数字万用表的设计

合集下载

单片机数字万用表设计

单片机数字万用表设计

单片机数字万用表设计一、引言单片机数字万用表是一种多功能仪器,可以用于测量电压、电流、电阻等电气参数,广泛应用于电子工程、通信工程、无线电工程等领域。

本文旨在设计一款单片机数字万用表,结合单片机技术和模拟电路设计,实现功能齐全、精准度高、便携性强的数字万用表。

二、设计原理单片机数字万用表的核心部分是其测量模块,该模块能够接收被测电路的输入信号,并通过ADC(模数转换器)将模拟信号转换为数字信号,然后经过单片机处理和显示模块的处理,最终将结果显示在液晶显示屏上。

整个设计流程主要包括以下几个方面:1.信号输入:设计合适的信号输入接口,能够接收被测电路的电压、电流、电阻等信号,并将其传输给ADC。

2.模数转换:通过ADC将模拟电信号转换为数字信号,通常选择12位或16位的ADC,以保证高精度的测量结果。

3.单片机处理:单片机接收ADC传输的数字信号,并进行处理计算,以得出测量结果。

4.显示模块:将测量结果显示在LCD液晶显示屏上,包括数值显示、单位显示等。

5.供电模块:提供适当的电源供电,保证仪器的正常工作。

基于以上设计原理,我们可以开始具体的设计工作。

三、电路设计1.信号输入接口信号输入接口是单片机数字万用表的核心部分之一,它需要能够接收不同类型的信号,包括电压、电流、电阻等。

为了实现这一功能,我们需要设计相应的信号接收电路,可以通过选择不同的接收电阻和放大电路,使之能够适应不同的输入信号。

对于电压信号的输入,可以设计一个简单的分压电路,将被测电路的电压信号转换为适合ADC输入的电压范围。

同时,为了避免输入电阻对被测电路的影响,可以选择高输入阻抗的运放作为信号接收器。

对于电流信号的输入,可以设计一个电流-电压转换电路,将电流信号转换为相应的电压信号,再进行ADC采集。

对于电阻信号的输入,可以设计一个简单的电桥电路,测量电阻值并将其转换为电压信号,再通过ADC进行采集。

2.模数转换模数转换部分选择12位或16位的ADC芯片,可以根据精度需求做适当选择。

数字万用表的研究与设计

数字万用表的研究与设计

ANYANG INSTITUTE OF TECHNOLOGY 本科毕业设计数字万用表的研究与设计The Design of Digital Multimeter系(院)名称:电子信息与电气工程学院QQ 号:309810851目录中文摘要、关键词 (Ⅰ)英文摘要、关键词 (Ⅱ)引言 (1)第一章课题的研究背景 (2)1.1数字万用表研究的目的和意义 (2)1.2国内外的研究动态及发展趋势 (3)1.2.1国内研究概况 (3)1.2.2国外研究概况 (4)1.3数字万用表设计重点解决的问题 (4)第二章数字万用表的总体设计方案 (5)2.1课题设计的基本思路 (5)2.2数字万用表的测量原理及电路平台 (5)2.3数字万用表的硬件系统总体设计框图 (10)2.4硬件电路设计方案及选用芯片介绍 (11)2.4.1 AT89S52芯片功能特性描述 (12)2.4.2模数转换模块介绍 (13)2.4.3显示模块介绍 (15)2.4.4电源模块介绍 (15)2.5数字万用表的硬件设计 (16)第三章系统软件及流程图及仿真过程 (22)3.1软件设计整体思路 (22)3.2系统总流程图 (23)3.3物理采集流程图 (24)3.4系统仿真过程 (24)结论 (26)致谢 (27)参考文献 (28)附录A (29)附录B (33)数字万用表的研究与设计摘要:本次设计用单片机芯片AT89S52设计一个数字万用表,能够测量交、直流电压值、直流电流、直流电阻以及电容,四位数码显示。

