导数应用与数列求和
高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。
1.2.2 基本初等函数的导数公式及导数的运算法则

第一章 导数及其应用
[解] ∵p0=1,∴p(t)=(1+5%)t=1.05t.
根据基本初等函数的导数公式表,有p′(t)=(1.05t)′=
1.05t·ln1.05. ∴p′(10)=1.0510·ln1.05≈0.08(元/年). 因此,在第10个年头,这种商品的价格约以0.08元/ 年的速度上涨.
[点拨] 在第10个年头,商品的价格上涨的速度,即
(2)若f(x)=xn,则f′(x)=②________. (3)若f(x)=sin x,则f′(x)=③________. (4)若f(x)=cos x,则f′(x)=④________. (5)若f(x)=ax,则f′(x)=⑤________.
(6)若f(x)=ex,则f′(x)=⑥________.
第一章 导数及其应用
[分析] 求函数的导数主要有直接求导和先变形然后 再求导两种方法,要注意正确区分.
[解]
(1)y′=(tanx)′=(
sinx cosx
)′=
(sinx)′cosx-sinx(cosx)′ cos2x+sin2x 1 = (cosx)2 =cos2x. (cosx)2 (2)y′=(3x2+x· cosx)′=(3x2)′+(x· cosx)′=6x+ x′· cosx+x· (cosx)′=6x+cosx-xsinx. x x 1 2 (3)y′=[( x-2) -sin 2 · 2 ]′=[( x-2) ]′-( 2 cos
高中数学各章节高考占比附解题思路

高中数学各章节高考占比附解题思路高中数学是高考中的一门重要科目,覆盖了多个章节和知识点。
各章节在高考中的占比不尽相同,掌握各章节的重点内容和解题思路对于迎接高考具有重要意义。
本文将详细介绍高中数学各章节在高考中的占比及相应的解题思路。
一、函数与导数“函数与导数”是高中数学中的第一章,也是高考中出现频率较高的一个章节。
据统计,在高考数学卷中,此章节的题目占比约为15%-20%。
在此章节中,主要涉及的内容有函数的定义、初等函数的性质、导数的定义与性质、导数的计算及应用等。
解题思路上,需要着重掌握函数的性质和导数的计算方法,并能够运用导数计算函数的极值、最值以及相关问题。
二、数列与数列的应用“数列与数列的应用”是高中数学中的第二章,高考中的出现频率也较高。
在高考数学卷中,此章节的题目占比约为10%-15%。
在此章节中,主要包括等差数列、等比数列以及它们的应用。
解题思路上,需要熟练掌握数列的通项公式、前n项和以及数列的性质和应用,尤其是等差数列和等比数列的求和公式和应用。
三、概率统计与随机变量“概率统计与随机变量”是高中数学中的第三章,也是高考中的重点章节。
在高考数学卷中,此章节的题目占比约为10%-15%。
在此章节中,主要涉及概率的基本概念、事件的概率、随机变量及其分布等知识点。
解题思路上,需要注重理解概率的基本原理和方法,并能够应用概率统计解决实际问题,同时需要掌握随机变量的概念和分布,利用分布进行相关计算和推理。
四、三角函数与解三角形“三角函数与解三角形”是高中数学中的第四章,也是高考中的重要章节。
在高考数学卷中,此章节的题目占比约为10%-15%。
在此章节中,主要包括三角函数的定义、性质以及各类三角函数的图像与变换等内容。
解题思路上,需要熟练掌握三角函数的基本知识和性质,能够灵活应用三角函数解决各类三角形相关问题。
五、立体几何“立体几何”是高中数学中的第五章,也是高考中的知识点之一。
在高考数学卷中,此章节的题目占比约为10%。
高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
高二下数学知识点

高二下数学知识点
高二下数学主要涵盖以下几个知识点:
1. 三角函数:三角函数是描述角度和边长之间关系的函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
它们在几何中的应用广泛,例如用于求解三角形的边长和角度。
2. 导数与微分:导数是描述函数变化率的概念,表示函数在某一点的瞬时变化速率。
微分是导数的几何意义,表示函数在某一点的切线斜率。
导数与微分在数学和物理等领域中有广泛的应用,例如求解函数的最值、描述曲线的形状等。
3. 不等式与函数的图像:不等式是描述数值关系的一种表达形式,函数的图像是函数在坐标系中的可视化表示。
学习不等式和函数的图像可以帮助我们理解函数的性质及其在数学和实际问题中的应用。
4. 数列与数列的求和:数列是按照一定规律排列的一组数,求和是将数列中的元素相加得到一个结果。
数列与求和在数学和实际问题中都有广泛的应用,例如在金融领域中用于计算投资的复利、在计算机科学中用于算法和数据结构等。
5. 二次函数与二次方程:二次函数是一个二次多项式函数,二次方程则是一个二次多项式的等式。
学习二次函数和二次方程可以帮助我们理解曲线的形状、解决实际问题以及解决数学中的各种方程和不等式。
以上是高二下学期数学的主要知识点,希望对您有所帮助。
如果您还有其他问题,请随时提出。
运用导数巧求数列和

运用导数巧求数列和数列是数学中的基础概念,是一系列按特定顺序排列的数的集合。
数列求和是指对数列中的所有数进行求和运算。
在数学中,比较常见的数列有等差数列和等比数列。
在一些情况下,为了方便计算数列的和,可以运用导数的巧妙方法,通过对数列进行求导和积分等运算,将求和问题转化为其他数学运算问题。
一、等差数列求和等差数列是指数列中相邻两项之间的差值是一个常数的数列。
在等差数列中,如果已知首项a1、末项aN和项数n,我们需要求解的就是数列的和Sn,即1+2+3+…+n的和。
对于等差数列,我们可以运用导数的巧妙方法进行求和。
步骤:1. 首先,假设原等差数列的首项为a1,公差为d,那么原数列的通项公式为an = a1 + (n-1)d。
2. 对于数列的和Sn = a1+a2+a3+…+an,我们将其视为n的函数Sn,即Sn = Sn(n)。
3.接下来,我们对数列的和Sn进行求导,得到导数Sn’(n)。
4.然后,我们对Sn’(n)进行积分,得到Sn(n),即数列的和。
举例:以等差数列1 + 2 + 3 + … + n为例,首项a1为1,公差d为1,通项公式为an = 1 + (n-1)1 = n。
