41总复习:数列求和及其综合应用(基础)知识梳理

合集下载

高三数学考点-数列求和及应用

高三数学考点-数列求和及应用

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。

高二数列求和知识点归纳总结

高二数列求和知识点归纳总结

高二数列求和知识点归纳总结数列是数学中常见的概念,它是按照一定规律排列的数的集合。

在高二数学学习中,我们经常会遇到数列求和的问题,对此我们需要掌握一些与数列求和相关的知识点。

本文将对高二数列求和的知识进行归纳总结。

一、等差数列求和公式等差数列是指数列中相邻两项之差都相等的数列,常用的求和公式如下:1. 等差数列前n项和公式:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项,an表示末项,n表示项数。

2. 等差数列常用的性质公式:Sn = (a1 + an) * n / 2an = a1 + (n-1) * d其中,d表示公差。

二、等比数列求和公式等比数列是指数列中相邻两项之比都相等的数列,常用的求和公式如下:1. 等比数列前n项和公式(当公比不等于1时):Sn = a1 * (1 - r^n) / (1 - r)其中,Sn表示前n项和,a1表示首项,r表示公比,n表示项数。

2. 等比数列前n项和公式(当公比等于1时):Sn = a1 * n三、特殊数列求和公式除了等差数列和等比数列外,还存在一些特殊的数列求和公式,包括以下几种常见情况:1. 平方数列求和公式:Sn = (2n^3 + 3n^2 + n) / 62. 立方数列求和公式:Sn = (n^2 * (n + 1)^2) / 43. 斐波那契数列求和公式:Sn = F(n+2) - 1其中,F(n)表示第n项斐波那契数。

四、应用案例分析在实际应用中,数列求和常常结合实际问题进行分析和求解。

以下是两个典型的应用案例:案例一:小明每天读书,第一天读了1页,第二天读了2页,第三天读了3页,以此类推,第n天读了n页。

求小明连续读了10天后的总页数。

解析:根据题目中的描述,我们可以知道该题是等差数列,且首项a1=1,公差d=1,项数n=10。

利用等差数列求和公式,可以得到:Sn = (a1 + an) * n / 2= (1 + 10) * 10 / 2= 55因此,小明连续读了10天后的总页数是55页。

年高考数学(理)总复习:数列的求和及综合应用(解析版)

年高考数学(理)总复习:数列的求和及综合应用(解析版)

所以
fn

(2=)
1+
2
×2+


(n-
n
1)2
-2+
n·2n
-1
,①
则 2fn′ (2=) 2+2×22+ … + (n- 1)2n-1+ n·2n,② 由①-②得,- fn′ (2=) 1+ 2+ 22+ … +2n-1- n·2n
n
= 1- 2 - n·2n=(1 -n)2n- 1, 1- 2
n
22
1
(2)[ 证明 ]
因为 fn(0) =- 1< 0,fn 2 3
3

1
3 2
n
2
- 1= 1-2× 2
2
≥1- 2×

3
3
3
2 0,所以 fn(x) 在 0, 内至少存在一个零点,又
3
f′n (x)= 1+ 2x+… + nxn-1> 0,所以 fn(x)在
0, 2 内单调递增,因此 f n(x)在 0, 2 内有且仅有一个零点
【解析】
n, n为偶数, (1) ∵数列 { bn} 的通项公式 bn=
(n∈N * ),∴ b5= 6, b4= 4,
n+ 1,n为奇数
设各项为正数的等比数列 { an} 的公比为 q,q>0 , ∵ S3= b5+ 1=7,∴ a1+ a1q+a1q2=7,① ∵ b4 是 a2 和 a4 的等比中项,
an= f(n+ 1)- f(n)的形式,然
后通过累加抵消中间若干项的求和方法.
形如 c (其中 { an} 是各项均不为 0 的等差数列, anan 1
c 为常数 )的数列等.
(3)错位相减法:形如 { an·bn}( 其中 { an} 为等差数列, { bn} 为等比数列 )的数列求和,一般 分三步:①巧拆分;②构差式;③求和.