此系统由分流电阻、分压电阻、基准电阻、电容测试芯片电路、单片机最小系统、显示部分、报警部分、AD转换和控制部分组成。

为使系统更加稳定,使系统整体精度得以保障,本电路使用了AD0809数据转换芯片,单片机系统设计采用AT89S52单片机作为主控芯片,配以RC上电复位电路和11.0592MHZ震荡电路,显示芯片用TEC612驱动8位数码管显示。

数字万用表的设计

数字万用表的设计

数字万用表的设计单片机数字万用表的设计一、引言数字万用表是一种多用途电子测量仪器。

它采用数字化测量技术,把实际测量的模拟量,转化为离散的数字量进行输出显示,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、多用电表或万用电表。

万用表是电子和电气技术领域必备的测量仪器,用于测量电子电路中的各种物理量(电压、电流、电阻等),常作为基本故障诊断的便携式装置,也有放置在工厂或实验室工作台上作为桌上型装置。

有的万用电表分辨率能达到七、八位数,常用在实验室,作为电压或电阻的基准,或用来调校多功能标准器的性能。

相比传统的指针式万用表,数字万用表具有以下的主要优点:(1)数字显示直观准确,无视觉误差,读数准确;(2)测量精度和分辨率都很高;(3)输入阻抗高,减少对被测电路的工作影响;(4)电路集成度高,便于组装和维修;(5)测量功能齐全,测量速率快;(6)保护功能齐全,有过压、过流保护电路;(7)功耗低,抗干扰能力强;(8)便于携带,使用方便。

本次设计的任务是制作一个数字万用表,可实现如下的功能及要求:(1)可以测量直流电压、直流电流和电阻;(2)能将测量得到的数值直观、准确地显示出来,并标明相应的单位;(3)具有超量程时的报警提示。

二、系统硬件分析与设计数字万用表的基本功能是,能够测量直流电压、电流以及电阻的阻值,数字万用表的基本组成由图1所示,其中,模数转换是数字万用表的核心:图1. 数字万用表的基本原理图如图2所示,本设计将由以下几大部分组成。

包括:复位电路、震荡电路、A/D转换和控制、测量值输出、超量程报警和档位选择。

其中,复位电路用于单片机上电复位使系统清零;震荡电路为单片机提供精确的时钟频率,使电路工作更加稳定;A/D转换和控制部分负责模数转换及输入输出信号的控制;测量值输出则负责显示待测物理量大小的数值;超量程报警用于超出量程范围时的报警提示,提醒使用者更换量程。

《数字万用表设计》课件

《数字万用表设计》课件
便携式数字万用表
小巧轻便,可充电,适用于小电路维修
台式数字万用表
交直流通用,精度高,常用于实验室和工厂
专用数字万用表
针对一些特定的测量任务而设计的
数字万用表的构成和原理
构成
熔丝、旋转开关、电池、电源电路等
原理
根据欧姆定律、基尔霍夫定理等,通过电路分析获 得电荷和电流信息
数字万用表的准确性和精度
数字万用表的准确性和精度是评价其好坏的重要指标,精度取决于数码显示 的位数和转换电路的噪声程度。准确性受到测量误差、校准及环境因素等影 响。
数字万用表的常见误差和解决方法
1 电压误差
应选择合适量程,保证电源稳定
3 温度误差
保持恒温环境,适当预热电路
2 电流误差
正确接入测试电路,选择合适的保险丝
4 其他误差
合理放置,合理使用,定期校准
数字万用表的测量范围和分辨率
电压
范围:200mV-1000V,分辨率: 0.1mV-1V
电流
范围:200μA-10A,分辨率: 0.1μA-10mA
电阻
范围:200Ω-200MΩ,分辨率: 0.1Ω-100KΩ
数字万用表的通用性和适用范围
数字万用表通用性强,可用于工业自动化、实验室测量、电路调试等多种场合。适用于电子、通信、计算机、 机械、化工等领域。
数字万用表的常见测量方法
1
直流电压测量
将旋钮拨至VΩmA档位,将电表红表笔连接正极,黑表笔连接负极进行测量
数字万用表与智能化科技的融 合测量
数字万用表将与智能家居、智能汽车、智能医疗等领域紧密结合,呈现多种 形态和使用场景。
ቤተ መጻሕፍቲ ባይዱ
数字万用表的研发和生产技术 创新

