关于指数函数图象的平移课件
合集下载
2025届高中数学一轮复习课件《指数函数》PPT

第29页
求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性 等相关性质,其次要明确复合函数的构成,当涉及单调性问题时,要借助“同增异减”这一 性质分析判断.
高考一轮总复习•数学
第30页
对点练 4(1)(2024·山东莱芜模拟)已知函数 f(x)=|-2x-x+15|,,xx≤>22,, 若函数 g(x)=f(x)-
解析:∵y=35x 是 R 上的减函数,∴35-13 >35-14 >350,即 a>b>1,又 c=32-34 <320 =1,∴c<b<a.
高考一轮总复习•数学
第11页
4.(2024·四川成都模拟)若函数 f(x)=13-x2+4ax 在区间(1,2)上单调递增,则 a 的取值范 围为___-__∞__,__12_ _.
在(4,+∞)上单调递增.令12x≤4,得 x≥-2,令12x>4,得 x<-2, 代入外层函数的单调递减区间,得到自变量 x 的取值范围,这才是复合函数的单调递增 区间. 而函数 t=12x 在 R 上单调递减,所以函数 y=122x-8·12x+17 的单调递增区间为[-2, +∞).
高考一轮总复习•数学
所谓“底大图高”,反映指数函数的排列规律.
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)函数 y=a-x(a>0,且 a≠1)是 R 上的增函数.( ) (2)函数 y=ax(a>0,且 a≠1)与 x 轴有且只有一个交点.( ) (3)若 am>an,则 m>n.( ) (4)函数 y=ax 与 y=a-x(a>0,且 a≠1)的图象关于 y 轴对称.( √ )
人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
高一必修1-函数图象的变换ppt课件.ppt

如:y=f(x)±h的图象可由y=f(x)的图象 _向__上__(__下__)__平__移__h_个__单__位__而得到.
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]
高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
3. 指数函数图像

x x 1 x 1 2 x 0 ,即x 1 ,或x 0 ,
当0 x 1 时,y 0 ;当x 1 时,y 0 , 故选B
4.翻折变化:
1 y f x 去掉y 轴左边图,保 留y 轴右 边图 y f x 将y 轴右边的图像翻折到左边去
① f x ex f x = e x
② f x = e x f x 2 = e x-2
指数函数的图象
知识点
1.当 当0a
1 a
时, 底数a 越大,图象在x 1 时,底数a 越小,图象在x
0
时越接近y 轴,在x 0 0 时越接近x 轴,在x
时越接近x 轴 0 时越接近y 轴
2.平移变换:左加右减
1 f x 向左平移a 个单位 f x a 2 f x 向上平移 a个单位 f x a 3 f x 向右平 移 a个单位 f x a 4 f x 向下平移a个单位 f x a
解析:① 有界性:由函数的定义域得x 0 , A错; 当x 0 时,y 0 ,B错;
② 指数爆炸,当x , y 0 ,D错
例7 函数y x3 x 2 x 的图象大致是
解析:① 奇偶性:f x x3 x 2 x f x ,故函数为奇函数,C错; ② 有界性:令y 0 ,则 x3 x 2 x 0
D. a b 1 d c
例2 已知1 n m 0 ,则指数函数① y mx ,
② y nx 的图象为
例3 已知函数y ax b a 0且 a 1 的图象经过
第二、三、四象限,则有
A. 0 a 1 ,b 1
当0 x 1 时,y 0 ;当x 1 时,y 0 , 故选B
4.翻折变化:
1 y f x 去掉y 轴左边图,保 留y 轴右 边图 y f x 将y 轴右边的图像翻折到左边去
① f x ex f x = e x
② f x = e x f x 2 = e x-2
指数函数的图象
知识点
1.当 当0a
1 a
时, 底数a 越大,图象在x 1 时,底数a 越小,图象在x
0
时越接近y 轴,在x 0 0 时越接近x 轴,在x
时越接近x 轴 0 时越接近y 轴
2.平移变换:左加右减
1 f x 向左平移a 个单位 f x a 2 f x 向上平移 a个单位 f x a 3 f x 向右平 移 a个单位 f x a 4 f x 向下平移a个单位 f x a
解析:① 有界性:由函数的定义域得x 0 , A错; 当x 0 时,y 0 ,B错;
② 指数爆炸,当x , y 0 ,D错
例7 函数y x3 x 2 x 的图象大致是
解析:① 奇偶性:f x x3 x 2 x f x ,故函数为奇函数,C错; ② 有界性:令y 0 ,则 x3 x 2 x 0
D. a b 1 d c
例2 已知1 n m 0 ,则指数函数① y mx ,
② y nx 的图象为
例3 已知函数y ax b a 0且 a 1 的图象经过
第二、三、四象限,则有
A. 0 a 1 ,b 1
指数函数图像的变换(采用)ppt课件

x x ( 2 ) 当 x 0 时,总有 a b 1 ;
x x ( 3 ) 当 x 0 时,总有 0 a b 1 ;
以上时a>1时的情况,那0<a<1是什么样的呢? x x x 0 . 2,y 0 . 3 与 y 0 . 5 图像, 画出 y 并比较0<a<1 时a对函数图象变化的影响.