数列求和、数列的综合应用(讲解部分)

数列求和、数列的综合应用(讲解部分)

+…+tan
θn<
5 3
的最大整数n的值为
.
解析
由题意可得An
n,n
1 2
n
+
n
1 +
1
,∵O为坐标原点,∴
OAn
=
n,n
1 2
n
+
n
1 +
1
,∵向量
OAn
与向量i=(1,0)的夹角为θn,∴cos
θn=
n
.
n2 +
∴sin ∴tan
n
θn=
θn=
1 n 2
n2 1 2
-1
W9 =1×
10
+29×
10
19+03×2
+190…3+n·
两式相减得
110W=-n·
9 10
n+1+
9+
10
9 10
2+
9 10
3+…+
9 10
n-1=-n·
9 10
n+
1-
9 10
n
1- 9
10
=-n·
9 10
n
+10-10·
9 10
n
,
则W=-10n·
9 10
n+100-100·
题,弄清该数列的特征以及要求什么;
(3)求解——求出该问题的数学解;
(4)还原——将所求结果还原到实际问题中.
2.数列应用题常见模型
(1)等差模型:如果增加(或减少)的量是一个固定值,那么该模型是等差模

(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档

(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档

1 1 1 1 1数列求和及数列的综合应用【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件, 求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1. 数列求和的方法技巧(1) 分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2) 错位相减法这是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前 n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3) 倒序相加法这是在推导等差数列前 n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4) 裂项相消法利用通项变形,将通项分裂成两项或 n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,anan +1anan +1 d (a n - )适用于求通项为 常见的拆项公式: 1 1 1①n (n +1)=n -n +1;1 1 1 1的数列的前 n 项和,其中{a n }若为等差数列,则 = an +1 .②n (n +k )=k (n -n +k );1 1 1 1③(2n -1)(2n +1)=2(2n -1-2n +1);1 1④ n + n +k =k ( n +k - n ). 2. 数列应用题的模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3) 混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4) 生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5) 递推模型:如果容易找到该数列任意一项 a n 与它的前一项 a n -1(或前 n 项)间的递推关系式,我们可以用递推数列的知识来解决问题.π1 π考点一 分组转化求和法例 1 等比数列{a n }中,a 1,a 2,a 3 分别是下表第一、二、三行中的某一个数,且 a 1,a 2,a 3 中的任何两个数不在下表的同一列.第一列第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1) 求数列{a n }的通项公式;(2) 若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前 n 项和 S n .解 (1)当 a 1=3 时,不合题意;当 a 1=2 时,当且仅当 a 2=6,a 3=18 时,符合题意; 当 a 1=10 时,不合题意.因此 a 1=2,a 2=6,a 3=18.所以公比 q =3. 故 a n =2·3n -1 (n ∈N *). (2)因为 b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3. 1-3n n n当 n 为偶数时,S n =2× 1-3 +2ln 3=3n +2ln 3-1;1-3n n -1 n -1(-n)当 n 为奇数时,S n =2× 1-3 -(ln 2-ln 3)+ 2 ln 3=3n - 2 ln 3-ln 2-1.综上所述,S n =Error!在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数 n 进行讨论,最后再验证是否可以合并为一个公式.(2013·安徽)设数列{a n }满足 a 1=2,a 2+a 4=8,且对任意 n ∈N *,函数 f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足 f ′(2)=0. (1)求数列{a n }的通项公式;(an +)(2)若 b n =2 2an ,求数列{b n }的前 n 项和 S n .解 (1)由题设可得 f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x ,又 f ′(2)=0,则 a n +a n +2-2a n +1=0,即 2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为 d , 由已知条件Error!,解得 Error!a n =a 1+(n -1)d =n +1.( 1 ) 1n+1+(2)b n=2 2n+1 =2(n+1)+2n,1 1S n=b1+b2+…+b n=(n+3)n+1-2n=n2+3n+1-2n.考点二错位相减求和法例2 (2013·山东)设等差数列{a n}的前n 项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;b1 b2 bn 1(2)若数列{b n}满足a1+a2+…+an=1-2n,n∈N*,求{b n}的前n 项和T n.解(1)设等差数列{a n}的首项为a1,公差为d,由Error!得a1=1,d=2,所以a n=2n-1(n∈N*).b1 b2 bn 1(2)由已知a1+a2+…+an=1-2n,n∈N*,①b1 b2 bn-1 1当n≥2 时,a1+a2+…+an-1=1-2n-1,②bn 1 b1 1①-②得:an=2n,又当n=1 时,a1=2也符合上式,bn 1 2n-1所以an=2n(n∈N*),所以b n=2n (n∈N*).1 3 5 2n-1所以T n=b1+b2+b3+…+b n=2+22+23+…+2n .1 1 3 2n-3 2n-12T n=22+23+…+2n +2n+1.1 1 (2 2 2 )2n-13 1 2n-1 2n+3++…+两式相减得:2T n=2+22 23 2n -2n+1=2-2n-1-2n+1. 