数字万用表的设计

数字万用表的设计

电子工艺实习报告 ------数字万用表的设计数字万用表的设计一、摘要:数字万用表又称数字多用表,简称DMM(Digital Multimeter)。

它是由数字电压表DVM(Digital Voltmeter)与各种变换器组成的。

其中直流数字电压表示数字万用表的基本组成部分,是数字万用表的核心。

数字仪表是把连续的被测模拟量自动地变成断续的、用数字编码方式并以十进制数字自动显示测量结果的一种测量仪表。

这是一种新型仪表,它把电子技术、计算机技术、自动化技术与精密电测量技术密切地结合在—起,成为仪器仪表领域中一个独立的分支。

数字万用表(DMM)可直接测量电压、电流、电阻或其他电参量,其功能可任意组合并以十进制数字显示被测量的结果,应用十分广泛。

本文以DT830B万用表为例。

二、关键词数字万用表,DT830B万用表,硬件设计,焊接工艺。

三、引言DT830B万用表是一种常用的万用表,它的技术成熟。

而且它的应用广泛,可以测量直U以及三极管的放大倍数hFE 流电压、直流电流、交流电压、电阻、二极管的正向导通电压F等。

该表使用7106型的A/D 转换芯片,配3 1/2位的LCD 液晶显示屏,表内使用一只电位器来调整精度,一节9V 电池做电源,量程开关兼做电源开关。

该表具有体积小、电路简单、分辨力强、准确度高测试功能完善、测量速率快等特点,常用于电气测量,特别适合在校学生和电子爱好者学习、组装,在装配完成的同时也就得到了一款实用的测量工具。

四、数字万用表的功能:DCV :直流电压ACV:交流电压 DCA :直流电流R :电阻F U :二极管的正向导通电压hFE :三极管放大倍数五、数字万用表的原理框图:DT830B 万用表测量的基本量是直流电压,核心是由A/D 转换器、显示电路等组成的基本量程数字电压表。

其他被测信号需在仪表内部转换成直流电压再进行测量。

其原理框图如图(1):图(1) DT830B 万用表的原理框图六、数字万用表的整体设计:DT803B 数字万用表的电路原理图如图(2)所示:图(2) DT803B数字万用表的电路原理图七、数字万用表的硬件设计:1、硬件工作原理阐述:DT803B数字万用表中A/D转换器将0~2V范围的模拟电压变成三位半的BCD码数字显示出来。

数字万用表实验设计

数字万用表实验设计

8.12 设计数字万用表【实验目的】1.了解数字电表的基本原理、常用双积分模数转换芯片外围参数的选择原则及电表的校准原则;2.了解数字万用表的特性、组成及工作原理;3.掌握分压、分流电路的原理;4.设计制作多量程直流电压表、电流表及电阻表;5.了解交流电压、三极管和二极管相关参数的测量。

【设计要求及实验内容】1.设计制作多量程直流数字电压表,并进行校准(自拟校准表格,量程为:200mv、2v);2.设计制作多量程直流数字电流表,并进行校准(自拟校准表格,量程为:200mA、20mA);3.设计制作多量程数字欧姆表,并进行校准(自拟校准表格,量程为:200Ω、2kΩ、20 k Ω);4.设计制作多量程交流数字电压表,并进行校准(自拟校准表格,量程为:AC, 200mv、2v);5.二极管正向压降的校准和测量;6.三极管h FE参数的测量。

以上实验,在1至3中选择2~3个实验题目为必做内容,4至6为选做内容。

【主要实验器材】1.DH6505数字电表原理及万用表设计实验仪;2.四位半通用数字万用表;3.标准电阻箱。

【实验原理、方法提示】1. 数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。

而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。

(1)双积分模数转换器(ICL7107)的基本工作原理我们将完成从模拟电信号转换成数字信号的电路称为模数转换器(AD转换器)。

数字万用表常用的转换器为双积分AD转换器。

双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比(式1);接着让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。

