2018高考数学试题分类汇编 数列求和及综合应用 解析版

合集下载

高考真题汇编理科数学解析版4:数列.doc

高考真题汇编理科数学解析版4:数列.doc

2018高考真题分类汇编:数列一、选择题1.【2018高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25【答案】B【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和156252)(52)(542515=⨯=+=+=a a a a S ,选B. 2.【2018高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列【答案】C【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。

3.【2018高考真题新课标理5】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【答案】D【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.4.【2018高考真题上海理18】设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( )A .25B .50C .75D .100【答案】D【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0。

2018高考分类汇总——数列

2018高考分类汇总——数列
解析: 与 相比,元素间隔大。所以从 中加了几个 中元素考虑。
个:
个:
个:
个:
个:
个:
发现 时 发生变号,以下用二分法查找:
,所以所求 应在 之间.
,所以所求 应在 之间.
,所以所求 应在 之间.
∵ ,而 ,所以答案为 .
已知 成等比数列,且 .若 ,则B
A. B. C. D.
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列
因为 ,可得 ,故 .所以 .
设等差数列 的公差为 .由 ,可得 .由 ,可得 从而 ,故 ,所以 .
(II)解:由(I),知
由 可得 ,
整理得 解得 (舍),或 .所以n的值为4.
已知集合 ,将 的所有元素从小到大依次排列构成一个数列 ,记 为数列的前 项和,则使得 成立的 的最小值为__________.
{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
(Ⅰ)由 是 的等差中项得 ,
所以 ,
解得 .
由 得 ,
因为 ,所以 .
(Ⅱ)设 ,数列 前n项和为 .
由 解得 .
由(Ⅰ)可知 ,
所Байду номын сангаас ,
故 ,
.
设 ,
所以 ,
因此 ,
又 ,所以 .
设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.

2018高考数学文人教新课标大一轮复习配套文档:第六章 数列 6-4 数列求和及应用 含答案 精品

2018高考数学文人教新课标大一轮复习配套文档:第六章 数列 6-4 数列求和及应用 含答案 精品

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和: ①1+2+3+…+n = ; ②2+4+6+…+2n = ; ③1+3+5+…+(2n -1)= ; ④12+22+32+…+n 2= ; ⑤13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22. (2)分组求和:把一个数列分成几个可以直接求和的数列.(3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和.常见的裂项公式: ①1n (n +1)= -1n +1;②1(2n -1)(2n +1)= ⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n (n +1)(n +2)= ⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2); ④1a +b= (a -b );⑤a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = .(4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类. (5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2②n 2+n③n 2④n (n +1)(2n +1)6(5)①1n ②12 ③12 ④1a -b2.(1)a (1+xr ) (2)a (1+r )x(3)N (1+p )x设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( )A .2nB .2n-n C .2n +1-nD .2n +1-n -2解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合.解法二:研究通项a n =1+2+22+…+2n -1=2n-1, 所以S n =(21-1)+(22-1)+…+(2n-1) =(21+22+…+2n )-n =2n +1-n -2.故选D .解:设第n个图案中白色地面砖有a n块,a1=6,a2=10,a3=14,易知a n-a n-1=4(n≥2),+…+3-1)+…+金进行生态环境建设,并以此发展旅游产业,根据规B.a 29⎝ ⎛个三角形的内切圆半径为,a 2=12a 1,…,a ,公比为12的等比数列.所以n x2是等差数列B.{S2n}是等差数列是等差数列D.{d2n}是等差数列解:由题意,过点A1,A2,A3,…,Aa n。

2018届高考数学(理)热点题型:数列(含答案解析)

2018届高考数学(理)热点题型:数列(含答案解析)

数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n, 故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n. (2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。

2018全国各地高考数学试题与解答分类汇编大全(06数列)

2018全国各地高考数学试题与解答分类汇编大全(06数列)

2018年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D .1.【答案】D【解析】因为每一个单音与前一个单音频率比为()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2..答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( )A .12-B .10-C .10D .123. 答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________.1.【答案】63n a n =- 【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .2.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k kk k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3 (2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

2018年全国各地高考数学试题及解答分类大全(数列)

2018年全国各地高考数学试题及解答分类大全(数列)

