术:主要应用于金属材料之间或者非金属材料与金属材料之间的焊接处理。
4. 激光雕刻技术:主要应用于木板、有机玻璃等非金属类材料上进行图案雕刻和文字刻写。
三、激光加工技术的优点1. 高精度:激光束可以聚焦到很小的点上,因此可以实现高精度的加工处理。
2. 高效率:激光加工速度快,可以大幅提高生产效率。
3. 无接触性:激光加工过程中不需要与材料接触,从而避免了因接触而产生的磨损和变形等问题。
4. 灵活性:激光加工可以对不同形状、不同材质的材料进行处理,具有很大的灵活性。
四、激光加工技术的缺点1. 高成本:激光器价格昂贵,且维护成本也较高。
2. 容易受环境影响:激光束容易受到环境因素(如气体、尘埃等)影响而发生偏移或散射等问题。
3. 容易产生毒害物质:在某些情况下,激光加工会产生有害气体和废弃物。
五、激光加工技术未来发展趋势1. 多波长多功能化:未来发展趋势是将激光器的波长从单一的红光扩展到多种波长,实现多功能化加工。
2. 智能化:激光加工技术将更加智能化,可以通过计算机程序控制激光器进行自动化生产。
3. 环保化:未来发展趋势是要求激光加工技术在加工过程中尽可能减少对环境的污染和对人体的伤害。
六、结语激光加工技术是一种先进的制造技术,具有高精度、高效率、无接触性和灵活性等优点。
未来发展趋势是多波长多功能化、智能化和环保化。
尽管激光加工技术存在一些缺点,但随着技术的不断发展和完善,其应用范围将会更广泛,为制造业带来更多的机遇和挑战。
激光加工技术的应用及未来发展趋势

激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。
本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。
一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。
激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。
2. 焊接。
激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。
3. 雕刻。
激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。
4. 理疗医疗。
激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。
二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。
随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。
目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。
虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。
例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。
三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。
未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。
未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。
未来的激光加工机将更加高效、便捷,操作起来更加人性化。
同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。
2. 更加精细化和智能化。
未来激光加工技术将更加智能化,加工精度将得到更大的提高。
激光加工技术的发展和应用

激光加工技术的发展和应用激光加工技术是一种高精度、高效率的加工方式,随着科学技术的不断进步,激光加工技术在工业制造、医疗、通信等领域得到广泛应用。