特别当x<0时,指数函数的底数越小,函数值减少越快 即0<a<1时,a越小,图像越 “陡”.
综上总结, ya中 ,指数 x 与底数 a 满足以下
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
f( x m ) )与 y 推广:比较函数 y f (x 的关系
向左平行移动m个单位长度 y f ( x ) 当m>0时,
yf( x m )
) 向右平行移动|m|个单位长度 yf( x m ) 当m<0时, y fቤተ መጻሕፍቲ ባይዱ(x
作业:
P A 组第 3 题, B 组第 2 题 77
ya中 ,指数 x 与底数 a 满足以下规律
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
x x 负半轴(即 x 0 ),同一 x 下, a 越大, y a 的值 .
x x ( 3 ) 当 x 0 时,总有 0 a b 1 ;
以上时a>1时的情况,那0<a<1是什么样的呢? x x x 0 . 2,y 0 . 3 与 y 0 . 5 图像, 画出 y 并比较0<a<1 时a对函数图象变化的影响.
特别当x<0时,指数函数的底数越小,函数值减少越快 即0<a<1时,a越小,图像越 “陡”.
综上总结, ya中 ,指数 x 与底数 a 满足以下
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
f( x m ) )与 y 推广:比较函数 y f (x 的关系
向左平行移动m个单位长度 y f ( x ) 当m>0时,
yf( x m )
) 向右平行移动|m|个单位长度 yf( x m ) 当m<0时, y fቤተ መጻሕፍቲ ባይዱ(x
作业:
P A 组第 3 题, B 组第 2 题 77
ya中 ,指数 x 与底数 a 满足以下规律
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
x x 负半轴(即 x 0 ),同一 x 下, a 越大, y a 的值 .
课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )
高中数学指数运算与指数函数课件

(2)f (x)=2x2+x+1-1 2=1-2x+2 1, 因为 2x+1>1,所以 0<2x+2 1<2, 即-2<-2x+2 1<0, 所以-1<1-2x+2 1<1。 所以 f (x)的值域为(-1,1)。
(3)g(x)为偶函数。 由题意知 g(x)=f xx=22xx+ -11·x, 易知函数 g(x)的定义域为(-∞,0)∪(0,+∞), g(-x)=(-x)·22- -xx+ -11=(-x)·11-+22xx=x·22xx-+11=g(x), 所以函数 g(x)为偶函数。
(2)若 f (x)为奇函数,则 f (0)=0,即 a-20+2 1=0,解得 a=1。 此时 f (-x)=1-2-x2+1=1-12+·22xx=-1-2x+2 1=-f (x),故当 a=1 时,函数 f (x) 为奇函数。 (3)由(2)知 f (x)=1-2x+2 1,因为 2x+1>1,所以 0<2x+1 1<1, 所以 0<2x+2 1<2,所以-2<-2x+2 1<0,所以-1<1-2x+2 1<1,即-1<f (x)<1,所以 f (x)的值域为(-1,1)。
【解析】 因为 2x>0,所以 2x+1>1,即|y|>1,又因为曲线|y|=2x+1 与 直线 y=b 没有公共点,所以-1≤b≤1。
【答案】 [-1,1]
方法小结 (1)处理函数图象问题的策略 ①抓住特殊点:指数函数的图象过定点(0,1)。 ②巧用图象变换:函数图象的平移变换(左右平移、上下平移)。 ③利用函数的性质:奇偶性与单调性。
23-x 的图象。
答案 A
[解析] (2)
由题意得[f(x)-2]·[f(x)-a]=0,所以 f(x)=2 或 f(x)=a, 所以|3x-1|+1=2 或|3x-1|+1=a,所以|3x-1|=1 或|3x-1|=a-1, |3x-1|=1 有一个根,所以方程|3x-1|=a-1 有两个不同的实根, 函数 y=|3x-1|的图象如图所示,所以 0<a-1<1,所以 1<a<2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:为了得到y=2x-3-1的图像,只需把 y=2x的图像 向右平移3个单位,再向下平移1个单位
三.函数图像一般平移规律 (1)沿x 轴左右平移(m>0)
y y=f(x)
y=f(x+m) 左移m 右移m y=f(x-m)
O
x
注意: 数与形变化的变化规律
(2) 沿y 轴上下平移 (n>0)
y
上移n O 下移n
思路:通过分析函数解析式的数量关系,分 析出该函数图像与指数函数图像上的点的 坐标关系,再归纳出函数图像间的关系.
分析:(1)比较函数 y=2x+1与y=2x数量关系:
y=2-2+1与y=2-1的值相等, y=2-1+1与 y=20的值相等,
y y=2x+1 y 2x
y=22+1与 y=23的值相等, (t-1, 2t)
y 2x
向左平行移动1个单位长度 y 2 x1
y 2x
向左平行移动2个单位长度
y 2x2
y
8
● ● y=2x
7
6 y=2x+1
5
y= 2x +2
4 3
●●
2● ●
1● ●
●●
-5 -4 -3 -2-1O 1 2 3 4 5 x
图像平移练习
1. 说明下列函数的图像与指数函数.
y (13)x的图像的关系,并画出示意图
图象的解析式为 y 2x .
3. 指数函数的性质
1
O
x
(1) 定义域: R
性 (2) 值域:(0,+ ∞) 质 (3) 过点(0, 1),即x = 0 时,y=1
(4)在R上是增函数
(4)在R上是减函数
二.指数函数图像的平移
1. 实例 说明下列函数图像与指数函数y=2x
图像的关系, 并画出它们的示意图:
(1)y2x1 (2)y2x2
y=f(x)+n y=f(x)
y=f(x)-n
x
(3)函数f (x) 平移的一般规律 y= f(x- m)
左右移
y=f(x)
上下移
y = f(x)+n
规律小结:左加右减,上加下减
练:函数y=2-x-1+1的图象可由函数y=2-x的图象
(B)
A.向右平移一个单位,再向上平移一个单位得到 B.向左平移一个单位,再向上平移一个单位得到 C.向右平移一个单位,再向下平移一个单位得到 D.向左平移一个单位,再向下平移一个单位得到
关于指数函数图象 的平移
一. 指数函数的定义、图像与性质
1. 指数函数定义
一般地,函数 y= a x ( a > 0, a 1) 叫做
指数函数,其中x是自变量,函数定义域是R
2. 叙述指数函数y= a x ( a > 0, a 1)图像特征
y=ax y
(a>1)
y y=ax
(0<a<1)
1
Ox
y y=a x
(1) 函数y=ax的图像左移m (m>0) 个单位,得y=a x + m的图像.
(2)函数y=ax图像右移m 个单位,得y=a x - m的图像.
y=ax+m
1
y=ax-m
O
x
(3)平移后产生新函数——复合函数,它已
不再是指数函数了.
比较函数y 2x、y 2x1与 y 2x2 的关系
(1) y
1 3x2
(2) y
1 3 x1
2. 说明函数 y=4x-3的图像与函数 y=4x
的关系,并画出示意图.
练习
1. f (x) 图像向右平移2个单位后为
则 f (x) = y 2. x
2. y x的图象怎样平移y得 到x3
y 2x的图象怎样平移y得 到 2x3
练习
• 由y=2x 的图像怎样得到y=2x+2 , y=2x+3, y=2x-4, y=2x-5的图像?
……
2
y=2(t-1)+1与y=2t 的值相等.
1
-1
所以,两函数图像上点的坐标存在关系:
O
1
(t, 2t) x
点(t-1, 2t) 左移1 点(t, 2t)
结论: 指数函数y=2x的图像向左平移1个 单位,可得到函数y=2x+1的图像.
2 21
(2)类似可比较函数y=2x-2与y=2x的关系:
∵y=2-1-2与y=2-3 相等 y=20-2与y=2-2 相等
比较函数y 2x、y 2x1与 y 2x2 的关系
y 2x
向左平行移动1个单位长度 y 2 x1y 2x向左平行移动2个单位长度
y 2x2
y
8
● ● y=2x
7
6 y=2x+1
5
y= 2x +2
4 3
●●
2● ●
1● ●
●●
-5 -4 -3 -2-1O 1 2 3 4 5 x
练习
1.y 5x1 的图象向右平移2个单位得到的
y y 2x
y=2…3-2 与…y=21 相等
∴y=2(t+2)-2与y=2t 相等
两个函数图像上纵坐标相等
1
的点的横坐标恰好相差 2
O
点(t, 2t) 右移2 点(t+2, 2t)
y=2x-2
x
结论:将指数函数y=2x的图像向右平移2个单位 就得到函数y=2x-2的图像 (如图)
2. 方法小结:
三.函数图像一般平移规律 (1)沿x 轴左右平移(m>0)
y y=f(x)
y=f(x+m) 左移m 右移m y=f(x-m)
O
x
注意: 数与形变化的变化规律
(2) 沿y 轴上下平移 (n>0)
y
上移n O 下移n
思路:通过分析函数解析式的数量关系,分 析出该函数图像与指数函数图像上的点的 坐标关系,再归纳出函数图像间的关系.
分析:(1)比较函数 y=2x+1与y=2x数量关系:
y=2-2+1与y=2-1的值相等, y=2-1+1与 y=20的值相等,
y y=2x+1 y 2x
y=22+1与 y=23的值相等, (t-1, 2t)
y 2x
向左平行移动1个单位长度 y 2 x1
y 2x
向左平行移动2个单位长度
y 2x2
y
8
● ● y=2x
7
6 y=2x+1
5
y= 2x +2
4 3
●●
2● ●
1● ●
●●
-5 -4 -3 -2-1O 1 2 3 4 5 x
图像平移练习
1. 说明下列函数的图像与指数函数.
y (13)x的图像的关系,并画出示意图
图象的解析式为 y 2x .
3. 指数函数的性质
1
O
x
(1) 定义域: R
性 (2) 值域:(0,+ ∞) 质 (3) 过点(0, 1),即x = 0 时,y=1
(4)在R上是增函数
(4)在R上是减函数
二.指数函数图像的平移
1. 实例 说明下列函数图像与指数函数y=2x
图像的关系, 并画出它们的示意图:
(1)y2x1 (2)y2x2
y=f(x)+n y=f(x)
y=f(x)-n
x
(3)函数f (x) 平移的一般规律 y= f(x- m)
左右移
y=f(x)
上下移
y = f(x)+n
规律小结:左加右减,上加下减
练:函数y=2-x-1+1的图象可由函数y=2-x的图象
(B)
A.向右平移一个单位,再向上平移一个单位得到 B.向左平移一个单位,再向上平移一个单位得到 C.向右平移一个单位,再向下平移一个单位得到 D.向左平移一个单位,再向下平移一个单位得到
关于指数函数图象 的平移
一. 指数函数的定义、图像与性质
1. 指数函数定义
一般地,函数 y= a x ( a > 0, a 1) 叫做
指数函数,其中x是自变量,函数定义域是R
2. 叙述指数函数y= a x ( a > 0, a 1)图像特征
y=ax y
(a>1)
y y=ax
(0<a<1)
1
Ox
y y=a x
(1) 函数y=ax的图像左移m (m>0) 个单位,得y=a x + m的图像.
(2)函数y=ax图像右移m 个单位,得y=a x - m的图像.
y=ax+m
1
y=ax-m
O
x
(3)平移后产生新函数——复合函数,它已
不再是指数函数了.
比较函数y 2x、y 2x1与 y 2x2 的关系
(1) y
1 3x2
(2) y
1 3 x1
2. 说明函数 y=4x-3的图像与函数 y=4x
的关系,并画出示意图.
练习
1. f (x) 图像向右平移2个单位后为
则 f (x) = y 2. x
2. y x的图象怎样平移y得 到x3
y 2x的图象怎样平移y得 到 2x3
练习
• 由y=2x 的图像怎样得到y=2x+2 , y=2x+3, y=2x-4, y=2x-5的图像?
……
2
y=2(t-1)+1与y=2t 的值相等.
1
-1
所以,两函数图像上点的坐标存在关系:
O
1
(t, 2t) x
点(t-1, 2t) 左移1 点(t, 2t)
结论: 指数函数y=2x的图像向左平移1个 单位,可得到函数y=2x+1的图像.
2 21
(2)类似可比较函数y=2x-2与y=2x的关系:
∵y=2-1-2与y=2-3 相等 y=20-2与y=2-2 相等
比较函数y 2x、y 2x1与 y 2x2 的关系
y 2x
向左平行移动1个单位长度 y 2 x1y 2x向左平行移动2个单位长度
y 2x2
y
8
● ● y=2x
7
6 y=2x+1
5
y= 2x +2
4 3
●●
2● ●
1● ●
●●
-5 -4 -3 -2-1O 1 2 3 4 5 x
练习
1.y 5x1 的图象向右平移2个单位得到的
y y 2x
y=2…3-2 与…y=21 相等
∴y=2(t+2)-2与y=2t 相等
两个函数图像上纵坐标相等
1
的点的横坐标恰好相差 2
O
点(t, 2t) 右移2 点(t+2, 2t)
y=2x-2
x
结论:将指数函数y=2x的图像向右平移2个单位 就得到函数y=2x-2的图像 (如图)
2. 方法小结: