化工热力学第五章作业讲解

合集下载

第五章化工热力学课件

第五章化工热力学课件
2、稳态流动
①连续 ②质量流率相等(无积累)③热力学性质不随时间变化
1 2 1 2 m(H1 u1 gz1 ) m(H 2 u2 gz2 ) WS Q 0 2 2 u 2 H gz Q Ws 积分、单位质量 2
微分流动过程
dH udu gdz Q Ws
H C p dT
373
813
27.89 4.27110 T dT
3
13386kJ / kmol Cp R S dT dP T P 373 27.89 1.013 3 4.27110 dT 8.314 ln 813 4.052 T 12.083kJ / kmol K
压缩机可以提高流体 的压力,但是要消耗功
枣庄学院 化学化工系
化工热力学
透平机和压缩机
2
H
u
2
gz Q Ws
是!
通常可以忽略
Ws H
是否存在轴功?
是否和环境交换热量? 位能是否变化? 动能是否变化?
不变化或者可以忽略 通常可以忽略
枣庄学院 化学化工系
化工热力学
节流阀 Throttling Valve
无流动功 单位流体
通常势能和动能无变化
d (mU) W Q dU W Q
枣庄学院 化学化工系
化工热力学
5.1 能量平衡方程
能量平衡方程的应用
1 2 1 2 d (mE) m1 (H1 u1 gz1 ) m2 (H 2 u2 gz2 ) WS Q 2 2
g为重力加速度。
1 2 E1 U1 u1 gz1 2
1 2 E2 U 2 u2 gz2 2

化工热力学第五章 化工过程的能量分析(课堂PPT)

化工热力学第五章 化工过程的能量分析(课堂PPT)

Z1
Ws
Q u2
P2,V2,Z2,u2
2 Z2
返回
2
§5.1.2稳定流动体系的热力学原理
根据能量守恒原理:
进入体系能量=离开体系能量+体系内积累的能量
∵ 稳定流动体系无能量的积累
∴ E1 +Q = E2 -W (1)
• 体系与环境交换的功W包括与环境交换的轴功Ws
和流动功Wf,即W = Ws + Wf
较少的过程。 – 找出品位降低最多的薄弱环节,指出改造
的方向。
上一内容 下一内容 回主目录
返回
2
§5.1热力学第一定律与能量平衡方程
• §5.1.1 热力学第一定律 • §5.1.2 稳定流动体系的热力学原理 • §5.1.3 稳流体系能量平衡方程及其应用
上一内容 下一内容 回主目录
返回
2
§5.1.1热力学第一定律
2
8
§5.0 热力学基本概念复习
3、过程
➢指体系自一平衡状态到另一平衡状态的转换. ➢对某一过程的描写:初态+终态+路径.
▪ 不可逆过程:一个单向过程发生之后一定留 下一些痕迹,无论用何种方法也不能将此痕 迹完全消除,在热力学上称为不可逆过程.
➢凡是不需要外加功而自然发生的过程皆是不可 逆过程(自发过程)。
• 应用中的简化
1)流体通过压缩机、膨胀机
∵ u2≈0,g Z≈0 ∴ H=Q + Ws——稳流过程中最常用的公式 若绝热过程Q=0, Ws= H= H2-H1
高压高温蒸汽带动透平产生轴功。
上一内容 下一内容 回主目录
返回
2
§5.1.3 稳流体系能量平衡方程及其应用

化工热力学习题及答案第五章蒸汽动力循环和制冷循环

化工热力学习题及答案第五章蒸汽动力循环和制冷循环

第五章 蒸汽动力循环和制冷循环5-3设有一台锅炉,每小时产生压力为2.5MPa ,温度为350C 的水蒸汽4.5吨,锅炉的给水温度为30C,给水压力2.5MPa 。

已知锅炉效率为70%,锅炉效率: 如果该锅炉耗用的燃料为煤,每公斤煤的发热量为 29260J • kg -1,求该锅炉每小时的耗煤量。

2.5MPa 40 C H 2OH 169.77kJ kg内插得到 2.5MPa 30C H 2O H 169.7:86.3l28.04kJ kg查水蒸汽表2.0MPa 320 C H 2O H 3069.5kJ kg 1锅炉在等压情况下每小时从锅炉吸收的热量:出口压力P 1 0.008MPa 。