本文将从发展历程、工艺特点、应用领域几个方面来探讨激光加工技术的发展和应用。
一、发展历程激光加工技术起源于20世纪60年代,当时我们还没有现在所熟知的连续激光器,只有脉冲激光器。
脉冲激光器能够产生高能量密度的光束,用于切割、打孔等加工操作。
激光加工技术的发展主要依赖于光学、电子等各方面技术的发展,随着科技的进步,激光器出现了许多新的形态,如CO2激光器、光纤激光器、半导体激光器等。
同时,激光加工技术也不断发掘新的加工方法,如激光刻蚀、激光沉积、激光转移等。
二、工艺特点激光加工技术与传统加工技术的主要区别在于:激光加工是利用光束将工件表面局部加热,使其融化、气化或发生化学反应,实现加工形状的改变。
这一特点使激光加工具有以下几个突出的优点:1.高精度:激光加工可精确控制激光束的能量密度和加工轨迹,从而获得高精度的加工结果。
2.高效率:激光加工速度快,工艺质量好,且节省能源和材料。
3.灵活性:激光加工不受材料硬度、形状等限制,可对各种材料进行加工,且加工形式多样,如切割、打孔、雕刻、焊接等。
4.环保:激光加工没有污染、噪音和振动,可以实现工艺无废。
三、应用领域激光加工技术在众多领域得到了广泛应用,主要包括以下几个方面:1.工业制造激光加工技术在工业制造中几乎涵盖了所有的制造行业,例如,汽车制造、手机制造、空调制造、家电制造等。
激光加工技术可以用于零部件的切割、作标、打孔等操作,还可以用于三维打印、表面改性等方面。
2.医疗激光加工技术在医疗领域也有很多应用,例如,激光美容、激光治疗、激光手术等。
其中,激光手术是激光加工技术在医疗领域的重要应用之一。
激光手术与传统手术相比,具有切口小、止血快、恢复快等优势。
3.通信现代通信技术中,激光光纤通信技术是一项十分重要的技术。
激光加工技术的设计与实现

激光加工技术的设计与实现第一章激光加工技术的概述激光加工技术是一种基于激光器对材料进行加工的新型制造技术,它通过调节激光器输出功率、波长和光束的聚焦位置来实现多种不同的加工效果。
激光加工技术具有精度高、效率高、加工范围广等优点,在航空、汽车、电子、医疗等领域得到广泛应用。
第二章激光加工技术的设计2.1 设计原理激光加工技术的设计原理是通过激光增幅媒介的反向受激发射过程使激光器输出的激光束在通过聚焦透镜之后,聚焦到一个非常小的点上,使其能够达到很高的功率密度,从而使材料受到的热输入足够大,达到加工的目的。
2.2 设计流程激光加工技术的设计流程分为以下几个步骤:1. 确定加工目标:首先需要确定需要加工的材料和加工目标,如需要切割、雕刻、焊接等。
2. 确定激光器参数:根据加工目标,选择适当的激光器,确定输出功率、输出波长、光束质量等参数。
3. 选择透镜和聚焦头:选择适当的透镜和聚焦头对激光进行聚焦和集中,以达到所需的焦点尺寸和功率密度。
4. 设计机械系统:根据加工要求,设计适当的机械系统来实现激光器的移动和材料的定位。
5. 确定加工参数:根据所选材料、激光器参数和焦距等,确定最佳加工参数,如加工速度、功率密度等。
第三章激光加工技术的实现3.1 整体系统实现整体系统实现包括激光器、光学元件、机械系统、控制系统等部分。
激光器的输出经过多组光学元件的聚焦和分配,注入到加工头部,然后通过控制系统对激光器和机械系统进行控制,从而实现对材料的加工。
3.2 加工模式实现加工模式是指在加工过程中,激光束的照射模式,如点、线、面等,不同的加工模式对应不同的加工形式。
激光加工技术的加工模式实现一般有以下几种:1. 点模式:激光束直接聚焦成一个点照射到材料表面,针对性强,适合进行点焊和打孔操作等。
2. 线模式:将激光束聚焦成一条线段,在材料上进行快速轮廓切割等操作。
3. 面模式:将激光束扩大,成为一个平面,进行表面改性等大范围加工。
激光加工技术分类

激光加工技术分类
激光加工技术可以分为以下几类:
1. 激光切割:利用激光束的高能量密度,将材料切割成所需形状。
适用于金属、非金属和复合材料等多种材料。
2. 激光打标:利用激光束对材料表面进行氧化、脱色或永久性标记,用于产品标识、追溯和装饰等领域。