可得
3a1
13d
16
,从而
a1
1,
d
1 ,故
an
n
,所以,
Sn
nn 1
2

第 5页 (共 7页)
(2)由(1),有 T1 T2 Tn
21 23 2n
2 1 2n n =
1 2
n 2n 1 n 2 ,由
Sn
T1
T2
Tn
an
4bn
可得
nn 1
2
2n1
n
2
n
2n1 ,
二、填空 1.(2018 北京理)设 an 是等差数列,且 a1=3,a2+a5=36,则 an 的通项公式为__________.
1.【答案】 an 6n 3
【解析】 Q a1 3 , 3 d 3 4d 36 , d 6 ,an 3 6n 1 6n 3 .
2.(2018 江苏)已知集合 A {x | x 2n 1, n N*} , B {x | x 2n , n N*} .将 A B 的所有元素从 小到大依次排列构成一个数列{an} .记 Sn 为数列{an} 的前 n 项和,则使得 Sn 12an1 成立的 n 的 最小值为 ▲ .
7 21
11 22
4n 5 2n2

错位相减得
bn
b1
14
4n 3 2n2

所以 bn
15
4n 3 2n2
.
5.(2018 天津文)设{an}是等差数列,其前 n 项和为 Sn(n∈N*);{bn}是等比数列,公比大于 0,其 前 n 项和为 Tn(n∈N*).已知 b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (Ⅰ)求 Sn 和 Tn; (Ⅱ)若 Sn+(T1+T2+…+Tn)=an+4bn,求正整数 n 的值.

2018年各地高考真题分类汇编数列学生版完整版.doc

2018年各地高考真题分类汇编数列学生版完整版.doc

(2018年全国一·文科)17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.(2018年全国二·文科)17.(12分) 记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.(2018年全国三·文科)17.(12分)等比数列中,. (1)求的通项公式;(2)记为的前项和.若,求.(2018年北京·文科)(15)(本小题13分)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12e e e n a a a +++L .(2018年天津·文科)(18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.n S {}n a n 17a =-315S =-{}n a n S n S {}n a 15314a a a ==,{}n a n S {}n a n 63m S =m(2018年江苏)14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .(2018年浙江)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>(2018年上海)20.(本题满分15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.高考一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

2018--2020年高考数学试题分类汇编数列附答案详解

2018--2020年高考数学试题分类汇编数列附答案详解

2018--2020年⾼考数学试题分类汇编数列附答案详解2018---2020年⾼考数学试题分类汇编数列⼀、选择题.1、(2018年⾼考全国卷1理科4)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=()A .﹣12B .﹣10C .10D .12答案:B解析:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2,∴=a 1+a 1+d +4a 1+d ,把a 1=2,代⼊得d=﹣3 ∴a 5=2+4×(﹣3)=﹣10.故选:B .2、(2019年⾼考全国I 卷理科9)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =-C .228n S n n =-D .2122n S n n =- 答案:A解析:有等差数列的性质可知54,0641514=+==+=d a a d a S ,解得2,31=-=d a所以52,42-=-=n a n n S n n ,故选A 。