数字万用表设计

数字万用表设计实验报告实验名称:数字万用表设计 实验日期 ____________温度___________压力___________ 同组者 ___________一、实验预习部分(实验前完成,并检查,教师签名) 1,实验目的:1, 掌握数字万用表的工作原理、组成和特性。

2, 掌握数字万用表的校准和使用。

3, 掌握多量程数字万用表分压、分流电路计算和连接;学会设计制作、使用多量程数 字万用表。

2,实验原理:1、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。

数字万用表的直流电压档分压电路如图(2)所示,它能在不降低输入阻抗的情况下,达到准确的分压效果。

例如:其中200 V 档的为分压比为:001.010*********==+++++MKR R R R R R R其余各档的分压比分别为:图(2)实用分压器电路档位 200mV 2V 20V 200V 2000V 分压比 1 0.1 0.010.001 0.0001实际设计时是根据各档的分压比和总电阻来确定各分压电阻的,如先确定M R R R R R R 1054321=++++=总再计算200V 档的电阻:K R R R 10001.054==+总,依次可计算出3R 、2R 、1R 等各档的分压电阻值。

更换量程是需要调整小数点的显示,使用者可方便地读出测量结果。

2、直流电流的测量测量电流是根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。

如图(3)图(3)电流测量原理实用数字万用表的直流电流档电路,如图(4)所示。

图(4)实用分流器电路图(4)中各档分流电阻是这样计算的,先计算最大电流档(2A )的分流电阻5R (数字电压表最大输入为200mV ))(1.022.0505Ω===A V I U R m ,再计算200mA 档的4R :)(9.01.02.02.05404Ω=-=-=R I U R m 依次可以计算出3R 、2R 和1R ,请同学们自己练习。

数字万用表设计实验报告

数字万用表设计性实验赵龙宇 PB06005068一、实验目的1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用二、实验仪器1.DM-Ⅰ数字万用表设计性实验仪一台2.三位半或四位半数字万用表一台三、实验原理1.数字万用表的特性与指针式万用表相比较,数字万用表有如下优良特性:⑴高准确度和高分辨力三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。

分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。

通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。

⑵电压表具有高的输入阻抗电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。

三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。

而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。

⑶测量速率快数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。

三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。

⑷自动判别极性指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。

而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。

⑸全部测量实现数字式直读指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。

特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。

而数字万用表则没有这些问题,换挡时小数点自动显示,所有测量挡都可以直接读数,不用换算、倍乘。

⑹自动调零由于采用了自动调零电路,数字万用表校准好以后使用时无需调校,比指针式万用表方便许多。

实验二十八数字万用表设计性实验

实验⼆⼗⼋数字万⽤表设计性实验实验⼆⼗⼋数字万⽤表设计性实验⼀、实验内容:1、制作量程200mA的微安表(表头);2、设计制作多量程直流电压表;3、设计制作多量程直流电流表;⼆、实验仪器:三位半数字万⽤表三、实验原理1、数字万⽤表的组成数字万⽤表的组成见图28.1。

图28.1 数字万⽤表的组成数字万⽤表其核⼼是⼀个三位半数字表头,它由数字表专⽤A/D转换译码驱动集成电路和外围元件、LED数码管构成。

该表头有7个输⼊端,包括2个测量电压输⼊端(IN+、IN-)、2个基准电压输⼊端(V REF+、V REF -)和3个⼩数点驱动输⼊端。

2、直流数字电压表头“三位半数字表头”电路单元的功能:将输⼊的两个模拟电压转换成数字,并将两数字进⾏⽐较,将结果在显⽰屏上显⽰出来。

利⽤这个功能,将其中的⼀个电压输⼊作为公认的基准,另⼀个作为待测量电压,这样就和所有量具或仪器的测量原理⼀样,能够对电压进⾏测量了。

见图28.2。

图28.2 200mV(199.9mV)直流数字电压表头及校准电路3、多量程直流数字电压表在数字电压表头前⾯加⼀级分压电路(分压器),可以扩展直流电压测量的量程。

如图28.3所⽰,U 0为电压表头的量程(如200mV),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。

