博弈论第1次作业
博弈论基础作业及答案

博弈论基础作业及答案博弈论基础作业一、名词解释纳什均衡占优战略均衡纯战略混合战略子博弈精炼纳什均衡贝叶斯纳什均衡精炼贝叶斯纳什均衡共同知识见PPT二、问答题1.举出囚徒困境和智猪博弈的现实例子并进行分析。
囚徒困境的例子:军备竞赛;中小学生减负;几个大企业之间的争相杀价等等;以中小学生减负为例:在当前的高考制度下,给定其他学校对学生进行减负,一个学校最好不减负,因为这样做,可以带来比其他学校更高的升学率。
给定其他学校不减负,这个学校的最佳应对也是不减负。
否则自己的升学率就比其他学校低。
因此,不论其他学校如何选择,这个学校的最佳选择都是不减负。
每个学校都这样想,所以每个学校的最佳选择都是不减负,因此学生的负担越来越重。
请用同样的方法分析其他例子。
智猪博弈的例子:大企业开发新产品;小企业模仿;股市中,大户搜集分析信息,散户跟随大户的操作策略以股市为例:给定散户搜集资料进行分析,大户的最佳选择是跟随。
而给定散户跟随,大户的最佳选择是自己搜集资料进行分析。
但是不论大户是选择分析还是跟随,散户的最佳选择都是跟随。
因此如果大户和散户是聪明的,并且大户知道散户也是聪明的,那么大户就会预见到散户会跟随,而给定散户跟随,大户只有自己分析。
请用同样的方法分析其他例子。
2.请用博弈论来说明“破釜沉舟”和“穷寇勿追”的道理。
破釜沉舟是一个承诺行动。
目的是要断绝自己的退路,让自己无路可退,让自己决一死战变得可以置信。
也就是说与敌人对决时,只有决一死战,这样才可以取得胜利。
否则,如果不破釜沉舟,那么遇到困难时,就很有可能退却,也就无法取得胜利。
穷寇勿追就是要给对方一个退路,由于有退路,对方就不会殊死抵抗。
否则,对方退无可退,只有坚决抵抗一条路,因而必然决一死战。
对B而言,战略M严格劣于R;(因为1<4, 1<6,0<8),因此剔除B的战略M;构成新的博弈如下BL RA U 1,2 2,4 M 5,6 2,6 D 3,1 7,8在新的博弈中,对于A而言,战略U严格劣于D(因为1<3,2<7),因此剔除A的战略U,构成新的博弈如下:BL RA M 5,6 2,6 D 3,1 7,8对于新的博弈中,已经没有严格的劣战略,因此没有严格的劣战略可以剔除。
《博弈与社会》第1次作业 (参考答案)

第2页
(3) 用延展式表示这一博弈。(2 分) 解:
2. 妈妈有 3 个孩子,A、B 和 C。一天妈妈发现客厅的台灯被打坏了,她知道只可能
是 3 个孩子在玩耍时,其中之一打坏的 —— 实际上的“罪魁祸首”是 A,但是妈妈不
知道这一点。
不过,比起惩罚打坏台灯的孩子,妈妈更关心事情的真相,她宣布所有 3 个孩子将
(f) 如果在参与人 1 做出选择之后游戏未立即结束,接下来轮到参与人 2 行动,随 后游戏结束;
(g) 如果参与人 1 选择“正面”并且游戏未立即结束,参与人 2 在这时可以选择“向 上 (U)”、“向下 (D)”或者“向一旁 (S)”三者之一:如果他选择“向上”,参与人 1 和 参与人 2 分别获得 9 单位和 6 单位支付;如果他选择“向下”,参与人 1 和参与人 2 分 别获得 3 单位和 1 单位支付;如果他选择“向一旁”,参与人 1 和参与人 2 分别获得 1 单位和 5 单位支付;
(北京航空航天大学校级通识课程 2018 年春季学期) (参考答案)
1. 考虑以下游戏: (a) 有两个参与人,分别记为“参与人 1”和“参与人 2”; (b) 参与人 1 首先行动,他选择“正面 (H)”、“背面 (T)”或者“中间 (M)”三者之
一; (c) 如果参与人 1 选择“正面”,其选择将被参与人 2 直接观察到;但是,参与人 2
(1) 将这一情境视为一个博弈,写出参与人 1 和参与人 2 的全部策略 (2 分)。 解:
参与人 1 只有 1 个信息集,即在游戏一开始时。在参与人 1 的该信息集上,参与人 1 有 3 个可选行动 —— “正面 (H)”、“背面 (T)”或者“中间 (M)”,因此参与人 1 有 3 个策略,分 别记为:
博弈论课后习题

Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
博弈论作业

博弈论作业博弈论作业一、 下面的得益矩阵表示博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡博弈的结果是什么博弈方 2L C R博弈 T 方 M 1 B 答:此博弈有两个纳什均衡:1、ML 得益(3,4)2、TR 得益(4,2)二、 求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡与得益。
博弈方 2L R博弈 T 方 B 1答:(一)求混合策略均衡1、博弈方1的概率P则对博弈方2而言,有1×P +2(1-P )=2×P +0(1-P )2-P =2PP =2/3当P ﹤2/3,2-P ﹥2P ,则q ﹡=1是最合适的策略,即选择L 。
当P =2/3,2-P =2P ,则q ﹡∈(0,1)是最适合反应。
当P ﹥2/3,2-P ﹤2P ,则q ﹡=0是最适合策略,即选择R 。
2、给定博弈方2的概率q则对博弈方1而言,有2×q +0(1-q )=1×q +3(1-q )2q =3-2qq =3/4当q ﹤3/4,2q ﹤3-2q ,则P ﹡=0是最合适的策略,即选择B 。
当q =3/4,2q =3-2q ,则P ﹡∈(0,1)是最适合反应。
当q ﹥3/4,2q ﹥3-2q ,则P ﹡=1是最适合策略,即选择T 。
所以:混合策略的均衡点为(2/3,3/4)。
(二)得益:∪1=2×P ×q +0×P ×(1-q)+1×(1-P)×q+3(1-P)(1-q)=2×2/3×3/4+1×1/3×3/4+3×1/3×1/4=3/2∪2=1×P ×q +2×P ×(1-q)+2×(1-P)×q+0(1-P)(1-q)=1×2/3×3/4+2×2/3×1/4+2×1/3×3/4=4/3三、 设一四阶段两博弈方之间的动态博弈如下图所示。
博弈论作业

博弈论作业博弈论作业一、 下面的得益矩阵表示博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?博弈方 2L C R博弈 T 方 M 1 B 答:此博弈有两个纳什均衡:1、ML 得益(3,4)2、TR 得益(4,2)二、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡与得益。
博弈方 2L R博弈 T 方 B1答:(一)求混合策略均衡1、博弈方1的概率P则对博弈方2而言,有1×P +2(1-P )=2×P +0(1-P )2-P =2PP =2/3当P ﹤2/3,2-P ﹥2P ,则q ﹡=1是最合适的策略,即选择L 。
当P =2/3,2-P =2P ,则q ﹡∈(0,1)是最适合反应。
当P ﹥2/3,2-P ﹤2P ,则q ﹡=0是最适合策略,即选择R 。
2、给定博弈方2的概率q则对博弈方1而言,有2×q +0(1-q )=1×q +3(1-q )2q =3-2qq =3/4当q ﹤3/4,2q ﹤3-2q ,则P ﹡=0是最合适的策略,即选择B 。
当q =3/4,2q =3-2q ,则P ﹡∈(0,1)是最适合反应。
当q ﹥3/4,2q ﹥3-2q ,则P ﹡=1是最适合策略,即选择T 。
所以:混合策略的均衡点为(2/3,3/4)。
(二)得益:∪1=2×P ×q +0×P ×(1-q)+1×(1-P)×q+3(1-P)(1-q)=2×2/3×3/4+1×1/3×3/4+3×1/3×1/4=3/2∪2=1×P ×q +2×P ×(1-q)+2×(1-P)×q+0(1-P)(1-q)=1×2/3×3/4+2×2/3×1/4+2×1/3×3/4=4/3三、 设一四阶段两博弈方之间的动态博弈如下图所示。
博弈论练习题 第一组 参考答案

4
6.一个支付组合是帕累托有效率的,当且仅当没有任何其他的支付组合可以同时 改善所有人的处境。假定A和B两人组成一个社会,可能的支付组合如下:
组合1(200,200),组合2(0,300),组合3(300,0),组合4(100,100), (这里(200,200)表示A的支付为200,B的支付为200)。 (1)假定只有如上可能的四个支付组合。找出下列支付组合中帕累托有效率的
2. 某博弈中甲乙双方各有三个策略,其相应的支付矩阵如下图所示: 问: (1)甲会不会采用策略A,为什么? (2)请剔除上述支付矩阵里的占劣策略。 (3)请找出该博弈的纯策略纳什均衡。
A 甲B
C
D 3,7 4,2 3,7
乙 E
3,5 2,7 4,8
F 1,2 6,4 2,5
1
答案:1)甲不会采用策略A,策略A是甲的劣策略,它是劣于C的。 2)对于甲而言,A是一个劣策略。对于乙而言,F是一个劣策略(做到这一步即
A.S+T>200
B.S<T, T>100
C.S<0,T>100
D.以上都不是
解答,答案为C,写出这个博弈的支付矩阵如下:
乙
合作
斗争
合作 (100, 100) (S, T) 甲 斗争 (T, S) (0, 0)
由于这个博弈是对称的,因此,只需要解其中一个人的最优反应即可(对于 对称博弈而言,两个人的占优策略及其支付是完全相同的),我们不妨解 乙的反应。要使“斗争”为占优策略,意味着无论甲选择什么行动,对于 乙而言,斗争总是好于合作,于是,若甲选择合作,那么乙选择斗争的收 益是T,选择合作的收益是100,因此T>100;若甲选择斗争,乙选择斗争的 收益是0,选择合作的收益是S,要使对于乙而言斗争好于合作,则0>S。因 此要选C。
博弈论作业及答案浙江财经大学张老师作业答案.docx

第 1 次作业1、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下: 每个学生只能向其中一家企业申请工 作;如果一家企业只有一个学生申请, 该学生获得工作; 如果一家企业有两个学 生申请,则每个学生获得工作的概率为 1/2 。
现在假定每家企业的工资满足:W1/2<W2<2W1 ,则问:a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡 )2、设古诺模型中有 n 家厂商。
q i 为厂商 i 的产量, Qq 1 q 2 L q n 为市场总产量。
P 为市场出清价格,且已知 PP(Q)aQ (当 Qa时,否则 P0 )。
假设厂商 i 生产产量 q i 的总成本为 C iC i(q i ) cq i,也就是说没有固定成本且各厂的边际成本都相同,为常数 c(ca) 。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两 个 厂商 生产 一种 完 全同质的 商品 ,该 商品 的市 场需 求函数为Q 100 P ,设厂商 1 和厂商 2 都没有固定成本。
若他们在相互知道对方边际成本的情况下, 同时作出产量决策是分别生产 20 单位和 30 单位。
问这两个厂商的边际成本各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。
每只鸭子的收益v 是鸭子总数N的函数,并取决于N是否超过某个临界值N;如果NN,收益v v( N )50N;如果NN时,v(N)0 。
再假设每只鸭子的成本为 c 2元。
若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。
问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何?矩阵 1:妻子丈夫活着死了活着1, 1-1, 0死了0, -10,0矩阵 2:妻子活着死了丈夫活着0, 01,0死了0, 10,0矩阵 3:妻子活着死了丈夫活着-1,-11,0死了0, 10,06、两个个体一起参加某项工程,每个人的努力程度e i [0,1] (i1,2) ,成本为c(e i ) (i1,2) ,该项目的产出为f (e1,e2)。
第一次作业及答案

乙: 6������ + (1 − ������) = ������ + 6(1 − ������) 得到������ = 0.5
因此存在一个混合策略纳什均衡(0.5, 0.5)
3.(Hotelling 模型)假定有一个城市,用一条长度为 1 的线段表示,消费者均匀地分布在这 个线段上,消费者的总测度为 1。厂商 1 和厂商 2 分别处于线段的 ������ 和 1 − ������ 点,其中 ������ + ������ ≤ 1。厂商的边际成本为 ������。每个消费者有一单位的产品需求,从消费者的位置移动到 厂商需要耗费的成本为二次的,即距离 ������ 给消费者带来的负效用为 ������������2。求解这个模型的 纳什均衡。
2
������ − ������
������ − ������
������1 = ������ + ������(1 − ������ − ������) (1 + 3 ) ������2 = ������ + ������(1 − ������ − ������) (1 + 3 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1, 2) ,试求此博弈的的 Nash
4e1e2 , c(ei ) ei (i 1, 2) ,试求此博弈的的 Nash
5、假设有一长度为 1 的线性城市,消费者在[0, 1]上均 匀分布,分布密度为 1。有两个商店分别位于城市两端,商 店 1 在 x 0 ,商店 2 在 x 1 ,出售相同产品。每个商店提供单 位产品的成本为 c ,消费者购买商品的旅行成本与其离商店 的距离成正比,比例系数为 t ,故在 x 处的消费者若在商店 1 购买, 其旅行成本为 tx ;若在商店 2 购买, 旅行成本为 t (1 x) , 见下图所示。
3、2 个公司同时选择 xA 0 和 xB 0 ,假设公司的收益为:
V x A if x A xB V xB if xB x A u A ( x A , xB ) ; u B ( x A , xB ) x A if x A xB xB if xB x A
1 0
x
2 1
图
Hotelling 城市
假定消费者具有单位需求,即或者消费 1 个单位或者消 费 0 个单位。求解两个商店之间进行价格竞争的纳什均衡。
其中, V 0 。试求此博弈的 Nash 均衡。 4、两个个体一起参加某项工程,每个人的努力程度 ei [0,1] (i 1, 2) ,成本
为 c (ei )
(i 1, 2) ,该项目的产出为 f (e1 , e2 ) 。个体的努力程度 个体之间均分。试回答以下问题: 1、如果 f (e1 , e2 ) 3e1e2 , c (ei ) ei (i 均衡(即两个个体选择的最优努力程度) 。 2、如果 f (e1 , e2 ) 均衡。
博弈论第 1 次作业 1、求出试给出下述战略式表述博弈的纳什均衡
B L A U D 1,3 4,1 R 2,5 6,2
2、考虑一个工作申请的博弈。两个学生同时向两家企业申请工作,每家
企业只有一个工作岗位。工作申请规则如下:每个学生只能向其中一家企业申请 工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个 学生申请,则每个学生获得工作的概率为 1/2。现在假定每家企业的工资满足: W1/2<W2<2W1,则问: a.写出以上博弈的战略式描述 b.求出以上博弈的所有纳什均衡(包括混合策略均衡)