3. 激光焊接:通过激光束的高能量聚焦,将两个或多个材料焊接在一起,适用于金属、塑料和玻璃等材料的焊接。
4. 激光熔化沉积:将激光束聚焦在材料表面,使其熔化并与补充材料相结合,用于修复、涂覆和制造复杂形状的零件。
5. 激光打孔:利用激光束的高能量密度,在材料上产生小孔或导孔,用于电子器件、滤网和注射器等领域。
6. 激光去除:利用激光束的高能量密度将目标材料表面的薄层或污染物去除,用于清洗、去漆和去除氧化层等应用。
这些技术广泛应用于制造业、电子制造、航空航天、医疗器械、汽车工业等领域。
先进制造技术激光加工技术ppt

激光加工技术在先进制造中的发展前景
01
精密制造与超精密制造
随着制造业的不断升级,精密制造与超精密制造已成为发展的重要趋
势。激光加工技术能够实现高精度、高质量的制造,如光学元件、半
导体芯片等精密器件的制造,具有广泛的应用前景。
02
柔性制造与个性化定制
随着消费者需求的多样化,柔性制造与个性化定制已成为制造业的重
技术要求高
激光加工技术的操作需要专业的技术人员,对技术人员的技能 要求较高。
加工材料有限
激光加工技术适用于金属、塑料等材料,对于一些特殊材料, 如玻璃、陶瓷等则较难实现加工。
如何克服激光加工技术的局限性
加强技术研发
通过加强技术研发,不断优化激光加工技术的设备及工 艺,降低成本,提高效率。
加强技术培训
激光加工技术的特点
高能量密度、高精度、低热影响区、加工速度快、可加工材 料范围广、加工质量好等。
激光加工技术的发展历程
第一阶段
第二阶段
20世纪60年代,激光器的诞生,标志着激 光加工技术的开始。
20世纪70年代,激光加工技术开始进入工 业应用,出现了激光切割、焊接、表面处理 等技术。
第三阶段
第四阶段
先进制造技术激光加工技术ppt
xx年xx月xx日
目录
• 激光加工技术概述 • 激光加工技术在先进制造中的应用 • 激光加工技术的工艺及设备 • 激光加工技术的优势及局限性 • 激光加工技术在先进制造中的发展趋势和前景 • 案例分析
01
激光加工技术概述
激光加工技术的定义与特点
激光加工技术的定义
激光加工技术是一种利用高能激光束照射在材料表面,实现 材料熔化、汽化、冲击等过程,从而对材料进行切割、焊接 、表面处理、打孔等加工的技术。
激光加工技术及其应用

激光加工技术及其应用激光加工作为一种高端加工技术,广泛应用于航天、武器、汽车、电子、医疗等领域。
它是利用激光束的高强度和高可控性进行材料加工的一种技术,可以用于切割、刻蚀、打孔、焊接等多种加工作业。
本文将探讨激光加工技术及其应用领域。
一、激光加工技术简介激光加工技术是指利用激光能量对材料进行切割、刻蚀、钻孔、打孔、焊接等加工作业的技术。
它的原理是利用激光束的高聚焦能力,将激光束集中在小的区域内,使材料局部受热,从而蒸发或熔化。
因为激光束的特殊性质,激光加工具有高精度、高效率、高速度、低损伤、无接触等优点,并且可以加工几乎所有材料。
激光加工技术主要分为激光切割、激光刻蚀、激光钻孔、激光打孔、激光表面处理等几大类。
其中,激光切割是最常见的加工类型之一,它可以用于金属、非金属、纺织品、玻璃等材料的高精度切割。
二、激光加工应用领域(一)、汽车制造随着汽车制造行业的不断发展,对于汽车零部件的制造要求也越来越高。
激光加工技术在汽车制造领域的应用越来越广泛,它可以用于汽车发动机、底盘、车身等各个方面的制造。
例如,在发动机制造中,激光焊接技术可以用于活塞、缸套的制造,其加工速度和质量远远超过传统的加工方法;在车身制造中,激光切割技术可以用于汽车门、车身板等的精细加工,其加工速度和精细度也较高。
(二)、电子制造在电子制造领域,激光加工技术同样发挥着重要作用。
以手机制造为例,激光加工技术可以用于手机屏幕、摄像头制造过程中的精细加工,能够实现高效率、高精度的制造,提高制造的品质和效率。
此外,激光加工技术还可以用于半导体器件、电路板等电子元器件的制造和加工,它比传统的机械加工和化学加工更加高效。
(三)、航空制造在航空制造方面,激光加工技术也有着广泛的应用。
