14 屏蔽计算

合集下载

放射防护屏蔽计算

放射防护屏蔽计算

放射防护屏蔽计算放射防护屏蔽计算是在进行放射性物质使用、储存、处理和运输等工作时,为保护工作人员和周围环境的安全而进行的一项重要工作。

通过计算辐射源的辐射强度、辐射类型和工作场所的防护要求,确定必要的屏蔽材料和厚度,以达到合理的防护效果。

第一步:确定辐射源的辐射强度和辐射类型。

不同的放射性物质产生的辐射类型不同,常见的辐射类型有α射线、β射线和γ射线。

根据辐射源的性质和辐射强度,确定屏蔽计算的基本参数。

第二步:确定工作场所的防护要求。

根据放射源的特性和工作场所的需求,确定防护目标,包括辐射剂量限值、剂量当量和辐射源与人员之间的距离等。

第三步:选择合适的屏蔽材料和厚度。

根据辐射类型和防护要求,选择适合的屏蔽材料和屏蔽厚度。

不同的辐射类型对应不同的屏蔽材料,比如α射线可以通过纸张或衣物屏蔽,而γ射线则需要使用厚重的铅或混凝土等材料进行屏蔽。

第四步:进行屏蔽计算。

根据所选的屏蔽材料和厚度,计算屏蔽材料对辐射的吸收率和透射率。

吸收率表示屏蔽材料吸收辐射的能力,透射率表示辐射穿过屏蔽材料的能力。

根据屏蔽计算公式,计算出所需的屏蔽厚度。

第五步:验证屏蔽效果。

通过实际测量和监测,验证所选择的屏蔽材料和厚度的有效性,保证工作场所的辐射水平符合防护要求。

放射防护屏蔽计算是一项复杂的工作,需要具备辐射防护的专业知识和技能。

同时,也需要考虑到工作场所的实际情况、操作方式和工作时间等因素,综合考虑屏蔽材料和厚度的选择。

定期的屏蔽效果评估和设备保养也是放射防护屏蔽计算的重要内容。

总之,放射防护屏蔽计算是为了保障工作人员和周围环境的安全而进行的一项重要工作。

通过科学合理地选择屏蔽材料和厚度,确保工作场所辐射水平符合防护要求,从而有效降低辐射对人体的危害。

屏蔽效能的计算

屏蔽效能的计算
近场高频磁场,应采用高导电率金属,因频率较高时,磁 损将增加,高磁导率材料的屏蔽效果并不理想。
远场电磁屏蔽应采用高导电率金属并良好接地。
实践表明,低频磁场是在线监测中最难屏蔽的,主要因为,
低频 —— 吸收损耗 A 小 磁场 —— 反射损耗 R 小 屏蔽低频磁场主要采用高导磁率材料,以提高吸收损 耗。但应注意以下问题。 1. 材料手册上通常给出的是直流下的磁导率。但一般直流 时磁导率越高,随频率的升高,下降的也越快。 2. 高导磁率材料在经过加工或受到冲击时,导磁率会明显 下降。 3. 高导磁率材料会在强磁场中饱和,丧失屏蔽效能。
(6-1)
例1 如果屏蔽体局干扰源的距离d =1 m,根据判别条件
d = / 2 = 1 m
可求出相应的临界频率
f0 = c / = 47.7MHz
那么此时对于频率f > f0的辐射可认为是远场平面波; 而当频率 f < f0时,则可看作是近场。
对于常见两种天线:小环天线和短单极天线,两者远场 的电磁场分布特性是基本一致的。
屏蔽材料
银 铝 黄铜 不锈钢 热轧硅钢 冷轧钢
r
1.064 0.61 0.35 0.02 0.038 0.17
r
1 1 1 200 1500 180
rr
1.03 0.70 0.59 2.00 7.59 5.53
r r
1.03 0.78 0.59 0.01 0.0051 0.031
例2 设环状辐射源频率f =15 kHz, 在与辐射源相距50cm处有厚
近场
电场屏蔽 RE 141.7 10 lg(r f 3r2 r )
(dB) (6-5)
ImNaoge 磁场屏蔽 RH 74.6 10 lg(r f rr2 ) (dB)

屏蔽计算资料

屏蔽计算资料

屏蔽计算资料屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。

(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。

(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。

4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。

计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。

《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算:B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ;α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。

屏蔽计算

屏蔽计算

1.单向覆盖系数的计算编织密度单向覆盖系数金属丝直径每锭根数编织节距锭子总数屏蔽层直径线芯直径K%Kf d n L m D D 0830.58910.1561716.00 5.60 5.30 3.1按编织角计算金属丝重量根数金属丝直径交叉系数编织角1/2锭数材料密度W Cu n d k SIN θa r 19.68120.10 1.020.6988.89金属丝重量根数金属丝直径交叉系数编织角1/2锭数材料密度W CCAM n d k SIN θa r 4.5340.13 1.020.698 3.63金属丝重量线芯直径金属丝直径交叉系数材料密度W Cu D 0d k r 7.87 2.790.10 1.028.89金属丝重量线芯直径金属丝直径交叉系数材料密度W CCAM D 0d k r 4.67 3.080.13 1.02 3.634.金属丝根数的计算n=[3.14(D0+2d)*Kf*sin θ]/ad金属丝根数线芯直径金属丝直径单向覆盖率编织角1/2锭数n D 0d Kf 45.00a 4 2.550.100.550.718 5.扁型线芯金属丝根数的计算n=[3.14(D0+2d)*Kf*sin θ]/ad 金属丝根数相当线芯直径金属丝直径单向覆盖率编织角1/2锭数线芯周长绝缘外径n Dx d Kf 45.00a c d04 2.550.100.550.7188.02 1.56二.SYV同轴电缆参数计算(GB/T14864-1993)1.单向覆盖系数的计算编织密度填充系数股宽度金属丝直径拼股数编织节距锭子总数平均直径K%Kt W dw N L n D 890.66120.960.12816.816.00 5.122.编织密度K=(2Kf+Kf 2)*100%单向覆盖系数Kf 0.59 Kf=(mnd/2L)[1+(L/3.14D)2)1/2 W=3.14*d 2*a*n*k*r/2sin θ3.2按单向覆盖系数计算W=(D 0+2d)d*Kf*k*r*3.14*3.14/2单向覆盖系数Kf 0.59一.RVVP屏蔽软电缆参数的计算(JB8734-1998)Kf=(mnd/2L)[1+(L/3.14D)2)1/2 2.编织密度K=(2Kf+Kf 2)*100%3.金属丝重量的计算平均周长C 正切值θ正弦值17.590.7744.020.69纵包铝箔外径平均周长D3C θ4.8816.080.7643.74编织角编织角。

屏蔽计算资料

屏蔽计算资料

屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。

(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。

(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。

4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。

计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。

《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算: B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ; α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。

外照射屏蔽计算方法

外照射屏蔽计算方法
•十倍减弱厚度△1/10 :tenth value thickness 将入射光子数减弱到十分之一所需的屏蔽层厚度
1/2 0.3011/10 1/10 3.321/2
常用γ射线的△1/2, △1/10 (cm)
核素
铅 △1/2 △1/10
钢铁 △1/2 △1/10
混凝土 △1/2 △1/10
屏蔽方式
• 固定式:防护墙(迷路)、防护门、观察窗
• 移动式:包装容器、手套箱、防护屏 铅砖、铅围裙、眼镜等
窄束γ射线在物质中的减弱规律
• 窄束的概念(narrow beam): 不包含散射成分的射线束
•单能γ射线在物质中的减弱规律
I I0ed
I,I0:设置屏蔽前后的剂量率(强度) d:屏蔽层厚度(cm)
5.50 105 mR / h
减弱倍数为
K=X0/X=(5.05×105 )/0.25=2.02×106
查表:Co-60平均能量为1.25MeV, 需要混凝土的厚度约为145cm
例题3
欲将放射性活度为3.7×1014Bq的60Co辐射源置于 一个铅容器中,要求容器表面的当量剂量率小于 2×10-3Svh-1,容器表面1m处的当量剂量率应小 于10-4Svh-1。设容器表面到源的距离为25cm,求 铅容器的屏蔽层厚度。
Co-60 1.2 4 2.0 6.7 6.1 20.3
Cs-137 0.7 2.2 1.5 5.0 4.9 16.3
Ra-226 1.3 4.4 2.1 7.1 7.0 23.3
点源的屏蔽计算
• 直接用公式计算
I I0 Be d
•利用减弱倍数法计算 K I0 ed IB
•利用半减弱厚度计算
(1)时间防护(Time) 累积剂量与受照时间成正比 措施:充分准备,减少受照时间

完整屏蔽体屏蔽效能的计算

完整屏蔽体屏蔽效能的计算

E3 (L)
Etotal E 2(0)
1 1 21 23e
2 2 L
E1 γ H1
2
T12 ρ21
1
T23
ρ
23
E3
γ
3Leabharlann H32E1(0)T 12 1 21 23e 2 2 L
Z1 0
Z2 L
Z3 x
图 屏蔽的平面波模型
Etotal沿+x方向传播距离L后形成






pH
e

2 L2
(1 q2e
2 2 L2 1
)
e

3 L3
(1 q3e
2 3 L3 1
)
e

1 ( L2 L3 )
式中:
Z i 1 Z i Z i 1 Z i Z i 1 Z i Z i 1 Z i
E3 (L)
E1 γ
2
T12 ρ21
1
T23
ρ
23
E3
γ
3
E21 (0) E2 (0)e 2 L 23 e 2 L 21 H1 E2 (0) 23 21e
2 2 L
H3
2
Z1 0