所以T=3-2n .n错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n 项和S n.解(1) 由已知,得当n≥1 时,a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2,符合上式,所以数列{a n}的通项公式为a n=22n-1.(2)由b n=na n=n·22n-1 知S n=1·2+2·23+3·25+…+n·22n-1. ①f (x )+ - - (f (x )从而 22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 1即 S n =9[(3n -1)22n +1+2]. 考点三 裂项相消求和法例 3 (2013·广东)设各项均为正数的数列{a n }的前 n 项和为 S n ,满足 4S n =a n +2 1-4n -1,n ∈N *, 且 a 2,a 5,a 14 构成等比数列.(1) 证明:a 2= 4a 1+5; (2) 求数列{a n }的通项公式;1111(3) 证明:对一切正整数 n ,有a 1a 2+a 2a 3+…+anan +1<2.(1)证明 当 n =1 时,4a 1=a 2-5,a 2=4a 1+5,又 a n >0,∴a 2= (2) 解 当 n ≥2 时 ,4S n -1=a n -4(n -1)-1,4a 1+5.∴4a n =4S n -4S n -1=a n +2 1-a 2-4,即 a n +2 1=a n +4a n +4=(a n +2)2,又 a n >0,∴a n +1=a n +2, ∴当 n ≥2 时,{a n }是公差为 2 的等差数列.又 a 2,a 5,a 14 成等比数列.∴a 2=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得 a 2=3.由(1)知 a 1=1.又 a 2-a 1=3-1=2,∴数列{a n }是首项 a 1=1,公差 d =2 的等差数列.∴a n =2n -1. 1 1 1 1 1 11 (3)证明 a 1a 2+a 2a 3+…+anan +1=1 × 3+3 × 5+5 × 7+…+(2n -1)(2n +1) 1[( 1) (1 1) 1 1)] 1(1 )1 =23 3 5 2n -1 2n +1 =2 2n +1 <2. 数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前 n 项和 S n 或者前 n 项和 S n 与通项公式 a n 的关系式,求通项通常利用 a n =Error!.已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.(2013·西安模拟)已知x , 2 , 3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前 n 项和为 S n ,对于所有大于 1 的正整数 n 都有 S n =f (S n -1).(1) 求数列{a n }的第 n +1 项;1 1(2) 若 bn 是an +1,an 的等比中项,且 T n 为{b n }的前 n 项和,求 T n .解 (1)因为 x , 2 , 3(x ≥0)成等差数列,所 以 2× 2 = x + 3,整理,得 f (x )=( x + 3)2.因为 S n =f (S n -1)(n ≥2),所以 S n =( Sn -1+ 3)2,f (x )1- +…+ 1-()1 1 1 1 (3 3 3n( )( ) - - + )] 18 + 18n +9 1 3因为 a 1=3,所以 S 1=a 1=3,所以 Sn = S 1+(n -1) 3= 3+ 3n - 3= 3n . 所以 S n =3n 2(n ∈N *). 所以 a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. 1 1 1 1(2)因为 bn 是an +1与an 的等比中项, 所以( bn )2=an +1·an , 1111 1 - 1 所 以 b n =an +1·an =3(2n +1) × 3(2n -1)=18× 2n -1 2n +1 , [(1- )+( ) (- 1 1 (1- 1 )n T n =b 1+b 2+…+b n = 考点四 数列的实际应用3 3 5 2n 1 2n 1 = 2n 1 = .例 4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金 2 000 万元,将其投入生产,到当年年底资金增长了 50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金 d 万元,并将剩余资金全部投入下一年生产.设第 n 年年底企业上缴资金后的剩余资金为 a n 万元.(1) 用 d 表示 a 1,a 2,并写出 a n +1 与 a n 的关系式;(2) 若公司希望经过 m (m ≥3)年使企业的剩余资金为 4 000 万元,试确定企业每年上缴资金 d 的值(用 m 表示).(1) 由第 n 年和第(n +1)年的资金变化情况得出 a n 与 a n +1 的递推关系;(2) 由 a n +1 与 a n 之间的关系,可求通项公式,问题便可求解.3 5解 (1)由题意得 a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =2a 1-d =4 500-2d . 3a n +1=a n (1+50%)-d =2a n -d .3 3 3) ( ) (3)[ ( )( ) ]2 (2)由(1)得 a = an -2-d -d =2 2 -d = 22a 2 2 n -1 1+ + - d -d =…= a -d 2 2 2+…+ 2 n -2 . n a n -1 n -2 13 3 3整理得 a =(2)n -1(3 000-d )-2d[(2)n -1-1]=(2)n -1(3 000-3d )+2d .3由题意,知 a m =4 000,即 2 m -1(3 000-3d )+2d =4 000, 3[(2)m -2] × 1 000 3 m -1 1 000(3m -2m +1)解得 d = 2 = 3m -2m .1 000(3m -2m +1)故该企业每年上缴资金 d 的值为3m -2m时,经过 m (m ≥3)年企业的剩余资金为 4 000 万元.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关所 以 Sn = Sn -1+ 3, 即 Sn - Sn -1= 3,所以{ Sn }是以 3为公差的等差数列.18+…+ 3系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题 的结果.某产品在不做广告宣传且每千克获利 a 元的前提下,可卖出 b 千克.若做广告宣传,广告费为b n (n ∈N *)千元时比广告费为(n -1)千元时多卖出2n 千克.(1) 当广告费分别为 1 千元和 2 千元时,用 b 表示销售量 S ; (2) 试写出销售量 S 与 n 的函数关系式;(3) 当 a =50,b =200 时,要使厂家获利最大,销售量 S 和广告费 n 分别应为多少?b 3b b b 7b解 (1)当广告费为 1 千元时,销售量 S =b +2= 2 .