人教版七年级数学上册有理数加减法同步练习
七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1.计算1+(−2)的正确结果是( )A.−2B.−1C.1D.32.如果某天北京的最低气温为a∘C,中午12点的气温比最低气温高了10∘C,那么中午12点的气温为( )A.(10−a)∘C B.(a−10)∘CC.(a+10)∘C D.(a+12)∘C3.有理数a,b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a−b=0D.a−b>04.比−3大1的数是( )A.2B.−2C.4D.−45.若x的相反数是3,∣y∣=5,则x+y的值为( )A.−8B.2C.8或−2D.−8或26.下列说法正确的是( )A.一个数,如果不是正数,必定是负数B.有理数的绝对值一定是正数C.两个有理数相加,和一定大于每个加数D.相反数等于本身的数是07.把算式:(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A.−5−4+7−2B.5+4−7−2C.−5+4−7−2D.−5+4+7−28.若∣x∣=3,∣y∣=4则x+y值为( )A.±7或±1B.7或−7C.7D.−7二、填空题(共5题)9.计算:−(−4)+∣−5∣−7=.10.比−312大而比213小的所有整数的和为.11.我们知道,在三阶幻方中每行、每列、毎条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数9和15,则图中最右上角的数n应该是.12.某天最高气温为8∘C,最低气温为−1∘C,则这天的最高气温比最低气温高∘C.13.某书店举行图书促销,每位促销人员以销售50本为基准,超过记为正,不足记为负,其中5名促销人员的销售结果如下(单位:本):5,2,3,−6,−3,这5名销售人员共销售图书本.三、解答题(共6题)14.计算:(1) (+11)−(−2).(2) (+26)+(−18)+5+(−26).15.某景区一电瓶小客车接到任务从景区大门出发,向东走3千米到达A景点,继续向东走 1.5千米到达B景点,然后又回头向西走8.5千米到达C景点,最后回到景区大门,任务完成.以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴.(1) 请在数轴上分别用点A,B,C表示出上述三个景点的位置,并写出各点表示的数.(2) A,C两景点之间的距离是多少?请列式计算.(3) 若电瓶车出发前剩余电量足够行驶20千米,在途中不充电的情况下,该电瓶车能否完成此次任务?请计算说明.16.粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“−”表示出库): +26,−32,−15,+ 34,−38,−20.(1) 经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2) 经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3) 如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?17.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,−4,+13,−10,−12,+3,−13,−17,3.5.(1) 最后一名老师送到目的地时,小王在出车地点的什么方向?距出车地点的距离是多少?(2) 若汽车耗油量为0.4升/千米,每升汽油需7.2元,小王这天上午需汽油费多少元?18.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,−5,0,−2,+4,−1,−1,+3.(1) 这8名男生有百分之几达到标准?(2) 这8名男生共做了多少个引体向上?19.检修队乘汽车沿着东西走向的公路往返行驶检修线路,某天早上从A地出发到收工时所走的路程为(若约定向东为正方向),当天行驶的记录如下:(单位:km)+18,−9.5,+7,−14,−6.2,+13,−6.8,+10.5.(1) 收工时距A地多远?(2) 若汽车行驶每千米耗油0.3升,那么这一天共耗油多少升?参考答案1. 【答案】 B2.【答案】 C3.【答案】 A4.【答案】 B5.【答案】 D6.【答案】 D7.【答案】 C8.【答案】 A9.【答案】910.【答案】25111.【答案】1212.【答案】213. 【答案】−314.【答案】(1) 原式=11+2=13.(2) 原式=(26+5)+(−18−26)=31−44=−13.15. 【答案】(1) 点 A ,B ,C 分别表示 3,4.5,−4.(2) 3−(−4)=3+4=7.(3) ∣4.5∣×2+∣−4∣×2=9+8=17,因为 17<20所以在途中不充电的情况下,该电瓶车能完成此次任务.16. 【答案】(1) 26+(−32)+(−15)+34+(−38)+(−20)=−45 吨答:库里的粮食减少了,减少了 45 吨.(2) 480+45=525(吨)答:6 天前库里存粮 525 吨.(3) (26+∣−32∣+∣−15∣+34+∣−38∣−20)×5=165×5=825(元),答:这 6 天要付 825 元装卸费.17. 【答案】(1) 由题意得:+15−4+13−10−12+3−13−17+3.5=−21.5小王距出车地点的西方,距离是 21.5 千米.(2) 由题意得:(+15+∣−4∣+13+∣−10∣+∣−12∣+3+∣−13∣+∣−17∣+∣3.5∣)×0.4×7.2=90.5×0.4×7.2=260.64元.小王这天上午需汽油费 260.64 元18.【答案】(1) 这 8 名男生中有 4 人达标;48×100%=50% 所以这 8 名男生有百分之五十达到标准.(2)10×8+(2−5+0−2+4−1−1+3) =80+0=80(个).所以这8名男生共做了80个引体向上.19.【答案】(1) (+18)+(−9.5)+(+7)+(−14)+(−6.2)+(+13)+(−6.8)+(+10.5)=12所以收工时距A地12km.(2) ∣+18∣+∣−9.5∣+∣+7∣+∣−14∣+∣−6.2∣+∣+13∣+∣−6.8∣+∣+∣10.5∣=85所以85×0.3=25.5升.。