1.对数列的和Sn进行求导,得到导数Sn’(n):Sn’(n) = d/dn(1 + 2 + 3 + … + n) = d/dn(n(n+1)/2) = (2n +1)/22.对Sn’(n)进行积分,得到Sn(n):Sn(n) = ∫[(2n + 1)/2]dn = (n^2 + n)/2所以,数列1+2+3+…+n的和为Sn(n)=(n^2+n)/2、通过运用导数的巧妙方法,我们成功地求解了等差数列1+2+3+…+n的和。
二、等比数列求和等比数列是指数列中相邻两项之间的比值是一个常数的数列。
在等比数列中,如果已知首项a1、末项aN和公比q,我们需要求解的就是数列的和Sn,即a1 + a2 + a3 + … + an的和。
导数在初等数学中的应用-毕业论

江西师范大学数学与信息科学学院学士学位论文导数在初等数学中的应用Application of Derivative inThe Elementary Mathematics姓名:胡磊学号:200907010052学院:数学与信息科学学院专业:数学与应用数学指导老师:陈冬香(教授)完成时间:2013年4月25号导数在初等数学中的应用胡磊【摘要】导数是高中数学所接触的一个概念,它广泛地应用于众多数学模块中,如在函数的研究中,导数能更直观的形象的反应函数的部分性质,还有在判断方程的根;不等式的证明、恒等式的证明、数列求和、解析几何中都有广泛的应用。
在部分数学模块中,导数的引入给许多常规问题的解决提供了新的方法,突出导数在解决问题的优越性;并且归纳总结导数在应用时应注意的部分问题。
【关键词】导数初等数学解题方法应用Application of Derivative in the Elementary MathematicsHu Lei【Abstract】Derivative is a concept which is studied in high school mathematics. It is widely used in numerous math modules such as the research of the Function, in which Derivative can reflect Function’s partial properties more directly and magically. What’s more, Derivative also apply to the judgment of the Function Root, the certification of the Inequity and Identity, the summation of Number Sequence and the Analytic Geometry. In some math modules, the introduction of the Derivative provides new ways for many conventional problems which highlights its superiority in problem-solving. In addition, the essay also sums up and summarizes some problems in the application of the Derivative.【Key words】Derivative Mathematic Problem solving method Application目录1 引言 (1)2 研究导数在函数中的应用 (1)2.1 导数在研究函数的单调性中的作用 (1)2.2 导数在求函数的极值中的作用 (3)2.3利用导数求函数的值域 (4)3 研究导数在判别方程根中的应用 (4)4 研究导数在不等式中的应用 (6)5 研究导数在恒等式的证明中的应用 (8)6 导数在数列方面的应用 (10)7 研究导数的几何应用 (11)8 导数解决实际生活中的问题 (12)8.1 成本问题 (12)8.2 制作容器 (13)9 导数在应用时注意的部分问题 (14)总结 (15)参考文献 (16)致谢 (16)1 引言导数的思想最初是由法国数学家费马为研究极值问题而引入的,但是于导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线。
导数的运算法则及基本公式应用

题目高中数学复习专题讲座导数的运算法则及基本公式应用 高考要求导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导 重难点归纳1深刻理解导数的概念,了解用定义求简单的导数xy∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′(x )=xyx ∆∆→∆lim 0,知道导数的等价形式)()()(lim )()(lim000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆2求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环 必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系 典型题例示范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx xy ω 命题意图本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法这是导数中比较典型的求导类型知识依托解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与方法先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γγ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一设y =f (μ),μ=,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x=f ′(12+x )·21112+x ·2x=),1(122+'+x f x x解法二y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x=12+x x f ′(12+x )例2利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *) (2)S n =C+2C+3C+…+n C,(n ∈N *)命题意图培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力知识依托通过对数列的通项进行联想,合理运用逆向思维由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数关键要抓住数列通项的形式结构错解分析本题难点是考生易犯思维定势的错误,受此影响而不善于联想 技巧与方法第(1)题要分x =1和x ≠1讨论,等式两边都求导 解(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n=xx x n --+11,两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n)′=(xx x n --+11)′即S n =1+2x +3x 2+…+nxn -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C x +C x 2+…+C x n ,两边都是关于x 的可导函数,求导得n (1+x )n -1=C+2C x +3C x 2+…+n C x n -1,令x =1得,n ·2n -1=C+2C+3C+…+n C,即S n =C+2C+…+n C=n ·2n -1例3 已知曲线Cy =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标解由l 过原点,知k =x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴x y =x 02-3x 0+2 y ′=3x 2-6x +2,k =3x 02-6x 0+2 又k =x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23∴y 0=(23)3-3(23)2+2·23=-83 ∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83) 学生巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( ) A0 B1 C -1D22经过原点且与曲线y =59++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x-y =03若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程6求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y =31xx - 7有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 14 m 时,梯子上端下滑的速度8求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *) 参考答案1解析y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1 答案B2解析设切点为(x 0,y 0),则切线的斜率为k =x y ,另一方面,y ′=(59++x x )′=2)5(4+-x ,故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53), 从而得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- ,由于切线过原点,故得切线l A :y =-x 或l B :y =-25x 答案A3解析根据导数的定义 f ′(x 0)=k x f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案-14解析设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n ! 答案n !5解设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1y ′=2x ,则与C 1相切于点P 的切线方程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12①对于C 2y ′=-2(x -2),与C 2相切于点Q 的切线方程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0 ∴直线l 方程为y =0或y =4x -4 6解(1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxxe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7解设经时间t 秒梯子上端下滑s 米,则s =5-2925t -, 当下端移开14 m 时,t 0=157341=⋅, 又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t-,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0875(m/s)8解(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1), 当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+, 两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++两边对x 求导,得S n =12+22x 2+32x 2+…+n 2x n-1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++ 课前后备注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数应用与数列求和
作者:王大成
来源:《神州》2011年第31期
高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。
但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。
问题一:数列(an)的通项公式an=n×2n-1(n∈N*),求数列(an)的前项和Sn.