当广告费为 2 千元时,销售量 S =b +2+22= 4 . b(2)设 S n (n ∈N )表示广告费为 n 千元时的销售量,由题意得 S 1-S 0=2,bS 2-S 1=22, …… bS n -S n -1=2n .b b b b以上 n 个等式相加得,S n -S 0=2+22+23+…+2n ,1b [1-( )n +1]2b b b b 1 1即 S =S n =b +2+22+23+…+2n = 1-2 =b (2-2n ).1 10(3)当 a =50,b =200 时,设获利为 T n ,则有 T n =Sa -1 000n =10 000×(2-2n )-1 000n =1 000×(20-2n -n ),1010105设 b n =20-2n -n ,则 b n +1-b n =20-2n +1-n -1-20+2n +n =2n -1, 当 n ≤2 时,b n +1-b n >0;当 n ≥3 时,b n +1-b n <0.所以当 n =3 时,b n 取得最大值,即 T n 取得最大值,此时 S =375, 即该厂家获利最大时,销售量和广告费分别为 375 千克和 3 千元.1. 数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1) a n =Error!.(2) 递推关系形如 a n +1-a n =f (n ),常用累加法求通项.an+1(3)递推关系形如an =f(n),常用累乘法求通项.(4)递推关系形如“a n+1=pa n+q(p、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.(5)递推关系形如“a n+1=pa n+q n(q,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1 转为用迭加法求解.2.数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解.提醒:运用错位相减法求和时,相减后,要注意右边的n+1 项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3.数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.( )( ) 1-1. 在一个数列中, 如果∀n ∈N *,都有 a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称 k 为这个数列的公积.已知数列{a n }是等积数列,且 a 1=1,a 2=2,公积为 8,则 a 1+a 2+a 3+…+a 12= .答 案 28解析 依题意得数列{a n }是周期为 3 的数列,且 a 1=1,a 2=2,a 3=4, 因此 a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.2. 秋末冬初,流感盛行,特别是甲型 H1N1 流感.某医院近 30 天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且 a n +2-a n =1+(-1)n (n ∈N *),则该医院 30 天入院治疗甲流的人数共有 .答案 255 解析 由于 a n +2-a n =1+(-1)n ,所以 a 1=a 3=…=a 29=1,15 × 14a 2,a 4,…,a 30 构成公差为 2 的等差数列,所以 a 1+a 2+…+a 29+a 30=15+15×2+ 23. 已知公差大于零的等差数列{a n }的前 n 项和 S n ,且满足:a 2·a 4=65,a 1+a 5=18.(1)若 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,求 i 的值;n×2=255.(2)设 b n =(2n +1)Sn ,是否存在一个最小的常数 m 使得 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立,若存在, 求出常数 m ;若不存在,请说明理由.解 (1){a n }为等差数列,∵a 1+a 5=a 2+a 4=18,又 a 2·a 4=65,∴a 2,a 4 是方程 x 2-18x +65=0 的两个根, 又公差 d >0,∴a 2<a 4,∴a 2=5,a 4=13. ∴Error!∴a 1=1,d =4.∴a n =4n -3.由于 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,∴a 1·a 21=a 2i ,即 1·81=(4i -3)2,解得 i =3. n (n -1) 1 1(1 -1)(2)由(1)知,S n =n ·1+ 2 ·4=2n 2-n ,所以 b n =(2n -1)(2n +1)=2 2n -1 2n +1 ,1 1 1 1 1 1 n 1- + - +…+ - b 1+b 2+…+b n =23 3 5 2n -1 2n +1 =2n +1, n 1 1 1 1因为2n +1=2-2(2n +1)<2,所以存在 m =2使 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立.(推荐时间:60 分钟)一、选择题1 1 1 11. 已知数列 12,34,58,716,…,则其前 n 项和 S n 为()1A .n 2+1-2n1B .n 2+2-2n1C .n 2+1-2n -11- 1 ·1 2n 21D .n 2+2-2n -11 1+2n -11 1 答案 A 解析 因为 a n =2n -1+2n ,则 S n =2n +2 =n 2+1-2n .S12 S102.在等差数列{a n}中,a1=-2 013,其前n 项和为S n,若12 -10 =2,则S2013的值等于( ) A.-2 011 B.-2 012 C.-2 010 D.-2 013答案DSn S1 解析根据等差数列的性质,得数列{ n }也是等差数列,根据已知可得这个数列的首项1 =a1=-2 013,S2 013公差d=1,故2 013 =-2 013+(2 013-1)×1=-1,所以S2013=-2 013.3.对于数列{a n},a1=4,a n+1=f(a n),n=1,2,…,则a2013等于( )A.2 B.3 C.4答案C解析由表格可得a1=4,a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=2,a5=f(2)=4,可知其周期为4,∴a2013=a1=4.S1 S2 S154.在等差数列{a n}中,其前n 项和是S n,若S15>0,S16<0,则在a1,a2,…,a15中最大的是( )S1 S8 S9 S15A.a1答案BB.a8C.a9D.a1515(a1+a15)16(a1+a16)解析由于S15= 2 =15a8>0,S16= 2 =8(a8+a9)<0,可得a8>0,a9<0.S1 S2 S8 S9 S10 S15这样a1>0,a2>0,…,a8>0,a9<0,a10<0,…,a15<0,而S1<S2<…<S8,a1>a2>…>a8,S1 S2 S15 S8所以在a1,a2,…,a15中最大的是a8.故选B.1 1 1 15.数列{a n}满足a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,则a1+a2+a3+…+a2 012等于( )4 024A.2 013 答案A4 018B.2 0122 010C.2 0112 009D.2 010解析令m=1 得a n+1=a n+n+1,即a n+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,a n-a n-1=n,上述n-1 个式子相加得a n-a1=2+3+…+n,n(n+1) 1 2 1-1 )所以a n=1+2+3+…+n= 2 ,因此an=n(n+1)=2 n n+1 ,() ()(1 1 1 11 1 1 1 11 4 0241- + - +…+- 1-所以a 1+a 2+a 3+…+a 2 012=22 23 2 012 2 013=22 013 =2 013.6. 已知函数 f (n )=Error!且 a n =f (n )+f (n +1),则 a 1+a 2+a 3+…+a 2 012 等于()A .-2 012B .-2 011C .2 012D .2 011答 案 C解析 当 n 为奇数时,a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1); 当 n 为偶数时,a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1.所以 a 1+a 2+a 3+…+a 2 012=2(-1+2-3+4+…-2 011+2 012)=2 012. 二、填空题7. 数列{a n }中,已知对任意 n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则 a 2+a 2+a 3+…+a n =.1答 案 2(9n -1)解析 ∵a 1+a 2+a 3+…+a n =3n -1,∴a 1+a 2+a 3+…+a n -1=3n -1-1(n ≥2). 则 n ≥2 时,两式相减得,a n =2·3n -1. 当 n =1 时,a 1=3-1=2,适合上式,∴a n =2·3n -1(n ∈N *).∴a n =4·9n -1,4(1-9n ) 1则数列{a 2}是首项为 4,公比为 9 的等比数列.∴a 2+a 2+a 2+…+a n = 1-9 =2(9n -1).8. 设数列{a n }的前 n 项和为 S n ,且 a n 为复数 isin 答 案 1n π2 +cos n π2 (n ∈N *)的虚部,则 S 2 013=.解析 由已知得:a n =sin n π2 (n ∈N *),∴a 1=1,a 2=0,a 3=-1,a 4=0, 故{a n }是以 4 为周期的周期数列,∴S 2 013=S 503×4+1=S 1=a 1=1.19.已知数列{a n }满足 3a n +1+a n =4(n ≥1)且 a 1=9,其前 n 项之和为 S n ,则满足不等式|S n -n -6|<125的最小整数 n 是 .答 案 71解析 由递推式变形得 3(a n +1-1)=-(a n -1),∴{a n -1}是公比为-3的等比数列. 11则 a n -1=8·(-3)n -1,即 a n =8·(-3)n -1+1.18[1-(- )n ]3 1 1 1 1-(- )于是 S n = 3 +n =6[1-(-3)n ]+n =6-6·(-3)n +n1 1 1因此|S n-n-6|=|6×(-3)n|=6×(3)n<125,3n-1>250,∴满足条件的最小n=7.10.气象学院用3.2 万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n+4910 (n∈N*)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了天.答案8001解析由题意得,每天的维修保养费是以5 为首项,10为公差的等差数列.设一共使用了n 天,则使用n 天的平(5+n+49)n 103.2 ×104+ 2 n 99993.2 × 104均耗资为n3.2 × 104 n=n +20+20≥20,当且仅当n =20时取得最小值,此时n=800.三、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n 项和S n.解(1)设数列{a n}的公差为d,则由a5=9,a2+a6=14,得Error!,解得Error!.所以数列{a n}的通项公式为a n=2n-1.(2)由a n=2n-1 得b n=2n-1+q2n-1.当q>0 且q≠1 时,S n=[1+3+5+…+(2n-1)]+(q1+q3+q5+…+q2n-1)=n2+当q=1 时,b n=2n,则S n=n(n+1).所以数列{b n}的前n 项和S n=Error!. q(1-q2n) 1-q2 ;12.将函数f(x)=sin(n∈N*).14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n 项和为T n,求T n的表达式.1 1 1 1 π解(1)化简f(x)=sin 4x·sin 4(x+2π)·sin 2(x+3π)=-4sin x,其极值点为x=kπ+2(k∈Z),πππ它在(0,+∞)内的全部极值点构成以2为首项,π为公差的等差数列,故a n=2+(n-1)π=nπ-2.π(2)b n=2n a n=2(2n-1)·2n,π∴T n=2[1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n],π则2T n=2[1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1]两式相减,得π∴-T n=2[1·2+2·22+2·23+…+2·2n-(2n-1)·2n+1],∴T n=π[(2n-3)·2n+3].1 113.在等比数列{a n}中,a2=4,a3·a6=512.设b n=log2a22·log2a n+2 12,T n为数列{b n}的前n 项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n 恒成立,求实数λ的取值范围.1 1 1解(1)设{a n}的公比为q,由a3a6=a2·q5=16q5=512得q=2,1∴a n=a2·q n-2=(2)n.1 1 1 1 1 1b n=log2a n2·log2a n+2 12=log(2)2n-12·log(2)2n+12=(2n-1)(2n+1)=2(2n-1-2n+1),1 1 1 1 1 1 1 1 n∴T n=2(1-3+3-5+…+2n-1-2n+1)=2(1-2n+1)=2n+1.(n-2)(2n+1) 2 2(2)①当n 为偶数时,由λT n<n-2 恒成立得,λ< n2 2=2n-n-3 恒成立,即λ<(2n-n-3)min,而2n-n-3 随n 的增大而增大,∴n=2 时(2n-n-3)min=0,∴λ<0.(n+2)(2n+1) 2②当n 为奇数时,由λT n<n+2 恒成立得,λ< n =2n+n+5 恒成立,2 2即λ<(2n+n+5)min而2n+n+5≥25=9,当且仅当2n=n,即n=1 时等号成立,∴λ<9.综上,实数λ 的取值范围为(-∞,0).“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

数列数列求和数列的综合应用课件

数列数列求和数列的综合应用课件
涉和衍射现象。
量子力学
数列在量子力学中用于描述微 观粒子的波函数和能量级。
数列在计算机科学中的应用
数据结构
数列是计算机科学中常见的数 据结构之一,用于存储有序的
元素集合。
算法设计
数列在算法设计中用于实现排 序、搜索和图算法等。
加密技术
数列在加密技术中用于生成加 密密钥和实现加密算法。
积的数列。
02
数列的求和
数列求和的定义
数列求和是对数列中所有项进行加法运算的过程。
数列求和是数学中一个重要的概念,它是对数列中所有项进行加法运算的过程。 通过数列求和,我们可以得到数列的和,从而了解数列的整体性质和特点。
等差数列的求和
等差数列是一种常见的数列,其求和 方法有多种。
等差数列是一种常见的数列,其特点 是每项与前一项的差是一个常数。等 差数列的求和方法有多种,其中最常 用的是利用等差数列的通项公式和项 数进行计算。
等比数列的应用实例解析
总结词
等比数列在金融、经济、生物等领域中有着 广泛的应用,如复利计算、人口增长等。
详细描述
等比数列是一种常见的数列,其相邻两项之 间的比是一个常数。在金融和经济领域中, 很多问题需要用到等比数列的知识,例如复 利计算、股票价格等。通过等比数列的应用 ,我们可以更好地理解这些问题的本质,从 而更好地进行决策。
本质,从而更好地进行预测和建模。
THANKS
谢谢您的观看
等比数列的求和
等比数列是一种常见的数列,其求和方法有多种。
等比数列是一种常见的数列,其特点是每项与前一项的比值是一个常数。等比数列的求和方法有多种,其中最常用的是利用 等比数列的通项公式和项数进行计算。
幂数列的求和