3、(2019年⾼考全国III 卷理科5⽂科6)已知各项均为正数的等⽐数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A . 16B . 8C .4D . 2答案:C解析:由题意有154=S ,即151)1(414=--=qq a S 由题意有a 5=3a 3+4a 1,即1214143a q a q a +=,故 (q 2-4)(q 2+1)=0因为各项均为正数,所以q>0,所以q=2将q=2代⼊151)1(414=--=qq a S .得a 1=1、所以43=a 故选C 4、(2019年⾼考全国III 卷⽂理科9)执⾏下边的程序框图,如果输⼊的ε为0.01,则输出s 的值等于 A.4122-B.5122-C.6122-D.7122-答案:C解析:等⽐数列前n 项和,0,1==s x 不满⾜01.0s x 不满⾜01.011,41+==s x 不满⾜01.01....41211,1281++++==s x 满⾜01.05、(2019年⾼考北京卷理科2⽂科4)执⾏如图所⽰的程序框图,输出的s 值为(A )1(B )2(C )3(D )4 答案:B解析:k=1,s=1, s=2212312?=?-,k<3,故执⾏循环体k=1+1=2,2222322s ?==?-;此时k=2<3,故继续执⾏循环体k=3,2222322s ?==?-,此时k=3,结束循环,输出s=2.故答案为:B.6、(2019年⾼考浙江卷10)设,a b R ∈,数列{}n a 中1a a =,21n n a a b +=+,21n n a a b +=+,则()A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当2b =-时,1010a > 答案:A解答:选项B :不动点满⾜2211()042x x x -+=-=,如图,若11(0,)2a a =∈,12n a <,排除;如图若a 为不动点12,则12n a =;选项C :不动点满⾜22192()024x x x --=--=,不动点为2x =,令2a =,则210n a =<,排除;选项D :不动点满⾜221174()024x x x --=--=,不动点为1712x =,令1712a =,则171102n a =<,排除;选项A :证明:当12b =时,2211122a a =+≥,2321324a a =+≥,2431171216a a =+≥≥,处理⼀:可依次迭代到n a ;处理⼆:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>?>,则1217()(4)16n n a n +≥≥,则641022617164(64631 1114710161616210()6a ?≥=+=++?+>++>,故选A.7、(2020?北京卷)在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T (). A. 有最⼤项,有最⼩项 B. 有最⼤项,⽆最⼩项 C. ⽆最⼤项,有最⼩项 D. ⽆最⼤项,⽆最⼩项答案:B解:由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-?=-,注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最⼩项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =?=.故数列{}n T 中存在最⼤项,且最⼤项为4T .故选:B.8、(2020?全国2卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块,下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块,已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A. 3699块B. 3474块C. 3402块D. 3339块答案:C解:设第n 环天⽯⼼块数为n a ,第⼀层共有n 环,则{}n a 是以9为⾸项,9为公差的等差数列,9(1)99n a n n =+-?=,设n S 为{}n a 的前n 项和,则第⼀层、第⼆层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层⽐中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =,所以32727(9927)34022n S S +?===. 故选:C9、(2020?全国2卷)数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =()A. 2B. 3C. 4D. 5答案:C解:在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=,所以,数列{}n a 是以2为⾸项,以2为公⽐的等⽐数列,则1222n nn a -=?=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++?-?-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.10、(2020?全国2卷)0-1周期序列在通信技术中有着重要应⽤.若序列12na a a 满⾜{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成⽴,则称其为0-1周期序列,并称满⾜(1,2,)i m i a a i +==的最⼩正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满⾜1()(1,2,3,4)5C k k ≤=的序列是()A. 11010B. 11011C. 10001D. 11001答案:C解:由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑,对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;故选:C⼆、填空题.1、(2018年⾼考全国卷1理科14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= ﹣63 .答案:63-解析:S n 为数列{a n }的前n 项和,S n =2a n +1,①当n=1时,a 1=2a 1+1,解得a 1=﹣1,当n ≥2时,S n ﹣1=2a n ﹣1+1,②,由①﹣②可得a n =2a n ﹣2a n ﹣1,∴a n =2a n ﹣1,∴{a n }是以﹣1为⾸项,以2为公⽐的等⽐数列,∴S 6==﹣63,故答案为:﹣632、(2018年⾼考北京卷理科9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 a n =6n ﹣3 .解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴,解得a 1=3,d=6,∴a n =a 1+(n ﹣1)d=3+(n ﹣1)×6=6n ﹣3.∴{a n }的通项公式为a n =6n ﹣3.故答案为:a n =6n ﹣3.3、(2018年⾼考浙江卷10)已知a 1,a 2,a 3,a 4成等⽐数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4【解答】解:a 1,a 2,a 3,a 4成等⽐数列,由等⽐数列的性质可知,奇数项符号相同,偶数项符号相同, a 1>1,设公⽐为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),不成⽴,即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成⽴,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,ln (a 1+a 2+a 3)>0,等式不成⽴,所以q ≠﹣1;当q <﹣1时,a 1+a 2+a 3+a 4<0,ln (a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3)不成⽴,当q ∈(﹣1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),能够成⽴,故选:B .4、(2019年⾼考全国I 卷⽂科14)记S n 为等⽐数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.答案:85 解析:设数列的公⽐为q ,则有43123213=++=++=q q a a a S 解得21-=q ,所以854=S 5、(2019年⾼考全国I 卷理科14)记S n 为等⽐数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.答案:3121解析:由624a a =得51621q a q a =,解得3=q ,所以31211)1(515=--=q q a S6、(2019年⾼考全国III 卷理科14)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 答案:4解析:因为,312a a =所以1a +,13a d =即d a =12,则()()4215211051101510=?+?+=a a a a S S 7、(2019年⾼考全国III 卷⽂科14)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.答案:100解析:由题意得136,521713=+==+=d a a d a a ,解得2,11==d a 所以100291010110=?+=d a S8、(2019年⾼考北京卷理科10)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 3= ________ . S n 的最⼩值为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和及综合应用一、填空题1.(2018·江苏高考·T14)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.【解析】B={2,4,8,16,32,64,128…},与A相比,元素间隔大,所以从S n中加了几个B中元素考虑,1个:n=1+1=2S2=3,12a3=362个:n=2+2=4S4=10,12a5=603个:n=4+3=7S7=30,12a8=1084个:n=8+4=12S12=94,12a13=2045个:n=16+5=21S21=318,12a22=3966个:n=32+6=38S38=1150,12a39=780发现21≤n≤38时S n-12a n+1与0的大小关系发生变化,以下采用二分法查找: S30=687,12a31=612,所以所求n应在22~29之间,S25=462,12a26=492,所以所求n应在25~29之间,S27=546,12a28=540,所以所求n应在25~27之间,S26=503,12a27=516,因为S27>12a28,而S26<12a27,所以使得S n>12a n+1成立的n的最小值为27.答案:27二、解答题2.(本小题13分)(2018·北京高考文科·T15)设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(1)求{a n}的通项公式.(2)求错误!未找到引用源。