Z2 L
Z3 x
E22 (0) E21(0) 23 21e2 2 L

单层屏蔽体
1. 电磁波在屏蔽体x=0界面处的传播公式 2.单层屏蔽体的有效传输系数
3. 电场和磁场的有效传输系数
4. 单层屏蔽体的屏蔽效能
二 多层平板屏蔽体的屏蔽效能
三. 屏蔽效能的计算
1 吸收损耗 2 反射损耗 3 多次反射损耗 四 平面波模型推广到非理想屏蔽结构

14 MeV快中子照相准直屏蔽系统的设计与优化

14 MeV快中子照相准直屏蔽系统的设计与优化

14 MeV快中子照相准直屏蔽系统的设计与优化王捷;李雅男;李桃生;王永峰【摘要】基于强流氘氚中子源科学装置HINEG设计了一套快中子照相准直屏蔽系统.采用中子输运设计与安全评价软件系统SuperMC和ENDF/B-Ⅶ.0数据库计算了准直中子束的中子能谱及注量率、γ射线能谱及注量率、直射中子注量率与γ射线注量率比值(φd/φr)、直射与散射中子注量率比值(φd/φs)、准直束中子注量率的不均匀度等特性参数,并采用MCNP5程序进行了对比验证.研究了准直屏蔽系统的内衬材料、尺寸等对特性参数的影响规律,并通过优化获取了最优设计方案.计算结果显示,在同等计算条件下,SuperMC计算结果与MCNP计算结果相对偏差小于1%,准直屏蔽系统的φd/φr为50.1,φd/φs为5.7,在φ30 cm视野范围内的中子注量率为4.80×107 cm-2·s-1,其中直射中子注量率为4.09×107 cm-2·s-1,中子注量率不均匀度为5.8%,满足快中子照相对准直束特性参数的要求.【期刊名称】《原子能科学技术》【年(卷),期】2019(053)006【总页数】7页(P1105-1111)【关键词】快中子照相;准直屏蔽系统;中子源;SuperMC;MCNP【作者】王捷;李雅男;李桃生;王永峰【作者单位】中国科学院核能安全技术研究所,中子输运理论与辐射安全重点实验室,安徽合肥230031;中国科学技术大学,安徽合肥 230026;中国科学院核能安全技术研究所,中子输运理论与辐射安全重点实验室,安徽合肥230031;中国科学院核能安全技术研究所,中子输运理论与辐射安全重点实验室,安徽合肥230031;中国科学院核能安全技术研究所,中子输运理论与辐射安全重点实验室,安徽合肥230031【正文语种】中文【中图分类】TL99快中子照相是一种优良的无损检测技术,与X射线、热中子照相等具有互补性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




X
: 有屏蔽材料的照射率 X
照射量积累因子
0
:没有屏蔽材料的照射量率
B :

d :所加屏蔽材料的厚度的射线平均自路程个数
7/20

0降低到拟达到的水平 X 用k代表为把原有的照射量 X
所需要的减弱倍数.则:

X0 1 k d X B e

根据上式可计算出所需要屏蔽层的厚度d
2.5 E 20兆电子伏
β射线在各种材料中的射程
5/20
γ射线屏蔽

γ射线在物质中被吸收的特点,是服从于指数 减弱规律的。 γ射线屏蔽体厚度的计算方法,常用的有三种, 即减弱倍数法、减弱因子法和半值层厚度法。
6/20
1、减弱倍数法

若用照射量率来描述γ辐射场的强弱:
X B X 0 e d
12/20
[例]某医院放射性同位素室分装碘-13l样品, 瓶内放射性活度约2Ci(7.4×1010Bq),操作者 在离样品1米处采用远距离操作。要使人所在 位置的照射量率小于2.5毫伦/时,问对样品 需加多厚的铅防护屏蔽套? 解:不加屏蔽套时1米处的照射量率为:

因此,所需的减弱倍数为:
K
11/20
各种放射性核素的γ射线穿过 密度为18.9克/厘米3的铀所 引起的宽束透射
3、半值层法


用半值层法求所需屏蔽材料的厚度,也是辐射 防护惯用的一种方法。这种方法所得结果的精 确程度不如上述二种方法的高。 半值层数目n与减弱倍数K的关系为:K=2n。 查表知n从l到l0的K-n关系。知道了半值层数目 和半值层厚度,就可以用它的乘积求出所需屏 蔽的总厚度。
辐射防护方法
王德忠教授 核科学与工程学院
1