图28.3 分压电路原理图28.4多量程分压器原理电路多量程分压器原理电路见图28.4。

图28.5 实⽤分压器电路采⽤图28.4的分压电路虽然可以扩展电压表的量程,但在⼩量程档明显降低了电压表的输⼊阻抗,这在实际使⽤中是所不希望的。

所以,实际数字万⽤表的直流电压档电路为图5所⽰,它能在不降低输⼊阻抗的情况下,达到同样的分压效果。

数字电压表 0~U 00~U i0 r 1r 2 r IN+IN-U 动U4、多量程直流数字电流表测量电流的原理是:根据欧姆定律,⽤合适的取样电阻把待测电流转换为相应的电压,再进⾏测量。

数字万用表的设计

数字万用表的设计203系05级 张苗磊 2006.12.6 PB05203237一、 实验原理1、数字万用表的特性数字万用表有如下优良特性:高准确度和高分辨力;电压表具有高的输入阻抗;测量速率快;自动判别极性;全部测量实现数字式直读;自动调零等优点. 本实验使用的DM-I 型数字万用表设计性实验仪,其核心是一个三位半数字表头,该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。

2、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。

如图2所示,U 0为数字电压表头的量程(如200mV ),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。

图(2)图(1)分压电路原理由于r >> r 2,所以分压比为 21200r r r U U i += 扩展后的量程为 02210U r r r U i +=实际数字万用表的直流电压挡电路为图(2)所示,它能在不降低输入阻抗 的情况下,达到同样的分压效果。