如果忽略所有过程的不可逆损失,试求: (1 )汽轮机出口乏气 的干度与汽轮机的作功量;(2)水泵消耗的功量;(3)循环所作出的净功;(4)循环热效率。

解:朗肯循环在 T —S 图上表示如下:1点(过热蒸汽)性质:p 1 6MPa , t 1 540 C ,解:查水蒸汽表2.5MPa 20 C H 2O H 86.3kJ kg 锅炉每小时耗煤量:mcoal13490235658.6kg h 10.7 292601(3125.87 128.04) 31490235kJ hQ m H 2O H(H 2 H 1)4.5 1035- 4某朗肯循环的蒸汽参数为:进汽轮机的压力5 6MPa ,温度t 1 540 C ,汽轮机蒸汽吸收的热量 染料可提供的热量内插得到2.0MPa 查水蒸汽表内插得到3.0MPa 内插得到2.5MPa2.0MPa 360 C H 2O350 C H 2OH3.0MPa 320 C H 2O 3.0MPa 360 C H 2O350 C H 2O H 350 C H 2OHH 3159.3kJ 3159.3 3069.540 H 3043.4kJ H 3138.7kJ 3138.7 3043.4kg30 kg kg403114.88 3136.8530 3069.5 3043.4 3125.87kJ 3136.85kJ 3114.88kJkg 1kg 1 kg 12点(湿蒸汽)性质:S g 8.2287kJ kg 1V l 1.0084 cm 3g 11-2过程在膨胀机内完成,忽略过程的不可逆性,则该过程为等熵过程,S 2 S 1 6.9999kJ kg 1 K 12点汽液混合物熵值:循环热效率旦 1326・9 6.°420.3958H 4 3517.0 179.922(2)乏气的干度;(3)循环的气耗率;(4 )循环的热效率; (5)分析以上计算的结果。

(完整word版)化工热力学((下册))第二版夏清第5章干燥答案

(完整word版)化工热力学((下册))第二版夏清第5章干燥答案

第5章 干燥的习题解答1.已知湿空气的总压强为50Pa,温度为60℃,相对湿度为40%,试求: (1)湿空气中水汽的分压; (2)湿度;(3)湿空气的密度。

解:(1)湿空气的水汽分压,V S p P ϕ=由附录查得60C 时水的饱和蒸汽压19.92S p KPa = 0.419.927.97V p KPa =⨯= (2) 湿度0.6220.6227.970.118/507.97VVP H kg kg p P ⨯===--绝干气(1) 密度553273 1.0131027360 1.01310(0.772 1.244)(0.772 1.2440.118)2732735010H t v H P +⨯+⨯=+⨯⨯=+⨯⨯⨯⨯32.27m =湿空气/kg 绝干气 密度 3110.1180.493/2.27H H H kg m v ρ++==湿空气 2.在总压101.33KPa 下,已知湿空气的某些参数,利用湿空气的H-I 图查出本题附表中空格内的数值,并给出序号4中各数值的求解过程示意图。

习题2附表解:上表中括号内的数据为已知,其余值由图H I -查得。

分题4的求解示意图如附图所示,其中A 为状态点。

3.干球温度为20℃、湿度为0.009kg 水/kg 绝干气的温空气通过预热器加热到50℃后,再送至常压干燥器中,离开干燥器时空气的相对温度为80%,若空气在干燥器中经历等焓干燥过程,试求:(1)1m 3原温空气在预热过程中始的变化; (2)1m 3原温空气在干燥器中获得的水分量。

解:(1)31m 原湿空气在预热器中焓的变化当0020,0.009/t C H kg kg ==绝干气时,由H I -图查出043/I KJ kg =绝干气。

当01050,0.009/t C H H kg kg ===绝干气时,由H I -图查出174/I KJ kg =绝干气1kg 绝干空气在预热器中焓的变化为:744331I ∆=-=/KJ kg 绝干气 原湿空气的比容为5273 1.0131027320(0.772 1.244)(0.772 1.2440.009)273273H t v H P +⨯+=+⨯⨯=+⨯⨯30.84m =湿空气/kg 绝干气31m 原湿空气的焓变为 33136.9/0.84H I KJ m v ∆==湿空气 (2)31m 原湿空气在干燥器中获得的水分当01050,0.009/t C H H kg kg ===绝干气时,在H I -图上确定空气的状态点,由该点沿等焓线向右下方移动与80%ϕ=的线相交,交点即为离开干燥器时空气的状态点。