在航空发动机制造中,激光加工技术可以用于制造复杂的叶轮和涡轮叶片,其加工精细度和速度较高,性能更加优良。
此外,激光加工技术还可以用于制造航空器件和机身等各个方面的加工,在提高航空器件的质量和安全性方面发挥了重要作用。
机械制造激光加工技术

机械制造激光加工技术激光加工技术是一种高精度、高效率的非接触式加工方法,近年来在机械制造领域得到了广泛应用。
本文将介绍机械制造激光加工技术的原理、应用及其在机械制造领域的前景。
一、激光加工技术的原理激光加工技术是利用激光光束对材料进行加工的方法。
激光是一种高能量、高单色性、高方向性的电磁波,其具有聚焦能力强、能量密度高、作用时间短等优点。
激光加工过程中,激光束通过透镜聚焦后,对材料进行加热、熔化或蒸发,实现切割、雕刻、打孔等目的。
二、激光加工技术的应用1. 切割加工:激光切割技术在金属、塑料、陶瓷等材料的加工中有着广泛的应用。
由于激光切割具有非接触性、高精度、无振动等优点,因此可以实现对复杂形状的材料进行精确切割。
2. 雕刻加工:激光雕刻技术可以对各种材料进行高精度的图案、文字雕刻。
这种加工方法无需接触材料表面,因此不会造成材料损伤,且可以实现对细小、复杂图案的精确雕刻。
3. 打孔加工:激光打孔技术适用于金属、陶瓷等材料的孔径在几微米至几毫米范围的加工。
由于激光束的高聚焦性和高能量密度,激光打孔可以实现对材料的快速、精确的穿孔。
4. 表面改性:激光加工技术可以通过调控激光的能量密度,对材料的表面进行熔化、烧结、溶解等处理,从而实现材料的表面改性。
这种改性方法可以提高材料的硬度、耐磨性、耐腐蚀性等性能。
5. 3D打印:激光3D打印技术是一种新兴的制造方法,通过控制激光逐层熔化材料,将三维模型逐渐打印出来。
激光3D打印技术具有快速、高精度、可实现多种材料的打印等优点,在机械制造领域的应用前景广阔。
三、机械制造激光加工技术的前景机械制造激光加工技术的应用前景非常广阔。
首先,激光加工技术具有高精度、高效率的特点,可以满足复杂零部件、微细件的加工需求。
其次,激光加工技术具有非接触性,可以避免传统加工方法中的刀具磨损、振动等问题,减少了工艺调试的时间和成本。
此外,激光加工技术可以实现对材料的精确控制,提高了零部件的加工质量和产品的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 选择适宜的激光熔覆工艺参数,如提高熔覆温度,以降低 覆层金属液体的表面能。 ② 改变基体的化学成分。最有效的方法是向基体中添加合金 元素,如在Cu/Al2O3体系中加入Ti提高相间润湿性,在基体中添加 活性元素Hf等也有利于提高基体与颗粒之间的润湿性。 ③ 改善陶瓷粒子的表面状态和结构,即对熔覆用陶瓷颗粒进 行表面处理,以提高其表面能。常用的处理方法有机械、物理和化 学清洗、电化学抛光和涂覆等。如在A1基复合材料中,用Ag浸润于 陶瓷表面形成胶状熔体而构成Ag涂层,而Ag与Al有很好的润湿性, 从而形成了Al与陶瓷间良好的润湿与结合。
而增高,这是因为硼和碳与合金中的镍、铬等元素形成了硬度极高 的硼化物和碳化物。铁基合金适用于局部耐磨损且容易变形的零件。
铁基合金涂层的基材采用铸铁和低碳钢;镍基合金适合于局部耐磨、
耐热腐蚀的零件,所需要的激光功率密度也比熔覆铁基合金的高; 钴基合金涂层适合于要求耐磨耐腐蚀和抗疲劳的零件。自熔性合金
对基材有较大的适应性,可用于碳钢、合金钢、不锈钢以及铸铁等
就很难获得理想的熔覆层。除了激光工艺参数外,硬质陶瓷相和粘结金
属的类型是影响涂层组织与性能的重要因素。
为了解决上述问题,在选择陶瓷材料时可遵循如下原则:
① 选择陶瓷与金属间能够发生化学反应的陶瓷与金属材料; ② 可能生成的反应产物要与原金属或原陶瓷相间有较好的相容性,
即相似的晶体结构,相近的晶格常数等,且产物不能过大过多,最好以
力综合作用结果表现为拉应力状态时,容易在气孔、夹杂物的尖端等
处形成应力集中,导致裂纹产生。