人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)

11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、若2,3==b a ,则=+b a ________。
3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
4、若1<a <3,求a a -+-31的值。
35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。
2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。
2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。
把同分母的数相结合进行简便运算。
4、756,4310-。
拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。
七年级数学上册《第一章 有理数的加减法》同步训练题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.a-b=a+()A.b B.-b C.a D.-a2.在0,-2 ,4,−4.5这四个数中,绝对值最小的数是()A.0 B.−2C.4 D.−4.53.下列说法正确的是()A.若两数差为0,则这两个数一定相等B.两个有理数的差一定小于被减数C.互为相反数的两个数之差为0D.如果两数之差为负数,那么这两个数都是负数4.1−(−2)=()A.−3B.3C.1D.−15.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是”()A.﹣1 B.0 C.1 D.26.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是().A.B.C.D.7.下列各组数中,大小关系正确的是()A.-7<-5<-2 B.-7>-5>2 C.-7<-2<-5 D.-2>-7>-58.如图,数轴上A,B两点对应的数分别是a和b .对于以下四个式子:①2a−b;②a+b;③|b|−|a|;,其中值为负数的是()④baA.①②B.③④C.①③D.②④二、填空题9.请写出一个比-3大而比 −13 小的有理数: .10.比较大小: −57 −3411.如果x <0,y >0,且|x |=2,|y |=3,那么x +y = .12.若a <0,b <0,|a|<|b|,则a ﹣b 0.13.某一天早晨气温是﹣13℃,到了中午上升了12℃,到午夜又下降了10℃,则午夜的气温是 ℃.三、解答题14.计算:(1)﹣6+6+9(2)0+(﹣3.71)+(+1.71)﹣(﹣5)(3)﹣3 13 +(﹣ 12 )﹣(﹣ 13 )+1 12(4)3﹣(+1 34 )﹣5+(﹣1.25)15.在数轴上表示下列各数及它们的相反数,并用“<”把这些数连接起来.-(+2),0,-|-1.2|,+|−13|.16.某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.6 , +1.8 , ―2.2 , +0.4 , ―1.4 , ―0.9 , +0.3 , +1.5 ,+0.9 , ―0.8问:该面粉厂实际收到面粉多少千克?17.李老师在学校西面的南北走向的公路边从点A 出发沿公路来回给学生植树提供帮助,若设定向南的路程记为正数,向北的路程记为负数,则李老师所走的路程依次记录如下(单位:千米):+1.2,-1,+1,-0.8,-0.6,-0.5,-0.3(1)求李老师能否回到出发点A ?(2)李老师一共走了多少千米?18.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元). 星期一 二 三 四 五 六 七 收入+65 +68 +50 +66 +50 +75 +74 支出 -60 -64 -63 -58 -60 -64 -65 (1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?参考答案1.B2.A3.A4.B5.B6.D7.A8.D9.-110.>11.112.>13.-1114.(1)解:-6+6+9=0+9=9;(2)解:0+(-3.71)+(+1.71)-(-5) =(0+5)+(-3.71+1.71)=5-2=3(3)解:−313+(−12)−(−13)+112=(−313+13)+(112- 12);=-3+1=-2.(4)解:3-(+1 34)-5+(-1.25).=(3-5)+(-1 34-1.25)=-2-3=-5.15.解:-(+2)的相反数是2;0的相反数是0;-|-1.2|的相反数是1.2;+|−13|的相反数是−13画数轴如下图:则-(+2)<-|-1.2|<−13<0<+|−13|<1.2<2.16.解:由题意得:面粉的总质量=50×10+(0.6+1.8-2.2 +0.4-1.4-0.9+0.3+1.5+0.9-0.8)=500+0.2=500.2(千克).答:该面粉厂实际收到面粉500.2千克.17.(1)解:+1.2−1+1−0.8−0.6−0.5−0.3=−1所以李老师不能回到出发点A.(2)解:|+1.2|+|−1|+|+1|+|−0.8|+|−0.6|+|−0.5|+|−0.3|=5.4即李老师共走了5.4千米.18.(1)解:(+65+68+50+66+50+75+74)+(-60-64-63-58-60-64-65)=14(元)答:到这个周末,小李有14元的节余。
最新人教版七年级数学上册《有理数的加减法》同步测试题及答案.docx

1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。
千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版

【答案】C
【解析】根据题意用最高气温 12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到
答案.