化工热力学 第五章

化工热力学  第五章

露点:当第一个液滴在一定压力下出现时的温度。
恒沸点: 达到平衡时汽液两相组成相等,即xi=yi。
沸程:
南阳理工学院
生化学院
化工热力学
第五章
相平衡热力学
二元组分汽液平衡关系,不是一条
线来描述的,而是用一个区域来描
述的,图中实线为泡点线MCm,虚线 为露点线NCm,不同的溶液组成,就 对应不同的汽液平衡关系,在整个 溶液范围内组成了一个上拱形的泡 K P
p2

C1 T C1
p
等压面
p1
等温面
K
0 汽
x1 , y1
TB1
1
T
U
图5-2二元汽-液平衡图
南阳理工学院
生化学院
化工热力学
第五章
相平衡热力学
T y1露点线
p=常数 A B C D E C” D” V
等x,y面线
T2
T
V/L B’ T’ C’ D’
等压面
T1
T x1泡点线 x1 y1 x1 , y1 0 1 图5-3(a) 二元气液平衡T-x-y图
化工热力学
第五章
相平衡热力学
第五章
第七章
相平衡
南阳理工学院
相 平 衡 热 力 学
生化学院
化工热力学
第五章
相平衡热力学
目的和要求:
混合物相平衡理论是论述相平衡时系统T、p 和各 相组成以及其它热力学函数之间的关系与相互间的 推算。 相平衡是分离技术及分离设备开发、设计的理论 基础。

即在一定温度T,压力p下处于平衡状态的多相多组分 系统中,任一组分 i 在各相中的组分逸度必定相等。
南阳理工学院

化工热力学第五章

化工热力学第五章

2021/4/6
3
5.1 热力学第一定律—能量转化与守恒方程
5.1.1 能量的分类
能量是物质固有的特性,一切物质或多或少都带有一定种类和数量的能。 在热力学第一定律中,所涉及到的能量通常有以下几种。
(1)内能 内能又叫热力学能,以 U 表示。它是系统内部所有粒子除整体 势能和整体动能外全部能量的总和,在确定的温度、压力下系统的内能应当是 系统内各部分内能之和,即具有加和性。内能 U 由三部分构成。
(环境的能量)= - ( Q+W )
(5-2)
同时,式( 5 – 1 )中的第一项可以写成储存能的变换,即
(体系的 ) U 能 E 量 k Ep
(5-3)
式中,△E k 是动能的变化;△E p 是重力势能的变化。将式( 5 – 2 ) 和式( 5 – 3 ) 代入式( 5 – 1 ),则
U E k EpQ W
式( 5 – 4 )即为热力学第一定律的基本式。
2021/4/6
(5-4)
7
5.1.3 封闭系统的热力学第一定律
封闭系统是指那些与环境之间只有能量交换而无物质交换的系统, 根据此定义可知,当式( 5 – 4 ) 应用于封闭系统时,没有物质交换表示 与物质交换相关的动能和势能的变化项为零,于是封闭系统的热力学 第一定律可表示为
能 Ep mgZ
( 4 ) 热 由于温差而引起的能量传递叫做热,以 Q 表示。作为能量的交换
量,必然会涉及到传递方向的问题。即 Q 不仅有绝对数值,而且需要正负号来
表示能量的传递方向。在化工热力学中,规定物系得到热时 Q 为正值,相反的,
物系向环境放热时 Q 为负值。
2021/4/6
5
(5) 功 除了热 Q 之外的能量传递均叫做功,以 W 表示。与热 Q 一样, 功 W 也是物系发生状态变化时与环境交换的能量,只是 W 是另一种形式。于 是,在化工热力学中对于功 W 也做了正负号的规定。物系得到功作用,记为 正值;而物系向环境做功,记为负值( 在一些著作中,对于功的正负号的规定 有不同的表述,查阅时需要注意 )。