(2)抑制熔覆开裂的方法 A.调整应力状态,尽可能降低拉应力 (1)适当降低熔覆层的线膨胀系数; (2)预热和熔覆后续处理。 B.优化工艺方法与参数 (1)选择合适的粉末尺寸、形状以及使用复合包覆粉末; (2)选择合理的功率密度;
第十二讲 激光加工技术(三) 段 作 梁
电子工程学院光电子技术系
主 要 内 容
12.1 概述 12.2 激光切割 12.3 激光焊接 12.4 激光淬火 12.5 激光熔覆与激光合金化 12.6 激光微细加工
12.5 激光熔覆与激光合金化
一、激光熔覆
1、激光熔覆技术
激光熔覆亦称激光包覆或激光熔敷,是材料表面改性技术的一种 重要方法,它是利用高能激光束(104-106W/cm2)在金属表面辐照,通过 迅速熔化、扩展和迅速凝固,冷却速度通常达到102-104℃/s,在基材
(3)合理的扫描速度、粉粉速度;
4、激光熔覆防开裂对策
(1)裂纹产生的原因 裂纹产生的原因很多,但主要还是与激光熔覆处理后材料内部在 较大的残余应力有关。其来源可分为两部分:热应力和相变应力。如 果基材与熔覆材料二者的热物理参数(如线膨胀系数、热导率等)差 别较大,在高能激光束的作用下,很容易导致热应力的产生。激光熔 覆层中的裂纹大多是由于在熔覆层内的局部热应力超过材料的屈服强 度极限产生的。另一方面,熔覆层的熔化和凝固过程,交界面处基材 的固态相变等都会发生体积变化,均会产生组织应力。当光熔覆采用的材料主要是热喷涂类材料和热喷焊类材料,这些 材料包括自熔性合金材料、碳化物弥散或者复合材料、陶瓷材料等, 这些材料具有优异的耐磨、耐腐蚀性能,并通常以粉末的形式使用, 熔覆时采用火焰喷焊。 (1) 自熔性合金材料 自熔性合金材料按基体不同可分为镍基合金、钴基合金和铁基 合金。其主要特点是都含有硅和硼,所以具有自我脱氧和自我造渣
间的相互作用以及颗粒加人引起熔池中能量、动量和质量传输条件的改
变等,这些使涂层成分和组织发生不同程度的变化导致颗粒的部分溶解, 并进而影响基体的相组成,使原设计的复合涂层基体和增强体不能充分
发挥各自的优势,造成烧损。
再者,激光熔覆金属陶瓷技术是通过外加陶瓷相的方法形成的颗粒 相,这给熔覆工艺带来了一定的难度,特别是当外加陶瓷相含量较高时,
(1) 激光熔覆材料与基材线膨胀系数的匹配 激光熔覆层中产生开裂、裂纹的重要原因之一是熔覆合金与 基材之间的线膨胀系数的差异,所以在选择涂层材料时首先要考 虑涂层与基材在线膨胀系数上的匹配,考虑涂层与基材的线膨胀 系数差异对涂层的结合强度、抗热震性能,特别是抗开裂性能的 影响。目前,大多数研究都是根据激光熔覆层与基材线膨胀系数 的匹配原则进行熔覆材料的选择及成分设计的。传统的观点认为, 为防止涂层开裂和剥落,涂层和基材的线膨胀系数应满足同一性 原则,即二者应尽可能地接近,考虑到激光熔覆的工艺特点,基 材和涂层的加热和冷却过程不同步,熔覆层的线膨胀系数在一定 范围内越小,熔覆层对开裂越不敏感。
通常激光重熔覆层工艺都希望得到如下结果: a)结合强度高,即要求界面处涂层与基体有良好的冶金结合; b)重熔层平整、缺陷少,即要求重熔层熊充分熔合、脱氧,变得 均匀密实; c)涂层不被基体稀释或仅有轻微的稀释,以保持涂层材料特有的 高强度或者说要求避免基体和涂层的混合。
2、激光熔覆材料
(一) 激光熔覆材料设计的一般原则
式。单道单层工艺是最基本的工艺,多道和多层熔覆过程则会出现对
前一过程的回火软化和出现裂纹等问题;通过多道搭界和多层叠加, 可以实现宽度和厚度的增加。
5)激光熔覆层的微观组织特征
工艺参数对熔覆层尺寸和组织的影响。在常规功率密度(103l06W/cm2)时进行激光熔覆时,可以在0.1—1s的时间内完成整个熔覆 过程,如此高的加热和冷却速度使得熔覆层的组织有许多特点。一般 来说,激光熔覆层的组织结构分为三个区域:熔化区、过渡区和热影 响区,在不同的合金成分以及工艺条件下的实际形态有一些差别。
表面熔覆一层具有特殊物理、化学或力学性能的材料,从而构成一种
新的复合材料,以弥补机体所缺少的高性能,这种复合材料能充分发 挥两者的优势,弥补相互间的不足。对于某些共晶合金,甚至能得到