【详解】12-(-2)=14(℃).故选:C.
【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在 2、﹣4、0、﹣3 四个数中,最大的数比最小的数大
A.﹣6 B.﹣2 C. D.
②被减数一定大于减数;错误,例如 2-3=-1;
③0 是最小的有理数;错误,例如-2 是有理数,-2 ;
④一个数的倒数一定小于它本身;错误,例如:1 的倒数是 1 等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是
解题的关键。
二、填空题 11.如果|a|=5,|b|=4,且 a+b<0,则 a-b 的值是________. 【答案】-1 或 -9 【解析】根据题意,利用绝对值的代数意义求出 a 与 b 的值,即可确定出 ab 的值. 【详解】∵|a|=5,|b|=4,且 a+b<0, ∴a=−5,b=−4;a=−5,b=4, 则 a−b=-1 或−9. 故答案为:-1 或−9.
【详解】算式 8-7+3-6 正确的读法是正 8、负 7、正 3、负 6 的和. 故答案为:正 8、负 7、正 3、负 6 的和. 【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键. 三、解答题 16.小虫从某点 A 出发在一条直线上来回爬行,规定向右爬行的路程记为正数,向左爬行的路程记为负 数.爬行的各段路程依次记为(单位:cm):﹣11、+8、+10、﹣3、﹣6、+12、﹣10 (1)小虫最后是否回到出发点,请判断并且说明理由 (2)在爬行的过程中,如果每爬行一个单位长度奖励一粒芝麻,则整个运动过程中小虫一共得到多少粒 芝麻? 【答案】(1)小虫最后回到出发点(2)一共得到 60 粒芝麻 【解析】(1)把记录数据相加,结果为 1,说明小虫最后回到距离点 O 右侧 1cm 的地方; (2)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求 得到的芝麻粒数. 【详解】解:(1)﹣11+8+10﹣3﹣6+12﹣10=0. 所以小虫最后回到出发点; (2)|﹣11|+|+8|+|+10|+|﹣3|+|﹣6|+|+12|+|﹣10| =11+8+10+3+6+12+10 =60(cm), 60×1=60(粒). 所以整个运动过程中小虫一共得到 60 粒芝麻. 【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键. 17. 【答案】-15 【解析】根据有理数的加减混合运算法则计算即可. 【详解】原式=16-29-11+9, =25-40, =-15. 故答案为:-15. 【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练的掌握有理数的加减混合运算法则.
七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版

七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。
最新人教版七年级数学上册全册同步练习含答案

第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
2022最新人教版七年级上册数学 有理数加减法同步练习(含答案)

1.3有理数加减法同步练习(一)1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是℃。
2.直接写出答案(1)(-2.8)+(+1.9)=,(2)10.75(3)4--=,(3)0(12.19)--=,(4)3(2)---=3. 已知两个数556和283-,这两个数的相反数的和是。
4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是。
5. 已知m是6的相反数,n比m的相反数小2,则m n-等于。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是。
7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.– 4 5 6二.选择:8.下列交换加数的位置的变形中,正确的是()A、14541445-+-=-+-B、1311131134644436-+--=+--C、12342143-+-=-+-D、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( ) A.74-++ B. ()()74-++ C. 74++- D.()()74+--10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 319 13. 计算:①-57+(+101) ②90-(-3)③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑥()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5 (1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册有理数加减法同步练习
1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)
3(2)---= 3. 已知两个数55
6和283-,这两个数的相反数的和是 。
4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。
5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。
7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .
二.选择:
8.下列交换加数的位置的变形中,正确的是( )
A ﹨14541445-+-=-+-
B ﹨1311131134644436-
+--=+-- C 、 12342143-+-=-+- D ﹨4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-
9. 下列计算结果中等于3的是( )
A. 74-++
B. ()()74-++
C. 74++-
D. ()()74+--
10. 下列说法正确的是( )
A. 两个数之差一定小于被减数
B. 减去一个负数,差一定大于被减数
C. 减去一个正数,差一定大于被减数
D. 0减去任何数,差都是负数
11.校﹨家﹨书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
12﹨火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )
(A) 20 (B) 119 (C) 120 (D) 319
13. 计算:
①-57+(+10
1) ②90-(-3)
③-0.5-(-3
41)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所
走路线(单位:千米)为:+10﹨-3﹨+4﹨+2﹨-8﹨+13﹨-2﹨+12﹨+8﹨+5
(1)问收工时距O 地多远?
(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?
15﹨某商场老板对今年上半年每月的利润作了如下记录:1﹨2﹨5﹨6月盈利分别是13万元﹨12
万元﹨12.5万元﹨10万元,3﹨4月亏损分别是0.7万元和0.8万元。
试用正﹨负数表示各月的利润,并算出该商场上半年的总利润额。
答案:
1:-1
2:-0.9, 4, 12.19, 5
3:17/6
4:6-3+7-2
5:-10
6:15
7:-10
8:D
9:B
10:B
11:B
12:C
13:-1.3; 93; -2; -10; -34; -1
14:解:10-3+4+2-8+13-2+12+8+5=41
把各数的绝对值相加=10+3+4+2+8+13+2+12+8+5=67
67×0.2=13.4(升)
15: +13,+12,-0.7,-0.8,+12.5,+10
+13+12-0.7-0.8+12.5+10=46(万元)
1.3有理数的减法同步练习(二)巩固基础:
1.温度上升5℃,又下降7℃,后来又下降3℃,三次共上升℃.
2.绝对值小于5的所有正整数的和为.
3.比-8的相反数多2的数是.
4.在数轴上表示-4和3的两点的距离是.
5,若a -(-b)=0,则a与b的关系是.
6.如b为正数,则用“<”号连接a,a-b,a+b,为 .
7.已知两数差是25,减数比7的相反数小5,则被减数是.
8.当x=-1, y=-1
2
时,x-y=.
9.若X与-1的差是-1,则X= .
10.绝对值小于100的所有整数的和是.
11.已知M是6的相反数,N比M的相反数小2,则m -n等于( )
A 4
B 8
C -10
D 2
12.不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和的形式是()
A -6-3+7-2 B6-3-7-2
C6-3+7-2D6+3-7-2
13.下列说法中,正确的是()
A减去一个负数,等于加上这个数的相反数
B 两个负数的差,一定是一个负数
C 零减去一个数,仍得这个数
D 两个正数的差,一定是一个正数
14 若有理数a 的绝对值的相反数是-5,则a的值是( )
A 5
B -5
C ±5
D ±1 5
15 在正整数中,前50个偶数和减去50个奇数和的差是( )
A 50
B -50
C 100
D -100
16 x<0, y>0时,则x, x+y, x-y,y中最小的数是( )
A xBx-yCx+y D y
17 1x - + 3y + = 0, 则y -x -
12
的值是 ( ) A -412 B -212 C -112 D 112 18 计算:
(―12)―(―18) 6.25 ―(―7
34)
(―112)―(+13
) (―2.24)―(+4.76)
运用与提高:
19 一个数是8,另一个数比8的相反数小3,求两个数的和。
20.某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?
21.两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0K 点,第一步从0K 点向左跳1个单位到1k ,第二步从1k 向右跳2个单位到2k ,第三步从2k 向左跳3个单位到3k ,第四步从3k 向右跳4个单位到4k ,…,如此跳20步,棋子落在数轴的20k 点,若20k 表示的数是18,问0K 的值为多少?
中考链接:
22.(2003。
四川)计算2―(―1)的结果是()
A 3
B 1
C ―3
D ―1
23.(2004。
桂林)1 ―3 +5―7 +9―11+…+97―99= 。
24.(2004。
太原)2--
1
2
⎛⎫
⎪
⎝⎭
的结果等于。
参考答案:
1. -5
2. 10
3. 10
4. 7
5.互为相反数
6. a – b <a <a+ b
7.25
8.-1 2
9.–2
10.0
11.D
12.C
13.A
14.C
15.B
16.B
17.A
18.6, 14,5
6
-1
5
6
, -7
19.–3
20.–950+500+(-800)+1200+(-1025)+2500+(-200)
= 1225
21.8
22. A
23.– 25
24. 1。