+错误!未找到引用源。

+…+错误!未找到引用源。

.【命题意图】考查求数列的通项公式与前n项和,以及对数运算,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算、数据分析的数学素养.【解析】(1)由已知,设{a n}的公差为d,则a2+a3=a1+d+a1+2d=2a1+3d=5ln2,又a1=ln2,所以d=ln2,所以{a n}的通项公式为a n=ln2+(n-1)ln2=n ln2(n∈N*).(2)由(1)及已知,错误!未找到引用源。

=e n ln2=(e ln2)n=2n,所以错误!未找到引用源。

+错误!未找到引用源。

+…+错误!未找到引用源。

=21+22+…+2n=错误!未找到引用源。

=2n+1-2(n∈N*).3.(本小题满分13分)(2018·天津高考理科·T18)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4= b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式.(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(ⅰ)求T n;(ⅱ)证明错误!未找到引用源。

=错误!未找到引用源。

-2(n∈N*).【命题意图】本题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.【解析】(I)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d,由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.(II)(ⅰ)由(I),有S n=错误!未找到引用源。

=2n-1,故T n=错误!未找到引用源。

(2k-1)=错误!未找到引用源。

2k-n=错误!未找到引用源。

-n=2n+1-n-2.(ⅱ)因为错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

-错误!未找到引用源。

, 所以,错误!未找到引用源。

=错误!未找到引用源。

+错误!未找到引用源。

+…+错误!未找到引用源。

=错误!未找到引用源。

-2.4.(本小题满分13分)(2018·天津高考文科·T18)设{a n}是等差数列,其前n 项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.【命题意图】本题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.【解题指南】(Ⅰ)利用等差、等比数列的公式,结合题设条件,即可求解;(Ⅱ)结合(Ⅰ)的结论,将题设代数式化简,利用方程思想求解.【解析】(I)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以T n=错误!未找到引用源。

=2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n,所以S n=错误!未找到引用源。

. (II)由(I),知T1+T2+…+T n=(21+22+…+2n)-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n可得错误!未找到引用源。

+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍),或n=4.所以n的值为4.5.(本小题满分16分)(2018·江苏高考·T20)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围.(2)若a1=b1>0,m∈N*,q∈(1,错误!未找到引用源。

],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解析】(1)由条件知:a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得错误!未找到引用源。

≤d≤错误!未找到引用源。

.因此,d的取值范围为错误!未找到引用源。

.(2)由条件知:a n=b1+(n-1)d,b n=b1q n-1.若存在d,使得|a n-b n|≤b1(n=2,3,…,m+1)成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1),即当n=2,3,…,m+1时,d满足错误!未找到引用源。

b1≤d≤错误!未找到引用源。

b1.因为q∈(1,错误!未找到引用源。

],则1<q n-1≤q m≤2,从而错误!未找到引用源。

b1≤0,错误!未找到引用源。

b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列错误!未找到引用源。

的最大值和数列错误!未找到引用源。

的最小值(n=2,3…,m+1).①当2≤n≤m时,错误!未找到引用源。

-错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

,当1<q≤错误!未找到引用源。

时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,数列错误!未找到引用源。

单调递增,故数列错误!未找到引用源。

的最大值为错误!未找到引用源。

.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-x ln2)2x<0,所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,错误!未找到引用源。

=错误!未找到引用源。

≤错误!未找到引用源。

=f错误!未找到引用源。

<1,因此,当2≤n≤m+1时,数列错误!未找到引用源。

单调递减,故数列错误!未找到引用源。

的最小值为错误!未找到引用源。

.因此,d的取值范围为错误!未找到引用源。

6.(2018·江苏高考·T23)(本小题满分10分)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2,记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值.(2)求f n(2)(n≥5)的表达式(用n表示).【解析】(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=错误!未找到引用源。

,因此,n≥5时,f n(2)=错误!未找到引用源。

.7.(2018·浙江高考T20)(本题满分15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值.(Ⅱ)求数列{b n}的通项公式.【命题意图】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.【解析】(Ⅰ)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8错误!未找到引用源。

相关文档
最新文档