激光加工技术及其应用(精)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光加工技术及其应用

概述:

激光加工(Laser Beam Machining,简称LBM是指利用能量密度非常高的激光束对工件进行加工的过程。激光几乎能加工所有材料,例如,塑料、陶瓷、玻璃、金属、半导体材料、复合材料及生物、医用材料等。

在1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。

与传统加工技术相比,激光加工技术有以下特点

(1激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等也可用激光加工;

(2、激光头与工件不接触,不存在加工工具磨损问题;

(3、工件不受应力,不易污染;

(4、可以对运动的工件或密封在玻璃壳内的材料加工;

(5、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;

(6、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;

(7、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

2.基本原理

激光被广泛应用是因为它具有的单色波长、同调性和平行光束等3大特性。科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态。当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量。这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的连锁反应,并且都朝同一个方前进,进而形成集中的朝向某一方向的强烈光束。由此可见,激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,所以利用聚焦后的激光束可以穿透各种材料。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在

3mm的钢板上钻出一个小孔。激光拥有上述特性,并不是因为它有与别不同的光能,而是它的功率密度十分高,这就是激光能够被广泛应用的主要原因。激光加工技术先进性激光的上述特性给激光加工带来一些其它加工方法所不具备的优势。由于激光加工是无接触加工,对工件无直接冲击,所以无机械变形。激光加工过程中无刀具磨损,无切削力作用于工件;激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小,因此受其热影响的工件热变形小,后续加工量少。激光束易于导向、聚焦,能够便捷地实现方向变换,使其极易与数控系统配合,对复杂的工件进行加工。因此,它是一种极为灵活的加工方法,具备生产效率高、加工质量稳定可靠、经济效益和社会效益好等优点。激光加工作为先进制造技术已广泛应用于航空、汽车、机械制造等国民经济重要部门,在提高产品质量、劳动生产率、自动化、降低污染和减少材料消耗等方面起到重要的作用。激光切割激光切割一直是激光加工领域中最为活跃一项技术,它是利用激光束聚焦形成高功率密度的光斑,将材料快速加热至汽化温度,再用喷射气体吹化,以此分割材料。脉冲激光适用于金属材料,连续激光适用于非金属材料,通过与计算机控制的自动设备结合,使激光束具有无限的仿形切割能力,切割轨迹修改十分方便。激光切割技术的出现使人类可以切割一些硬度极高的物质,包括硬质合金,甚至金刚石。高科技已经让“削铁如泥”的传说变成了现实。激光切割技术是激光加工技术应用的重要方面之一,广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质

量。激光切割是应用激光聚焦后产生的高功率密度能量来实现的,与传统的板材加工方法相比,具有高切割质量、高切割速度、高柔性(可随意切割任意形状和广泛的材料适应性等优点。目前激光加工在航天、汽车等领域的应用最为广泛,如众多航天发动机企业采用3D激光设备进行燃烧器段的高温合金材料切割;军民用航空器的铝合金材料或特殊材料的激光切割;奔驰、奥迪、宝马、VOLVO等众多著名汽车公司的轿车车身整体切割等,已经实现了常规加工无法达到的技术要求。农机制造中会应用到较厚的金属材料,应用其他加工方法不但加工难度大,而且不能保证工件的精度。利用激光切割技术即可切割极厚的金属板,而且切割光束点小,材质不易变形, 保证了加工工件的精密度。此外,由于激光束易于导向,使激光切割能够加工复杂、不规则的几何图形;激光切割技术利用计算机进行制图排版,能够有效地节省材料,可大大降低农机制造成本。激光焊接激光焊接是一种高速度、非接触、变形极小的焊接方式,非常适合大量而连续的在线加工。随着激光设备和加工技术的发展,激光焊接的能力也在不断增强,其主要工作方式有两种:传导焊与穿透焊,目前以穿透焊工艺为主。其应用主要分为以下3类。1用于移动通讯,如手机电池的焊接,电容、仪器仪表元件的焊接。这类焊接设备主要采用的是Nd:YAG 激光器。2用于焊接钢板。这种钢板多用于钢铁工业(如钢板在线拼焊、汽车板拼接焊以及多种壳形类零件的焊接。3用于金刚石锯片的焊接。由于金刚石锯片广泛用于基建工程、石材工业等领域,加之欧洲早已禁止使用热阻焊的金刚石锯片,取而代之的是利用CO2激光器将金刚石刀头焊接到锯片基体上,因此国内外对激光焊接金刚石锯片的需求日益猛增。由于激光焊接系统不是定型产品,因此大多都是根据生产需求“量身定做”,这就保证了产品生产的标准化与高速化。初期的激光焊接主要以单激光作为焊接热源,主要进行精密薄壁件的焊接加工。近几年来,随着工业用激光器和激光技术的发展,尤其是千瓦级大功率固体激光器的出现,由于其极高的能量密度和柔性(可用光导纤维传输,使激光焊接技术进入了一个快速发展和应用阶段。特别要指出的是近几年来以激光为核

心的激光—电弧复合热源焊接技术的出现,使激光焊接技术不仅可以应用到薄板的高速焊接上,而且还可以进行中厚板的高速焊接;不仅适用于一般的碳钢材料焊接,也适用于能源、交通运输、航空航天、工程机械等领域使用的新型高性能材料

相关文档
最新文档