0~U3、交流电压测量电路数字万用表中交流电压量电路是在直流电压测量电路的基础上,在分压器之后加入了一级交流-直流(AC-DC )变换器,图(8)为其原理简图。

二、 操作步骤1、设计制作多量程直流数字电压表(1)按图(3)接线,参考电压V REF 输入端接直流电压校准电位器, 左数第三位小数点dp3接到量程转换单元的“动片1”插孔以获得一位小数显示(2)校准电压表头:用一只成品数字万用表(称为标准表)置于直流电压20V量程进行监测,调节直流电压电流单元电路中电位器,使之输出一150--200mV 左右的校准电压,然后将标准表表笔(输入)与组装表表笔并联,均置于直流电压200mV 挡,测量直流电压电流单元输出电压,调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P3口:是一组带有内部上拉电阻的8位双向并行I/O口。P3口输出缓冲级可驱动4个TTL负载。作为输入及输出口时,情况与P1口相似。P3口还能接收一些用于Flash存储器编程和程序校验的控制信号。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,见表2。
其他引脚
RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。
图2.硬件系统总体设计框图
1、STC的89C52单片机的特点及功能介绍
(1)89C52单片机的主要特点及功能特性
89C52是一款低电压,高性能的8位CMOS型单片机,片内有8k字节以Flash闪存为介质的,能擦写的只读程序存储器及256字节的随机存取数据存储器。89C52型单片机仍属于51单片机家族群,都支持一个共同的指令集(MSC-51),但各自拥有不同的存储器容量及端口设置等内置资源,使其更符合成本效益的需要,满足特定的场合的生产需求。该单片机在嵌入式控制应用系统中有着广泛的应用。
4组I/O口
P0口:一组8位漏极开路的准双向并行I/O口,扩展片外存储时的地址/数据总线复用口。作为输出口用时,每位能驱动8个LS型TTL负载,对端口P0写“1”时,可作为高阻抗输入端用。P0口与其他几组I/O口的最大区别是其内部不带有上拉电阻。
P1口:是一组带内置上拉电阻的8位双向并行I/O口,P1的输出缓冲级可驱动4个TTL负载。对端口写“1”,通过内部的上拉电阻把端口拉至高电平后,可作输入口。作输入口使用时,因为内部存在上拉电阻,引脚被外部信号拉低时会输出电流。
图9.电压衰减电路原理图
如图9所示,R1和R2是分压电阻,其阻值均为按档位需要计算后所得,可以将20V的直流电压衰减为2V输出,配合20V的直流电压挡。
(3)多量程数字电流表设计
图10.分流电路的原理
如图10电路所示,万用表测量电流的原理是,用合适的取样电阻,将待测的电流量根据欧姆定律转换为电压量,才能进行测量。若取样电阻阻值为R,根据欧姆定律,可以获得被测电流Ii的值。
EXT:内部、外部时钟选择线,采用内部时钟时EXT接地;
AGND:模拟信号地;
AOUT:数模转换输出端;
VREF:基准电源端。
图7.模数转换部分原理图
图7所示为模数转换部分。PCF8591芯片作为ADC芯片,使用I2C总线与单片机通讯,SCL是串行时钟,SDA是串行数据线,输出转换后的数字量。待测模拟量从AIN0进入,其余模拟输入口因本设计不需使用而接地。AGND端是模拟地,接上0Ω电阻,而VDD接上接地电容,有效分割模拟地和数字地,减少高频数字信号的干扰。
图13.电阻-电压变换电路原理图
图13所示电路为电阻测量电路。其中,电阻R13和R14构成一组基准电阻。电路工作时,PNP管Q3的集电极电流IC3是恒定的,R18和R19负责调节IC3的大小。通过接入不同的电阻(R20或R21),可获得不同的倍率的集电极电流IC3,电流通过待测电阻Rx形成电压Vx。通过测量Vx即可获得待测电阻的阻值。经过计算,可知R20分支可测量的最大电阻值为2kΩ,R21分支为20kΩ。而P4端则是作为待测电阻的接口。
3、电源模块
图14.电源部分原理图
如图14所示,POWER端接外部直流电源,另外可以利用USB(Universal Serial Bus)端口直接提供5V电压。7805是三端稳压集成芯片,起稳压输出的作用,通过外围电路的组合,可以稳定输出5V直流电压。图中的LED灯可以作为电源电路开始工作的提示器。
单片机数字万用表的设计
一、引言
数字万用表是一种多用途电子测量仪器。它采用数字化测量技术,把实际测量的模拟量,转化为离散的数字量进行输出显示,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、多用电表或万用电表。
万用表是电子和电气技术领域必备的测量仪器,用于测量电子电路中的各种物理量(电压、电流、电阻等),常作为基本故障诊断的便携式装置,也有放置在工厂或实验室工作台上作为桌上型装置。有的万用电表分辨率能达到七、八位数,常用在实验室,作为电压或电阻的基准,或用来调校多功能标准器的性能。相比传统的指针式万用表,数字万用表具有以下的主要优点:
(1)可以测量直流电压、直流电流和电阻;
(2)能将测量得到的数值直观、准确地显示出来,并标明相应的单位;