数列求和与数列的综合应用

数列求和与数列的综合应用
50
3.若数列{an}的通项公式为 an=2n+2n-1,则数列{an}的前 n 项 和为( )
A.2n+n2-1 B.2n+1+n2-1 C.2n+1+n2-2 D.2n+n-2
答案:C
解析:Sn=a1+a2+a3+…+an =(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n

1)

(2

22

23



2n)

2(1

2

3



n)

n

21-2n 1-2

nn2+1×2-n=2n+1+n2-2.
类题通法 (1)分组转化法求和的常见类型 ①若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求 和法求{an}的前 n 项和.
②通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}
=11a6=11(a1+5d)=11b4=11×24,
即 a1+5d=16,可得ad1==31 ,∴an=a1+(n-1)d=3n-2, 所以{an}的通项公式为 an=3n-2,{bn}的通项公式为 bn=2n.
(2)由(1)得 anbn=(3n-2)an=(3n-2)·2n 所以 Tn=a1b1+a2b2+a3b3+…+an-1bn-1+anbn =1×2+4×22+7×23+…+(3n-5)·2n-1+(3n-2)×2n,① 2Tn=1×22+4×23+7×24+…+(3n-5)·2n+(3n-2)×2n+1,② ①-②得-Tn=2+3(22+23+…+2n)-(3n-2)2n+1 =2+3×221--22n·2-(3n-2)·2n+1

41总复习:数列求和及其综合应用(基础)知识梳理

41总复习:数列求和及其综合应用(基础)知识梳理
与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算 数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题.
有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征, 考察数列的极限存在与否等等.
有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列 有关知识解答此类应用题.
公式法
数列前n项和
分组求和 错位相减
倒序相加
裂项相消
综合应用
与函数、方程、不等式等 与几何、实际问题等
【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、
复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用, 如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外, 还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.
(2) y 4sin2 x 4 1 cos 2 x 2 2 cos 2 x 的最小正周期为 T 2 1
2
2
b1 1 q 3 bn 3n1 an bn 2n 3n1
Sn
2 30
4 31
2n 3 n1
2 2n n 1 3n n2 n 1 1 3n
a1
, a2
2 3
3, a3
4 9
4
由 a22 a1 a3 得 9 0 ,显然矛盾,
即不存在实数 使得数列{an}是等比数列。
(Ⅱ)根据等比数列的定义:
bn1 bn
(1)n1[an1 3(n 1) 21]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和与综合应用【考纲要求】1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项a n 与前n 项和S n 之间的关系式3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟练掌握求数列的前n 项和的几种常用方法;4.能解决简单的实际问题. 【知识网络】【考点梳理】纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题.有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征,考察数列的极限存在与否等等.有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列有关知识解答此类应用题.数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】类型一:数列与函数的综合应用例1.(2015 菏泽一模)已知数列{}n a 的前n 项和为n S ,且()()*1n S n n n N=+∈.综合应用与函数、方程、不等式等 与几何、实际问题等数列前n 项和公式法 错位相减 倒序相加 裂项相消分组求和(1)求数列{}n a 的通项公式. (2)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋅⋅⋅+++++,求数列{}nb 的通项公式; (3)令()*4n nn a b c n N =∈,求数列{}n c 的前n 项和n T . 【解析】(1)当1n =时,112a S ==当2n ≥时,()()1112n n n a S S n n n n n -=-=+--= 知12a =满足该式∴数列{}n a 的通项公式为2n a n =(2)3122331313131n n n b b b ba =+++⋅⋅⋅+++++① 311212313131313131n nn n n b b b b ba +++∴=+++⋅⋅⋅+++++++② ②-①得111231n n n n b a a +++-==+即()11231n n b ++=⋅+ ()()*231n n b n N ∴=⋅+∈(3)()3134n n n nn a b c n n n ==+=⋅+ ()23123132333312n n n T c c c c n n ∴=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+⨯+++⋅⋅⋅+令231323333nn H n =⨯+⨯+⨯+⋅⋅⋅+⨯① 则234+131323333n n H n =⨯+⨯+⨯+⋅⋅⋅+⨯②①-②得:()2311313233333313n n n n n H n n ++--=+++⋅⋅⋅+-⨯=-⨯-()121334n nn H +-⨯+∴=∴数列{}n c 的前n 项和为()()()1*2133142n nn n n T n N +-⨯++=+∈举一反三:【高清课堂:函数的极值和最值388566 典型例题三】【变式1】已知数列{}n a 和{}n b 满足:1a λ=,1243n n a a n +=+-,()(1)321n n n b a n =--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;解析:(Ⅰ)假设存在实数λ,使得数列{}n a 是等比数列,则1a ,2a ,3a 必然满足2213a a a =⋅12324,3,439a a a λλλ==-=-由2213a a a =⋅得90=,显然矛盾,即不存在实数λ使得数列{}n a 是等比数列。