化工热力学Chapter5-2

化工热力学Chapter5-2

2014-10-31
−T 解:ε = (H − H 0) ( 0 S − S 0)
P, MPa 水 0.1013 T,K S (kJ/kg.K ) H (kJ/kg ) H-H0 (kJ/kg ) ε ε (kJ/kg) /( H-H0)
298 453 573
0.3674 6.582 7.13
104.89 2772.1 3053 2775 2783 2671 2948 2670 2678
由于系统的温度、压力与环境不同而具 有的作功能力
对于流动体系,㶲(ε)被记作
ε ≡ ( H − H 0 ) − T0 ( S − S0 )
对于封闭体系,㶲(ε)被记作
(5/2-6)
ε ≡ (U − U 0 ) + p0 (V − V0 ) − T0 ( S − S 0 )
(anergy)。 流动体系中的火 无 被记作
2 1
(1)单组分流体的㶲
根据状态函数的性质和剩余性质的 概念,任意温度、压力下的纯气体 的㶲为
ig R ε (T , p= ε + ∆ ε + ε ) ig
ε (T , p)
∆ε
ε
R
ε
∆ε ig
(5/2-31)
= ε + ( ∆H − T0 ∆S
标准㶲 理想气体的 㶲变
ig
) + (H
ig T
(5/2-35)
液体在任意状态间的㶲变计算式
∆ε =∫
2 l 1
T2
T1
To l 1 − C P dT T
(5/2-36)
(2)汽液相变时的㶲变
∆ vapε = ∆ vap H − T0 ∆ vap S T0 = ∆ vap H 1 − T

化工热力学第五章作业讲解上课讲义

化工热力学第五章作业讲解上课讲义

化工热力学第五章作业讲解第五章 例题一、填空题1.指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。

2.说出下列汽液平衡关系适用的条件(1)l i v i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。

3.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A 12=______0.587_____,A 21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4.在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。

1.组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。

2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。

3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 例题一、填空题1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。

2. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。

3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。

1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。

2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。

3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。

4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ;Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij Λ=-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。

5. 对于一个具有UCST 和LCST 的体系,当UCST T T >和ULST T T <时,溶液是 均相 (相态),PT x G ,212⎪⎪⎭⎫ ⎝⎛∂∂ >0 (>0,<0,=0);当UCST T T <和ULST T T >时,溶液是 液液平衡二、 计算题3.在常压和25℃时,测得059.01=x 的异丙醇(1)-苯(2)溶液的汽相分压(异丙醇的)是1720Pa 。

已知25℃时异丙醇和苯的饱和蒸汽压分别是5866和13252Pa 。

(a)求液相异丙醇的活度系数(对称归一化);(b)求该溶液的E G 。

解:由1111γx P Py s =得55866059.017205866059.010*********≈⨯=⨯==y x P Py sγ同样有:()813252059.0117201013252222≈⨯--==x P Py s γ1. 乙醇(1)-甲苯(2)体系的有关的平衡数据如下 T =318K 、P =24.4kPa 、x 1=0.300、y 1=0.634,已知318K 的两组饱和蒸汽压为 05.10,06.2321==ss P P kPa ,并测得液相的混合热是一个仅与温度有关的常数437.0=RT H ∆,令气相是理想气体,求 (a)液相各组分的活度系数;(b)液相的G ∆和G E ;(c)估计333K 、x 1=0.300时的G E 值;(d)由以上数据能计算出333K 、x 1=0.300时液相的活度系数吗 为什么(e )该溶液是正偏差还是负偏差?解:(a )由1111γx P Py s=得24.206.233.0634.04.241111=⨯⨯==x P Py s γ同样有:27.105.107.0)634.01(4.242222=⨯-==x P Py s γ(b)122110.108441.027.1ln 7.024.2ln 3.0ln ln -⋅=⇒=⨯+⨯=+=mol J G x x RTG E Eγγ(c)(){}T R T H T H T T G E x P E 437.022,-=-=-=⎥⎦⎤⎢⎣⎡∂∂∆ 积分得(d)不能得到活度系数,因为没有G E 的表达式。

(e)由于G E >0,故为正偏差溶液。

2. 在总压101.33kPa 、350.8K 下,苯(1)-正已烷(2)形成x 1=0.525的恒沸混合物。

此温度下两组分的蒸汽压分别是99.4KPa 和97.27KPa ,液相活度系数模型选用Margules 方程,汽相服从理想气体,求350.8K 下的汽液平衡关系1~x P 和11~x y 的函数式。

解:将低压下的二元汽液平衡条件与共沸点条件结合可以得 将此代入Margules 方程得解出0879.0,1459.02112==A A由此得新条件下的汽液平衡关系3. 苯(1)-甲苯(2)可以作为理想体系。

(a)求90℃时,与x 1=0.3 的液相成平衡的汽相组成和泡点压力;(b) 90℃和101.325kPa 时的平衡汽、液相组成多少 (c)对于x 1=0.55和y 1=0.75的平衡体系的温度和压力各是多少 (d)y 1=0.3的混合物气体在101.325KPa 下被冷却到100℃时,混合物的冷凝率多少 AntoineK)(15.36315.27390=+=T ,由Antoine 方程得(a )同样得kPa 2.542=sP 由理想体系的汽液平衡关系得 (b) 由(c)由222111,x P Py x P Py s s==得即 所以(d )K)(15.37315.273100=+=T ,由Antoine 方程得设最初混合物汽相有10mol ,即苯3mol ,甲苯7mol 。

冷凝后汽、液相分别为(10-a)和a mol ,则:mol 839.7257.0456.03456.010456.0)10(257.03=--⨯=→-+=a a a冷凝率:%39.7810839.710==a 5.用Wilson 方程,计算甲醇(1)-水(2)体系的露点(假设气相是理想气体,可用软件计算)。

(a )P =101325Pa ,y 1=0.582(实验值T =81.48℃,x 1=0.2);(b )T =67.83℃,y 1=0.914(实验值P =101325Pa ,x 1=0.8)。

已知Wilson 参数13.10851112=-λλJmol -1和04.16312221=-λλ Jmol -1解:(a )已知P =101325Pa ,y 1=0.582,属于等压露点计算,由于压力较低,气相可以作理想气体。

21,,y y T 可以从活度系数用Wilson 方程计算, 其中纯组分的液体摩尔体积由Rackett 方程;纯分的饱和蒸汽压由Antoine 方程计算。

查得有关物性常数,并列于下表纯组分的物性常数用软件来计算。

输入独立变量、Wilson 能量参数和物性常数,即可得到结果:K T 9816.356=和2853034.01=x(b )已知T =67.83℃,y 1=0.914,属于等温露点计算,同样由软件得到结果,kPa P 051.97=,7240403.01=x6. 测定了异丁醛(1)-水(2)体系在30℃时的液液平衡数据是0150.0,8931.011==βαx x 。

(a)由此计算van Laar 常数(答案是55.2,32.42112==A A );(b)推算30=T ℃,915.01=x 的液相互溶区的汽液平衡(实验值:31.29=P kPa )。

已知30℃时,22.4,58.2821==s s P P kPa 。

解:(a )液液平衡准则得将van Laar 方程⎪⎪⎭⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=22211121122122221112221121ln ln x A x A x A A xA x A x A A γγ代入上式再代入数据 ββααβα1212111,1,0150.0,8931.0x x x x x x -=-===,解方程组得结果: (b) 30=T ℃,915.01=x 的液相活度系数是 设汽相是理想气体,由汽液平衡准则得 三、图示题描述下列二元y x T --图中的变化过程D C B A →→→:这是一个等压定(总)组成的降温过程。

A 处于汽相区,降温到B 点时,即为露点,开始有液滴冷凝,随着温度的继续下降,产生的液相量增加,而汽相量减少,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同。

继续降温到达D 点。

描述下列二元y x P --图中的变化过程D C B A →→→:这是一等温等压的变组成过程。

从A 到B ,是液相中轻组分1的含量增加,B 点为泡点,即开始有汽泡出现。

B 至C 的过程中,系统中的轻组分增加,汽相相对于液相的量也在不断的增加,C 点为露点,C 点到D 点是汽相中轻组分的含量不断增加。

1. 将下列T-x-y 图的变化过程A →B →C →D →E 和P-x-y 图上的变化过程F →G →H →I →J表示在P-T 图(组成=0.4)上。

PA B C DT =常数。

相关文档
最新文档