带电粒子,通常用最大射程(β)或射程(α)来表 示所需屏蔽材料的厚度; 而对X、γ射线及中子,则常用应加多少个半 减弱层(又称半值层,使辐射场强度减弱至原 来的一半所需的厚度)来表示所要求的屏蔽材 料的厚度。
2/20
α、β粒子的屏蔽


α粒子在物质中运动时的比电离(单位射程上的 能量损失)是很高的,因此在任何物质中的射 程都很短。 如一个5兆电子伏的α粒子的射程,在空气中大 约是3.5厘米,在普通纸张中约是40微米,而 在铝材料中只有23微米。
8/20

[例]一个15Ci(5.6×1011Bq)的铯-137点状源,若要使 离其1米处的照射量率小于25μSv/时,应加多厚的混 凝土或铅的屏蔽? 解:由题意知,在没有加屏蔽时,可用公式求得距源 1米处的剂量当量率为:
A 1.5 103 3.3 x0 2 49.5mSv / 小时 2 R 100
13/20
A 2 103 2.2 1 x0 2 4 . 4 10 伦/时 440毫伦/时 2 R 100

x( x)

x0

440 180 (倍) 2.5

从表5-11中可以看到,7个半值层能减弱128 倍,8个半值层的减弱倍数为256。因此,可 用7.5个半值层。而碘-131的γ射线平均能量约 为0.4兆电子伏,故它对铅的半值层可粗略估 计为0.5厘米。因此,本例题中铅套厚度估计 约4厘米可满足要求
3/20

β粒子,第一是比电离小,因而在物质中的穿 透能力比α粒子强,第二是要产生轫致辐射。 β粒子在轻物质中的射程R,可以由下列经验 公式求出:
(1.265- 0.09541n E )
R(毫克 / 厘米2) 412E
R(毫克 / 厘米2) 530E 106
4/20
0.01 E 2.5兆电子伏
9/20
要求降到25μSv /时,即 注意到铯-137的γ射线能量为0.662兆电子伏,这样可 以在表5-3和表5-5中查到所需的屏蔽层厚度为:混凝 土65.5匣米,或铅7.08厘米。
49.5 K 2 103 倍。再 0.025
2、减弱系数法 x ) x0


16/20

如果已知屏蔽材料对一定能量的中子的半值层 d,则离此点状中子源R远处的中子通量率Φn 为:
A 1 1 2 n B (中子 秒 厘米 ) x 2 4R 2d

A为中子源强度,中子/秒;B为积累因子,如 不考虑散射中子的影响,可取B=1;x为屏蔽 层厚度。
17/20
令,则:
Be

x
把η称为减弱系数(也称透射率系数),它是减 弱倍数K的倒数。
10/20
[例]上例中屏蔽材料改用贫化 铀时,采用减弱系数法求贫 化铀厚度。 解:减弱系数是减弱倍数的 倒数,所以。在右图的纵坐 标上,找到透射率系数为 5×10-4,作一横线与铯-137 的曲线相交。在相交处,向 下作一垂线与横坐标相交, 即得所需铀的厚度(3.6厘米)。

[例]一个210Po-Be中子源,210Po的放射性活度为2Ci (7.4×1010Bq),为了使离源50厘米处剂量当量率 降至0.025mSV/时以下,须用多厚的石蜡屏蔽? 解:查表知,中子源强为: A=2×2.5×106=5×106中子/秒 容许剂量当量率为:H=0.025mSv/时=6.94×10-9Sv/ 秒。查表,中子平均能量En=4.3兆电子伏,用插入 法求得单位中子通量产生的剂量当量为:
14/20
4、镭、铯-137和钴-60γ射线的减弱

[例]设有一个50毫克的镭源,要求在距它2米 处,照射量率降至2.5毫伦/时。查表5-13使 可知道,采用2.6厘米厚的铅,或5.6厘米厚的 铁,或16.1厘米厚的混凝上均可满足要求。
15/20
中子屏蔽


对中子的外照射防护,主要是对快中子的屏蔽。 中子在物质中的减弱过程,基本上与γ射线相 似,也遵循指数规律。 常用的计算中子屏蔽层厚度的方法也是半值层 法。快中子的半值层是指使入射中子的一半慢 化到热能状态所需的屏蔽物质厚度。
19/20

不加屏蔽时,R=50厘米处中子通量率为:
1 1 2 0 5 10 167 中子 秒 厘米 4 (50) 2
6

查得半值层d=6.68厘米,取B=l,则:
K 2
x 6.68
167 9.8 17

20/20
由此得出x=20厘米。
18/20
Hn 4.06 1010 (Gy 中子1 cm2 )
因此,容许通量率为:
H 6.94 10 7 1 2 n 17 ( 中子 秒 厘米 ) 8 H n / n 4.06 10

可查表得Φn=18中子· 秒-1· 厘米-2。下面计算 屏蔽厚度时用l7中子· 秒-1· 厘米-2。
相关文档
最新文档