(Ⅱ)根据等比数列的定义:()()()()()111(1)[3(1)21](1)3212[43(1)21]33212[214]33213212233213n n n n n n n n n n n n b a n b a n a n n a n a n a n a n a n +++--++=--+-+--++=-+--+=-+-+=-⋅=--+即123n n b b +=- 又()11321(18)b a λ=--+=-+所以当18λ=-时,数列{}n b 不是等比数列;当18λ≠-时,数列{}n b 是等比数列.【变式2】(2015 遵义校级模拟)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-(1)求{}n a 的通项公式.(2)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n项和n S .【解析】(1)设数列{}n a 的公差为d 则:()12112210a a d a d =⎧⎪⎨+=+-⎪⎩解得2d =或4d =-(舍去) ()2212n a n n =+-=(2)21cos 24sin 422cos 22x y x x πππ-==⨯=-的最小正周期为212T ππ==11b ∴=3q =13n n b -∴=123n n n a b n -∴-=-()()()()0112221311234323321322n n n n n n S n n n -+-∴=-+++⋅⋅⋅+-=-=++-⋅- 类型二:数列与不等式例2. (2016 天津高考)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等比中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nkn k k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【解析】⑴22112112n n n n n n n n c b b a a a a d a +++++=-=-=•21212()2n n n n c c d a a d +++-=-=为定值.∴{}n c 为等差数列 ⑵()221311nkn k k T b c c ==-=++∑2n-1…+c =2211(1)42(n 1)(*)2n n nc d nc d n -+•=+-由已知22212123122122()4c b b a a a a da d a d d =-=-==+= 将214c d =代入(*)式得22(1)n T d n n =+∴222211111111111111(1)(1)2(1)22231212nnk k kT d k k d n n d n d ====-+-+-=-<+++∑∑…+,得证 举一反三:【变式1】在数列{a n }中,a 1=2,a n+1=4a n -3n+1,*N n ∈. (1)证明数列{a n -n}是等比数列; (2)求数列{a n }的前n 项和S n ;(3)证明不等式n n S S 41≤+,对任意*N n ∈皆成立.解析: (1)证明:由已知1341+-=+n a a n n , ∴)(4)1(1n a n a n n -=+-+ *N n ∈ 又a 1-1=1,∴数列{a n -n}是首项为1,公比为4的等比数列(2)解:由(1)可知a n -n=4n-1,∴ a n =4n-1+n∴S n =a 1+a 2+…+a n =(40+1)+(41+2) +…+(4n-1+n)=2)1(3142)1(4141++-=++--n n n n n n(3)证明:对任意*N n ∈2)2)(1(314411+++-=-++n n S S n n n -41(1)432n n n ⎡⎤-+⋅+⎢⎥⎣⎦ =)43)(1(21)43(212+--=-+-n n n n ∵n ≥1,∴ n-1≥0,3n+4>0 ∴114(1)(34)02n n S S n n +-=--+≤ 即S n+1≤4S n【变式2】已知{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.解析:(Ⅰ)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q,∵a 1≠0,∴2q 2-q-1=0,∴1q =或12q =-, (Ⅱ)若q=1,则.2312)1(22nn n n n S n +=⋅-+= 当n ≥2时,.b S 02)2)(1(n n 1>>+-==--,故n n S b S n n n若21(-1)1-92(-)2224n n n n nq S n +=-=+=,则当n ≥2时,-1(1)(10)4n n n n n S b S ---==-故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n=10时,S n =b n ;当n ≥11时,S n <b n .【变式3】设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.解析:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-.因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-2232[123]2n n a --=⨯+-(),当2n ≥时,21312()302n n n a a a -+⇔⨯+-≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,.。

相关文档
最新文档