1.错位相减法:
Sn=1×20+2×21+3×22+...+n×2n-1 (1)
2Sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2)
由(1)-(2)得,-Sn=1+21+22+…+2n-1-n×2n,
有-Sn=1+(n-1)×2(n∈N*)
2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1)
f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(2),
f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,
因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2
有Sn=f(2)=1+(n-1)×2n
定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈N*),其前项n和为Sn,则Sn=1+[(p-1)n-1]pn/(1-p)2。
证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1),
所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(p),
f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因為f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2
有Sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。
问题二:数列(cn)的通项公式cn=anbn(n∈N*),其中,an=pn+q(p,q是常数),bn=r·sn-1(rs≠0),求数列(an)前项和Tn。
分析:若s=1,bn=r,cn=anbn=(pn+q)·r=pr·n+qr,Tn=pr+qr+pr·n+qr/2=pr/2+pr+2qr/2
定理2:数列(cn)的通项公式cn=(pn+q)×r·sn-1(prs≠0,r≠1),则数列(cn)前项n 和Tn=qr(1-sn)/1-s+ 1+[(s-1)n-1]sn/(1-s)2,证明请读者自己完成。
问题三:数列(an)的通项公式=n2×2n(n∈N*),求数列(an)的前n项和Sn.
1.错位相减法:
Sn=12×21+22×22+32×23+...n2×2n (1)
2Sn=1×21+2×32+…+(n-1)2×2n+n2×2n+1…(2)由(1)-(2)得
-Sn=1×2+3×22+5×23+…+(2n-1)2n-n2×2(n+1),
令Tn=1×2+3×22+5×23+…+(2n-1)2n,则有
sn=n2×2n+1-Tn,(n∈N*)
Tn=1×2+3×22+5×23+...+(2n-1)2n (3)
2Tn=1×22+5×23+...+(2n-3)2n++(2n-1)2n+1 (4)
由(3)-(4)得
-Tn=1×2+2×[22+32+…+2n]-(2n-1)×2n+1,
所以Tn=(2n-3)×2n+1+6;因此有,
Tn=(n2-2n+3)×2n+1-6。
2.导数法:解:令g(x)=12x+22+32x3+…n2xn(x≠0,x≠1),
有g(x)=12x+22+32x3+…n2xn=x(1+22x+32x2+…n2xn-1)
=x(x+2x2+3x3+…nxn)
=x×h(x)
由问题一知h(x)=f(x)=x+2x2+3x2+ (x)
[1-(n+1)xn](1-x)+(x-xn+1)/(1-x)2,
所以g(x)=x/(x-1)3[n2xn+2-(2n2+2n-1)xn+1+(n+1)2xn-x-1]
有Sn=g(2)=(n2-2n+3)×2n+1-6
定理3:数列(cn)的通项公式cn=n2xn(x≠0,x≠1,(n∈N*),则数列(cn)前n项和Tn=g(x)=x/(x-1)3[n2+xn+2-(2n2+2n-1)xn+1+(n+1)2xn-x-1]],证明同上。
注:用定理2,可以求出数列(pn+q)×·sn-1(其中(prs≠0,r≠1)的前n项和Tn,数列(cn)的通项公式(cn=anbn(n∈N*),an是等差数列,bn是等比数列。
这类问题在高中阶段一般用错位相减法解决。
读者只要对定理3的理解到位了,那么解决数列(n3·xn)的求和问题也就不难了。
本文不仅对导数的应用拓宽了视野,也为传统的一类数列求和问题另辟蹊径,有一定的创新性。
【参考文献】:
《数学奥林匹克》北京大学出版社单墫
《竞赛数学教程》高等教育出版社陈传理张同君
《数学分析》高等教育出版社华东师范大学数学系编。