(3)具有超量程时的报警提示。
二、系统硬件分析与设计
数字万用表的基本功能是,能够测量直流电压、电流以及电阻的阻值,数字万用表的基本组成由图1所示,其中,模数转换是数字万用表的核心:
图1.数字万用表的基本原理图
(4)电阻测量设计
图12.电阻-电压变换电路的原理
数字万用表通常采用电阻-电压变换电路来测量电阻(欧姆档)。如图7所示电路,VDZ1是2.7V稳压管,是一种用特殊工艺制造的硅半导体二极管(康华光,2006)。VT1、VT2、VDZ1组成恒流源,保持V3的值恒定不变。V3的值等于V1电压减去VDZ1上的电压,约为2.3V。VT3的基极电压亦保持不变,若VT3基极和发射极之间的电压为0.5V,则可知V2的值恒为2.8V左右,并可得出VT3集电极电流的IC3也是恒定的。
如图2所示,本设计将由以下几大部分组成。包括:复位电路、震荡电路、A/D转换和控制、测量值输出、超量程报警和档位选择。
其中,复位电路用于单片机上电复位使系统清零;震荡电路为单片机提供精确的时钟频率,使电路工作更加稳定;A/D转换和控制部分负责模数转换及输入输出信号的控制;测量值输出则负责显示待测物理量大小的数值;超量程报警用于超出量程范围时的报警提示,提醒使用者更换量程。
图5.PCF8591的内部原理图
PCF8591芯片的引脚功能
图6.PCF8591的引脚图
图6所示为PCF8591的引脚图。
AIN0~AIN3:模拟信号输入端;
A0~A2:引脚地址端;
VDD、VSS:电源端(2.5-6V);
SDA、SCL:I2C总线的数据线、时钟线;
OSC:外部时钟输入端,内部时钟输出端;
另外,P1的P1.0和P1.1口存在第二功能,见下表。
表1.P1口的第二功能
引脚号
功能特性
P1.0
T2(定时/计数器2的外部计数输入),时钟输出
P1.1
T2EX(定时/计数器2的捕捉/重载触发信号和方向控制)
P2口:是一组带有内部上拉电阻的8位双向I/O并行口,P2的输出缓冲级可驱动4个TTL负载。作输入及输出口时,情况与P1口相似。扩展片外存储时,作为低8位地址总线口。
在基准数字电流表头前在加上电流信号衰减电路(分流电路),即可实现直流电流测量量程的扩展。如上图所示,四个电阻串联值是1kΩ,若选取第1挡,并使输出电压不超过2V,即可计算出Ii必须小于等于2mA。同理可计算出其他档位的满量程电流分别为20mA、200mA、2A。
图11.电流衰减电路原理图
如图11所示,R15和R16是分流电阻,其阻值均为按档位需要计算后所得,可以将2A的直流电流衰减为200mA,并将电流变换成电压以供模数转换器测量,配合2A的直流电流档使用。
a.兼容标准的MCS-51的指令系统;
b.内置8k字节可擦写的闪存ROM(Read-Only Memory);
c.4组共32个双向I/O口;
d.256×8位大小的内部RAM;
e.3个16位可编程定时/计数器中断;
f.支持3.5-12/24/33MHz多种时钟频率;
g.1个全双工可编程的UART(Universal Asynchronous Receiver/Transmitte)串行口;
其中,接在VT3的发射极上的一组电阻是基准电阻,按档位不同分别是:2.2kΩ、22kΩ、220kΩ、2MΩ。通过选择不同的档位开关,可以得到恒定的、不同倍率的电流IC3,它的电流分别是1mA、0.1mA、0.01mA、0.001mA。RX是待测电阻,接在VT3的集电极上,当恒定电流IC3流经时,产生电压VX,测量VX则可推算出待测电阻的阻值。RW用于调整恒流源IC3的大小,VD3作为保护管,当电阻档所加的电压过高时,VD3对VT3有保护作用。
c.易于扩展:
单片机片内已经具有计算机正常运行时所必需的部件,但仍然预留了很多片外扩展用的引脚(各种总线,并行/串行的输入/输出),易于组成更庞大计算机系统完成更复杂的任务。
d.内部功能较强:
单片机有着各种的内部资源,功能强大。
e.低功耗、低电要功能特性:
2、模数转化电路
实际的物理量都是幅值大小连续变化的模拟量,或称为模拟信号。旧式的指针万用表可以直接对模拟电压、电流进行测量并显示。对于数字万用表,则需要把模拟量(多是电压量)转换为数字信号的形式,通过相关的处理(包括存储、传输、计算等)再进行显示。数字信号是量化的模拟信号,若将最小的量化单位记为Δ,那么数字信号的大小一定为Δ的整数倍。该倍数可以用二进制数码表示,但为了便于直观地读数,通常把数码进行译码后,由数码管或液晶屏幕显示。
GND:接地端。
表2.P3口的第二功能
引脚号
功能特性
P3.0
RXD(串行输入)
P3.1
TXD(串行输出)
P3.2
INT0(外部中断0)
P3.3
INT1(外部中断1)
P3.4
T0(定时器0外部输入)
P3.5
T1(定时器1外部输入)
P3.6
WR(外部数据存储器写有效)
P3.7
RD(外部数据存储器读有效)
h.6个中断源,4级优先级中断结构;
i.2个W/R(Write/Read)读写中断口,3级加密位;
j.低功耗空闲和掉电节省模式,带有软件设置睡眠及相应的唤醒功能;
k.有PDIP及PLCC两种封装形式。
(2)89C52单片机的引脚功能
图3.89C52单片机微架构图
图4.89C52单片机引脚图
相关文档
最新文档