非晶态表层,具有极好的抗腐蚀性能。
激光熔覆根据工件的工况要求,熔覆各种设计的成分的金属或者
非金属,制备耐热、耐蚀、耐磨、抗氧化、抗疲劳或具有光、电、磁 特性的表面覆层。与工业中常用的堆焊、热喷涂和等离子喷焊等相比, 激光熔覆有着下列优点: ① 熔覆热影响区小,工件变形小,熔覆成品率高; ② 涂层晶粒细小,结构致密,所以其硬度一般相对比较高,耐磨 损、耐腐蚀等性能也比较好; ③ 由于激光作用时间短(ns级),熔覆层稀释率低,基材的熔化量 比较小,对熔覆层的冲淡率相对低(常规为5%-8%),因此可在熔覆层比 较薄的情况下,获得所要求的成分和性能,从而节约昂贵的覆层材料; ④ 高达106℃/s的冷却速度使凝固组织细化,甚至产生新性能的 组织结构超弥散相、非晶相等; ⑤ 激光熔覆过程易实现自动化生产,且覆层质量稳定。
复合材料的形式出现; ③尽可能减小陶瓷与基体金属材料的线膨胀系数和密度的差异,以
避免凝固后形成的固/固界面不匹配,从而降低裂纹形成的趋势;
④从固/液界面角度,要求预置的陶瓷涂层在熔化时对于基体具有 很好的润湿性和铺展性,也就是说,涂层的表面张力必须小于基体的临
界表面张力,
⑤涂层/基体界面并非单层几何面,面是多层的过渡区,这一界面区 可能由几个亚层组成,每一亚层的性质都与覆层材料、基材及工艺有关。
的性能,这就是所谓的自熔剂。
自熔性合金材料原理是合金被重熔时,硅和硼分别形成Si02和 B202,并在熔覆层表面形成薄膜。这种薄膜一方面能防止合金中的
元素被氧化,另一方面又能与这些元素的氧化物形成硼化酸熔渣,
从而获得氧化物含量相对低、气孔率少的熔覆层。自熔性合金材料
的硬度与合金的含硼量和含碳量有关,硬度随着硼、碳含量的增加
4)激光熔覆工艺过程
因为激光熔覆工艺是一个复杂的物理、化学和冶金过程,也是 一种对裂纹特别敏感的工艺过程,其裂纹现象和行为牵涉到激光熔覆
的每一个因素,包括基材、合金粉末、前置方式、预涂厚度、送粉速
率、激光功率、扫描速率、光斑尺寸等多种因素各自和相互间的影响。
实践证明:合理选材以及最佳工艺参数配合是保证熔覆层质量的 重要因素。在激光熔覆工艺中还有单道、多道、单层、多层等多种形
系,包括(Co/Ni)/WC和(NiCr,NiCrAl)/Cr3C2等系列,这些材料具有
很高的硬度和良好的耐磨性,其中(Co/Ni)/WC适合于低温的工作条件, 而(NiCr,NiCrAl)/Cr3C2系列则适合于高温工作环境。
(3) 氧化物陶瓷粉末
氧化物陶瓷粉末具有良好的抗高温氧化相隔热、耐磨、耐腐蚀等 性能,是一种重要的热喷涂材料,包括氧化铝和氧化镍系列。其中氧 化镍陶瓷粉末比氧化铝陶瓷粉末具有更低的热传导性和更好的抗热震 性,所以主要被用作热保障层材料。
根据固态相变及化学键的理论,可在涂层中添加某些元索,使之对陶瓷
及基材产生良好的化学作用,在界面上形成共价键结合,提高界面强度。
3、激光熔覆工艺方法
1) 工艺方法分类 根据合金供应方式的不同,激光熔覆可以分为两种: 合金同步法和合金前置法。
2)基材熔覆表面预处理 为了去除基材熔覆部位的污垢和锈蚀。 3)预热和后热处理 其作用就是防止基材的热影响区发生马氏体相变从而导致熔覆层 产生裂纹,因此,适当减少基材与熔覆层之间的温差来减低熔覆层冷 缩产生的应力,增加熔层液相滞留时间能利于熔层内的气泡和造渣物 质的排除。实际生产过程中常采用预热的方法消除或减少熔覆层的裂 纹,特别是对于易于开裂的基材必须预热,在熔覆层裂纹倾向较小的
(2) 激光熔覆材料与基材熔点的匹配 在激光熔覆技术中,需要对涂层材料关注的另一重要的热物
理性质是其熔点。熔覆合金与基体材料的熔点之间差异过大,形
成不了良好的冶金结合。 (3) 激光熔覆材料对基材的润湿性
除了考虑熔覆材料的热物理性能外,还应考虑其在激光快速
加热下的流动性、化学稳定性,硬化相质点与新结相金属的润湿 性以及高温快冷时的相变特性等。熔覆过程中,润湿性也是一个 重要的因素。特别是要获得满意的金属陶瓷涂层,必须保证金属 相和陶瓷相具有良好的润湿性。在提高润湿性方面,主要基于以 下原则: