北师大版七年级数学下册--第一章《同底数幂的乘法》典型例题练习题(含答案)

合集下载

北师大版七年级数学下册 1.1同底数幂的乘法 培优训练(含答案)

北师大版七年级数学下册 1.1同底数幂的乘法 培优训练(含答案)

亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。

当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。

今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。

北师版七年级数学下册1.1 同底数幂的乘法培优训练一、选择题(共10小题,3*10=30)1.计算a2·a3,结果正确的是( )A.a5B.a6C.a8D.a92.a16可以写成( )A.a8+a8B.a8·a2C.a8·a8D.a4·a43. 计算a·a2的结果是()A.a3B.a2C.3a D.2a24.下列各式中,正确的是( )A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t55. 计算下列代数式,结果为x5的是()A.x2+x3B.x·x5C.x6-x D.2x5-x56.等式x2·x()=x5中,括号里应填写的数字是( )A.-3 B.3 C.7 D.107.已知a m=6,a n=4,那么a m+n等于( )A.10 B.24 C.8 D.98. 下列四个算式①a6·a6=2a12;②a2+a3=a6;③a3·a8=a11;④a5+a5+a5=3a5,正确的个数是( ) A.0 B.1 C.2 D.39.下列各式的计算结果与x2m+2不相等的是( )A.x2m·x2B.x m-1·x m+3C.x1-m·x3m+1D.x m+2·x210.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( )A.a2n-1与-b2n-1B.a2n-1与b2n-1C.a2n与b2n D.a n与b n二.填空题(共8小题,3*8=24)11.计算:(1)a3·a4=________;(2)(-p)2·(-p)3=________.12.(1)若x2·x a=x7,则a=______;(2)已知2x+3y-5=0,则32x·33y的值为__________.13.计算:(1)(-x)·x3·x6=_______;(2)(-b)4·(-b)5·(-b)=______.14. 计算:(1)-22·(-2)2·(-2)3=_____;(2)(x-y)2·(y-x)4·(y-x)3=__________.15.计算(-b)4·(-b)5·b的结果是__________16.逆用法则法:a m+n=a m·a n(m,n都是正整数).如a16可写成__________17.计算(-2)2 021+(-2)2 020的结果是__________18.某市2019年年底机动车的数量是2×106辆,2020年新增3×105辆,用科学记数法表示该市2020年年底机动车的数量是__________三.解答题(共7小题,46分)19.(6分) 计算:(1)b·b2·b3;(2)(-6)7×63;(3)23×22+2×24.20.(6分) 计算:(1)(-2)2·(-2)3·(-2)4;(2)(a-b)·(b-a)3·(b-a)4;(3)-x·(-x)2·(-x)3.21.(6分) (1)一个棱长为103的正方体,在某种物体作用下,其棱长以每秒扩大到原来的102倍的速度增长,求1秒后该正方体的棱长.(2)宇宙空间的年龄通常以光年作单位,1光年是光在一年内通过的距离,如果光的速度为每秒3×105千米,一年约为3.2×107秒,那么1光年约为多少千米?22.(6分)计算:(1)(x-y)2·(y-x)5;(2)x4·(-x)5+(-x)4·x5;(3)a4·a n-1+2a n+1·a2.23.(6分) (1)已知3×27×39=3x+8,求x的值;(2)若x+2y-4=0,求22y·2x-2的值.25.(8分)我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值;(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.参考答案1-5ACADD 6-10 BBCDB11. a7,-p512. 5,24313. -x10,b1014. 27,(y-x)915.-b1016.a8·a817.-22 02018.2.3×106辆19. 解:(1)原式=b6(2)原式=-67×63=-610(3)原式=25+25=6420. 解:(1)原式=(-2)9=-29=-512;(2)原式=-(a-b)·(a-b)3·(a-b)4=-(a-b)8;(3)原式=(-x)6=x6.21. 解:(1)由题意,得103×102=103+2=105.答:1秒后该正方体的棱长为105(2)3×105×3.2×107=9.6×1012,答:1光年约为9.6×1012千米22. 解:(1)原式=-(x-y)2·(x-y)5=-(x-y)7(2)原式=-x9+x9=0(3)原式=a4+n-1+2a n+1+2=a n+3+2a n+3=3a n+3 23. 解:(1)x=5(2)由22y·2x-2得22y+x-2=2x+2y-2.因为x+2y-4=0,所以x+2y-2=2,因此22y·2x-2=22=4使用方便。

北师大版七年级下册数学第一单元分层复习(1)幂的相关运算复习-含答案

北师大版七年级下册数学第一单元分层复习(1)幂的相关运算复习-含答案

幂的相关运算法则班级姓名A组题一、同底数幂的乘法法则:1.下列运算中的结果为a3的是()A.a+a2B.a6+a2C.a•a2D.(﹣a)32.a12可以写成()A.a6+a6B.a2•a6C.a6•a6D.a12÷a3.计算x2•x3的结果正确的是()A.x5B.x6C.x8D.54、计算:(﹣a)2•a4的结果是()A.a8B.﹣a6C.﹣a8D.a65、若a m=4,a n=6,则a m+n=()A.B.C.10D.246.若a•2•23=28,则a等于()A.4B.8C.16D.327.(a﹣b)•(b﹣a)4=.二、幂的乘方法则;积的乘方法则:8.计算:﹣(x3)5=()A.x15B.﹣x8C.x8D.﹣x159.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6 10.下列计算正确的是()A.a6﹣a3=a3B.(﹣a3)2=a6C.a5•a3=a15D.=a211.下列运算正确的是()A.a2•a3=a5B.(﹣a)4=﹣a4C.(a2)3=a5D.a2+a3=a5 12.下列运算正确的是()A.a2+a3=a5B.a3•a4=a12C.(a3)4=a7D.(ab)2=a2b213、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个/14、计算(﹣2)2020×()2019等于()A.﹣2B.2C.﹣D.15.(x2)3的计算结果为.16.计算:(﹣a2b)3=.17.计算(﹣2x3)3=.18、已知10a=2,10b=3,则102a+3b=.19.若3×9m=311,则m的值为.20、计算(﹣8)2011××(﹣1)201221、x2•(﹣x)2•(﹣x)2+(﹣x2)322、已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.B组题1、.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3 =2.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n= .3.已知两个单项式a m+2n b与﹣2a4b k是同类项,求2m•4n•8k=4、已知x2n=4,求(x3n)2﹣x n的值.(其中x为正数,n为正整数)5、(1)a3•a m•a2m+1=a25(a≠0,1),求m的值.(2)已知(a+b)a•(b+a)b=(a+b)5,且(a﹣b)a+4•(a﹣b)4﹣b=(a﹣b)7(a+b≠0,1;a﹣b≠0,1),求a a b b的值6.已知3x+2•5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.7、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)8、如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.15.阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=,log216=,log264=;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.19.20.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,25)=,(5,1)=,(3,)=.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),(3)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000)②请你尝试运用这种方法证明下面这个等式:(3,20)﹣(3,4)=(3,5)21.问题:你能比较两个数20062007和20072006的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较n n+1与(n+1)n的大小(n为正整数),从分析n=1,2,3…的情形入手,通过归纳,发现规律,猜想出结论.(1)比较各组数的大小①1221;②2332;③3443;④45 54(2)由(1)猜想出n n+1与(n+1)n的大小关系是;(3)由(2)可知:2006200720072006.。

北师大版数学七年级下册 1同底数幂的乘法

北师大版数学七年级下册 1同底数幂的乘法

1.1同底数幂的乘法一、情景导入,初步认知1.乘方:2.光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?二、思考探究,获取新知1.计算下列各式:(1)102×103;(2)105×108;(3)10m×10n(m,n都是正整数).你发现了什么?【教学说明】小组合作探究,对于有的同学可能会由上面的分析感觉到了规律的存在,可鼓励他们进行验证.请部分学生代表说出自己小组的观点,其他组同学则进行评价或发表不同的见解.2. 2m×2n等于什么?呢?(m,n都是正整数)【教学说明】猜想,交流,验证,口答.3.合作交流:a m·a n等于什么?(m,n都是正整数)4.引导学生剖析法则.(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)你能总结同底数幂的乘法的法则吗?【教学说明】猜想,交流,验证,口答.【归纳结论】am·an=am+n(m,n都是正整数)同底数幂相乘,底数不变,指数相加.三、运用新知,深化理解1.见教材P3例1、例2.2.计算:(1)-b3·b2(2) (-a)·a3(3)(-y)2·(-y)3(4)(-a)3·(-a)4(5)-34×32(6)(-5)7×(-5)6(7)(-q)2n·(-q)3(8)(-m)4·(-m)2(9)-23 (10)(-2)4×(-2)5(11)-b9·(-b)6 (12)(-a)3·(-a3)答案:(1)-b5 (2)-a4 (3)-y5 (4)-a7 (5)-729 (6)-513(7)-q2n+3 (8)m6 (9)-8 (10)-512 (11)-b15(12)a63.下面的计算对不对?如果不对,应怎样改正?(1)23×32=65;(2)a3+a3=a6;(3)y n·y n=2y2n;(4)m·m2=m2;(5)(-a)2·(-a2)=a4; (6)a3·a4=a12;(7)(-4)3=43;(8)7×72×73=76;(9)-22=-4;(10)n+n2=n3.4.计算:5.计算:(结果可以化成以(a+b)或(a-b)为底时幂的形式).(1)(a-b)2·(a-b)3·(a-b)4(2)(a+b)m+1·(a+b)+(a+b)m·(a+b)2答案:(1)(a-b)9(2)2(a+b)m+26.我国自行研制的“神威”计算机的峰值运算速度达到每秒3840亿次.如果按这个速度工作一整天,那么它能运算多少次(结果保留3个有效数字)?提示:3840亿次=3.84×103×108次、24时=24×3.6×103秒解:(3.84×103×108)×(24×3.6×103)=(3.84×24×3.6)×(103×108×103)=331.776×1014≈3.32×1016(次)答:它能运算约3.32×1016次.四、师生互动,课堂小结先小组内交流收获和感想再以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题1.1”中第1、2、3题.2.完成对应习题.。

1.1 同底数幂的乘法 北师大版数学七年级下册素养提升卷(含解析)

1.1 同底数幂的乘法 北师大版数学七年级下册素养提升卷(含解析)

第一章 整式的乘除单元大概念素养目标单元大概念素养目标对应新课标内容了解同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法的运算性质,并能解决实际问题了解整数指数幂的意义和基本性质【P55】能用科学记数法表示较小的数会用科学记数法表示数(包括在计算器上表示)【P55】掌握单项式与单项式、单项式与多项式、多项式与多项式的乘法运算能进行简单的整式乘法运算(多项式乘法仅限于一次式之间和一次式与二次式的乘法)【P55】理解乘法公式,了解公式的几何背景,会计算和推理理解乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2,了解公式的几何背景,能利用公式进行简单的计算和推理【P55】1 同底数幂的乘法基础过关全练知识点1 同底数幂的乘法1.计算a3·(-a)的结果是( )A.a2B.-a2C.a4D.-a42.【方程思想】若3·32m·33m=326,则m等于( )A.3B.4C.5D.63.若3n+3n+3n=36,则n=( )A.2B.3C.4D.54.用科学记数法表示:(-3×103)×(-8×102)= .5.【一题多变·已知底数相同,求同底数幂的乘法】计算(b-a)5(b-a)4= .[变式·变底数]计算(a-b)5(b-a)4= .6.【整体思想】已知x+y-3=0,则2y·2x的值是 .7.已知2a=3,2b=5,2c=15,那么a、b、c之间满足的等量关系是 .8.计算:(1)x·x5+x2·x4;(2)-×-×-;(3)【易错题】y3·(-y)·(-y)5·(-y)2;(4)【整体思想】(2m-n)4·(n-2m)3·(2m-n)6.9.【新素材】计算机存储容量的基本单位是字节,用B表示.计算中一般用KB(千字节)、MB(兆字节)或GB(吉字节)作为存储容量的计算单位,它们之间的关系为1KB=210B,1MB=210KB,1GB=210MB.一种新款电脑的硬盘存储容量为160GB,它相当于多少千字节?(结果用a×2n 千字节表示,其中1<a<2,n为正整数)10.【新考向·新定义型试题】规定a*b=2a×2b.(1)求1*3;(2)若2*(2x+1)=64,求x的值.知识点2 同底数幂的乘法的逆用11.【教材变式·P4习题T2】已知x m=6,x n=3,x h=5,则x m+n+h的值为( )A.14B.30C.15D.9012.若10x=a,10x+y+2=100ab,则10y= .13.已知5x=7,5y=2,求5x+y+3的值.能力提升全练14.(2023浙江温州中考,6,★★☆)化简a4·(-a)3的结果是( )A.a12B.-a12C.a7D.-a715.(2023广东深圳坪山中学月考,3,★★☆)计算3a2·a5-a3·a4的结果是( )A.2a12B.2a7C.0D.2a1016.【中华优秀传统文化】(2022河南中考,8,★★☆)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( )A.108B.1012C.1016D.102417.(2022江苏泰州泰兴洋思中学月考,11,★★☆)若a2n+1·a2n-1=a12,则n= .18.(2023福建三明列东中学期中14,★★★)已知2a=5,2b=8,2c=20,则a,b,c之间的数量关系是 .19.(2022宁夏银川三中月考,23,★★☆)若a+2=-3b,计算3a×27×33b的值.素养探究全练20.【运算能力】我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.21.【创新意识】如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,16)= ;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.答案全解全析基础过关全练1.D a3·(-a)=-a4,故选D.2.C ∵3·32m·33m=326,∴31+2m+3m=326,∴1+2m+3m=26,∴1+5m=26,解得m=5.故选C.3.D ∵3n+3n+3n=3×3n=31+n=36,∴1+n=6,解得n=5.故选D.4. 答案 2.4×106解析 (-3×103)×(-8×102)=24×105=2.4×106.5. 答案 (b-a)9解析 原式=(b-a)5+4=(b-a)9.[变式] 答案 (a-b)9解析 原式=(a-b)5(a-b)4=(a-b)9.6. 答案 8解析 ∵x+y-3=0,∴x+y=3,∴2y·2x=2x+y=23=8.方法解读 运用数学的知识和逻辑思维,把代数式看成一个整体,使计算更为简便.本题把x+y看成一个整体,直接把x+y=3 代入求值即可.7. 答案 a+b=c解析 ∵2a=3,2b=5,2c=15,∴2a×2b=3×5=15=2c,即2a+b=2c,∴a+b=c,故答案为a+b=c.8. 解析 (1)x·x5+x2·x4 =x1+5+x2+4=x6+x6=2x6.(2)-×-×-=-=-=164.(3)易错点:负数的奇次幂或偶次幂容易弄错.原式=y3·(-y)·(-y)5·y2=y3·(-y)·(-y5)·y2=y3·y·y5·y2=y3+1+5+2=y11.(4)(2m-n)4·(n-2m)3·(2m-n)6=-(2m-n)4·(2m-n)3·(2m-n)6=-(2m-n)4+3+6=-(2m-n)13.9. 解析 160 GB=160×210×210 KB=1.25×227 KB.10. 解析 (1)由题意得1*3=2×23=24=16.(2)∵2*(2x+1)=64,∴22×22x+1=26,∴22+2x+1=26,∴2x+3=6,∴x=32.11.D ∵x m=6,x n=3,x h=5,∴x m+n+h=x m·x n·x h=6×3×5=90,故选D.12. 答案 b解析 ∵10x=a,∴10x+y+2=10x·10y·102=a·10y·100=100ab,∴10y=b,故答案为b.13. 解析 ∵5x=7,5y=2,∴5x+y+3=5x·5y·53=7×2×125=1 750.能力提升全练14.D 原式=-a4·a3=-a4+3=-a7.故选D.15.B 3a2·a5-a3·a4=3a7-a7=2a7,故选B.16.C ∵1兆=1万×1万×1亿,∴1兆=104×104×108=1016,故选C.17. 答案 3解析 ∵a2n+1·a2n-1=a12,∴a4n=a12,∴4n=12,解得n=3.18. 答案 a+b-c=1解析 ∵2a=5,2b=8,2c=20,∴2a·2b=40,2·2c=2c+1=40,∴2a·2b=2c+1,∴2a+b=2c+1,∴a+b-c=1.故答案为a+b-c=1.19. 解析 因为a+2=-3b,所以a+3b=-2,所以原式=3a×33×33b=3a+3b+3=3-2+3=3.素养探究全练20. 解析 (1)12☆3=1012×103=1015, 4☆8=104×108=1012.(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).21. 解析 (1)(3,27)=3,(4,16)=2. (2)证明:∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=30,∴3a×3b=3c,∴3a+b=3c,∴a+b=c.。

(完整word版)新北师大七年级数学下册第一章同底数幂的乘法与幂的乘方练习题.doc

(完整word版)新北师大七年级数学下册第一章同底数幂的乘法与幂的乘方练习题.doc

新北师大七年级数学下册同底数幂乘法与幂的乘方练习题一.选择题(共 5 小题) 1.若 a?23=26,则 a 等于( )A . 2B .4C . 6D .82.已知 x+y ﹣3=0,则 2y ?2x 的值是( )A . 6B .﹣ 6C .D .83.下列运算中,正确的是()A . a 3 ?a 2=a 6B .b 5?b 5=2b 5C . x 4+x 4=x 8D . y?y 5 =y 6 4.下列等式错误的是()A .(2mn )2=4m 2n 2B .(﹣ 2mn ) 2=4m 2n 2C .(2m 2n 2) 3=8m 6n 6D .(﹣ 2m 2n 2)3=﹣8m 5n 55.下列计算正确的是()3 +a3 6. ﹣.( 3)2 5D . 2 3 A . a =a B 3a a=3 C a =aa?a =a二.填空题(共 16 小题)6.若 2?4m ?8m =216,则 m=.7.已知 2m =3,则 4m +1=.8.下面的计算是否正确?若有错误,应该怎样改正?( 1) a 5 ?a 5=2a 5 ;( 2) x 3+x 3=x 6 ; (3)m 2?m 3=m 6 ;( 4)c?c 3 3 ; ( 5)(﹣ y )2 4 ﹣6; ( 6)(﹣ a )32 ﹣ 5.=c?y =y?a =a9.已知: x a =4,x b =2,则 x a +b =.10.已知 a x =3,a y =5,则 a x +y = . 11.若 2m =16,2n =8,2m +n = .12.若 x m =2,x n =3,则 x m +2n 的值为. 13.已知 m x =2,m y =4,则 m x +y = . 14.若 x m =16,x n =2(,x ≠0),求 x m +n =.15.计算:﹣ b 3?b 2=. 16.已知 8x =2,8y =5,则 8x +y =..计算:(﹣ )23. 18.若 2x +3﹣22x +1=384 ,则x=.17 p ?p = 219.已知 3x =4,则 3x +2=.20.计算( ab ) 3= .21.计算(﹣ x )2x 3 的结果等于.三.解答题(共 9 小题).已知 xx +yx +a y的值. 23.已知 x m, n,求 x 2m +n 的值.22a =5,a =30,求 a=5 x =7.已知 a ,b,求a+b+3 的值.25.(x﹣y)3(﹣)4(﹣)2.24 2 =5 2 =3 2 ? x y ? x y.已知x ,y,求x+2y 的值.27.已知 2x+5y=3,求 4x y 的值.26 a =3 a =2 a ?3228.已知 x m=2,x n=3,求 x2m+3n的值.29.已知 5m=a, 25n =b,求: 53m+6n的值(用 a,b 表示).30.计算:(﹣ 0.125)2014×82015.一.选择题(共 5 小题)1.( 2016?海南校级一模)若a?23=26,则 a 等于( )A . 2B . 4C . 6D . 8【分析】 根据同底数幂的乘法底数不变指数相加,可得答案.363a=2 =8 ,【点评】 本题考查了同底数幂的乘法,底数不变指数相加是解题关键.2.( 2016 春 ?保定校级期末)已知 x+y ﹣ 3=0 ,则 2y ?2x的值是()A . 6B .﹣ 6C .D . 8【分析】 根据同底数幂的乘法求解即可. 【解答】 解:∵ x+y ﹣ 3=0 ,∴ x +y=3,∴ 2y ?2x =2x +y =2 3=8,故选: D .【点评】 此题考查了同底数幂的乘法等知识,解题的关键是把 yx化为 2 x +y.2 ?2 3.( 2016 春 ?苏州期中)下列运算中,正确的是()326555 4 4 85 6A . a ?a =aB .b ?b =2bC . x +x =xD .y?y =y【分析】 根据同底数幂的乘法法则得到a 3?a 2=a 5,b 5?b 5=b 10, y?y 5=y 6,而 x 4+x 4合并得到2x 4.325【解答】 解: A 、a ?a =a ,所以 A 选项不正确;444C 、 x +x =2x ,所以 C 选项不正确;56D 、 y?y =y ,所以 D 选项正确.故选 D .【点评】 本题考查了同底数幂的乘法:a m ?a n =a m +n(其中 a ≠ 0, m 、 n 为整数).4.( 2016?株洲)下列等式错误的是( )A .( 2mn )2=4m 2n 2B .(﹣ 2mn ) 2=4m 2n2C .( 2m 2n 2) 3=8m 6 n 6D .(﹣ 2m 2n 2) 3=﹣8m 5 n5【分析】 根据幂的乘方和积的乘方分别求出每个式子的值,再判断即可.2 2B 、结果是 4m 2n 2,故本选项错误;C 、结果是 8m 6n 6,故本选项错误;6 6B 、结果是﹣ 8m n ,故本选项正确; 故选 D .【点评】 本题考查了幂的乘方和积的乘方的应用,能熟记法则的内容是解此题的关键.5.( 2016?宁波)下列计算正确的是( )A . a 3+a 3=a 6B .3a ﹣ a=3C .( a 3) 2=a 5D .a?a 2=a 3【分析】 根据同类项合并、幂的乘方和同底数幂的乘法计算即可.3 3 3【解答】 解: A 、a +a =2a ,错误; B 、 3a ﹣ a=2a ,错误;C 、( a 3) 2=a 6,错误;2 3D 、 a?a =a ,正确; 故选 D .【点评】 此题考查同类项合并、 幂的乘方和同底数幂的乘法, 关键是根据同类项合并、 幂的乘方和同底数幂的乘法的定义解答.二.填空题(共 16 小题)6.( 2016?白云区校级二模)若 2?4m ?8m =2 16,则 m= 3 .【分析】 直接利用幂的乘方运算法则得出 2?2 2m3m16?2 =2 ,再利用同底数幂的乘法运算法则即可得出关于 m 的等式,求出 m 的值即可.【解答】 解:∵ 2?4m ?8m =216,2m 3m16∴2?2 ?2 =2 ,∴1+5m=16 , 解得: m=3.故答案为: 3.【点评】 此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.7.( 2016 春 ?扬州期末)已知 2 mm +1= 36 .=3,则 4【分析】 原式利用幂的乘方与积的乘方运算法则变形,将已知等式代入计算即可求出值.m m2∴原式 =4×( 2 ) =36 ,【点评】 此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.8.下面的计算是否正确?若有错误,应该怎样改正?( 1) a 5?a 5=2a 5 a 5?a 5=a 10;(2) x 3+x 3=x 6 x 3+x 3=2x 3;23623 5;(3) m ?m =m m ?m =m(4) c?c 3=c3c;(5)(﹣ y ) 2?y 4=﹣ y 6 (﹣ y ) 2?y 4=y 6 ;(6)(﹣ a ) 3?a 2=﹣ a 5正确 .【分析】 根据同底数幂的乘法,可得( 1)、( 3)、( 4)、( 5)、( 6)的答案,根据合并同类项的法则,可得( 2)的答案.5 5 55 5 10【解答】 解:( 1) a ?a =2a a ?a =a;( 2) x 3+x 3=x 6 x 3+x 3=2x 3;( 3) m 2?m 3=m 6 m 2?m 3=m 5;(4) c?c 3=c 3c;( 5)(﹣ y ) 2?y 4=﹣ y 6 (﹣ y )2?y 4=y 6;( 6)(﹣ a ) 3?a 2=﹣ a 5正确.【点评】 本题考查了同底数幂的乘法,底数不变指数相加是解题关键.9.( 2016 春 ?张家港市期末)已知: a b,则 x a +b.x =4 , x =2 = 8 【分析】 原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.ab∴ x a +b =x a ?x b=8 . 故答案为: 8.【点评】 此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.10.( 2016 春 ?长清区期末)已知 a x =3, a y =5,则 a x +y= 15 .【分析】 先根据同底数幂的乘法法则变形,再代入求出即可.xy∴a x +y=a x ?a y=3× 5=15,故答案为: 15.【点评】 本题考查了同底数幂的乘法法则的应用, 能熟记同底数幂的乘法法则是解此题的关键,注意: a m ?a n =a m +n,用了整体代入思想.11.(2016 春 ?河源校级期中)若m nm +n128 .2 =16, 2 =8,2=【分析】 利用同底数幂的乘法法则的逆运算得到m +nm n mn代入计 2 =2 ?2 ,然后把 2 =16, 2 =8 算即可.【解答】 解: 2m +n =2m ?2n=16× 8 =128.故答案为 128.mn【点评】 本题考查了同底数幂的乘法法则:同底数幂相乘, 底数不变, 指数相加, 即 a ?a =am +n(m , n 是正整数).12.( 2016 春 ?鄄城县期中)若x m =2, x n =3 ,则 x m +2n的值为 18 .【分析】 先把 x m +2nm n 2 m n变形为 x ( x ) ,再把 x =2, x =3 代入计算即可.【解答】 解:∵ x m =2, x n=3,∴ x m +2n =x m x 2n =x m ( x n ) 2=2× 32=2 × 9=18; 故答案为: 18.【点评】 本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.13.( 2016 春 ?盐城校级期中)已知 xyx +y.m =2 , m =4,则 m = 8 【分析】 根据同底数幂的乘法,即可解答.xy∴m x +y =m x ?m y=8 , 故答案为: 8.【点评】 本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法.14.( 2016 春 ?江都区校级期中)若 m n,(x ≠ 0),求 x m +n. x =16 ,x =2 = 32 【分析】 直接利用同底数幂的乘法运算法则,将原式变形进而求出答案.mn∴ x m +n =x m ?x n =16× 2=32. 故答案为: 32.【点评】 此题主要考查了同底数幂的乘法运算,正确应用运算法则是解题关键.15.( 2016 春 ?郓城县期中)计算:﹣ 32﹣b 5. b ?b = 【分析】 原式利用同底数幂的乘法法则计算即可得到结果.3+25【解答】 解:原式 =﹣b =﹣b ,故答案为:﹣ b5【点评】 此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.16.( 2016 春 ?乐清市校级期中)已知 8 xy,则 8 x +y= 10 .=2, 8 =5 【分析】 先根据同底数幂的乘法法则变形,再代入求出即可.xy∴8x +yxy=8 ?8=2× 5 =10,故答案为: 10.【点评】 本题考查了同底数幂的乘法法则的应用, 能熟记同底数幂的乘法法则是解此题的关键,注意: a m ?a n =a m +n,用了整体代入思想.17.( 2016 春 ?邗江区期中)计算: (﹣ p ) 2?p 3= p 5.【分析】 直接利用同底数幂的乘法运算法则求出答案.【解答】 解:(﹣ p )2?p 3=p 5.5故答案为: p .【点评】 此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.18.( 2016 秋 ?淮安校级月考)若 22x +3﹣ 22x +1=384 ,则 x= 3 .【分析】 根据同底数幂的乘法,即可解答.2x +32x +1【解答】 解: 2 ﹣ 2 =384, 22x +1?( 22﹣ 1) =3842x +12 × 3=38422x +1=12822x +1=272x+1=7 x=3,故答案为: 3.【点评】 本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法.19.( 2016 秋 ?长春月考)已知 xx +236 . 3 =4,则 3 = 【分析】 根据同底数幂的运算公式即可求出答案, .【解答】 解:由题意可知: 3x +2=3x × 32=4× 9=36,故答案为: 36【点评】 本题考查同底数幂的运算公式,注意公式的逆向使用.20.( 2016?长春)计算( ab ) 3= a 3b 3.【分析】 原式利用积的乘方运算法则计算即可得到结果.3 33 3故答案为: a b【点评】 此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2 3521.( 2016?红桥区三模)计算(﹣ x ) x 的结果等于x .2 32 35【解答】 解:(﹣ x ) x =x x =x .【点评】 本题考查了幂的乘方和积的乘方以及同底数幂的乘法, 掌握运算法则是解答本题的关键.三.解答题(共 9 小题)22.( 2016 春 ?长春校级期末)已知 xx +yx ya =5 ,a =30,求 a +a 的值.a y 的【分析】 首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出值是多少;然后把 a x 、a y 的值相加,求出 a x +a y的值是多少即可.xx +y【解答】 解:∵ a =5 ,a =30 ,∴ a y =a x +y ﹣x =30 ÷ 5=6 ,∴ a x +a y =5+6=11,即 a x +a y的值是 11.【点评】 此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确: ① 底数必须相同; ② 按照运算性质,只有相乘时才是底数不变,指数相加.23.( 2016 春 ?港南区期中)已知 m n2m +n的值.x =5 , x =7,求 x 【分析】 根据同底数幂的乘法,即可解答.【解答】 解:∵ x m =5, x n=7,∴x 2m +nm m n.=x ?x ?x =5× 5× 7=175【点评】 本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法法则.24.( 2015 秋 ?惠安县月考)已知 a ba +b +3的值.2 =5 , 2 =3,求 2 【分析】 直接利用同底数幂的乘法运算法则求出即可.a +b +3 ab3【点评】 此题主要考查了同底数幂的乘法运算,熟练掌握运算法则是解题关键.25.( 2012 秋 ?上海期中)( x ﹣ y ) 3?( x ﹣y ) 4?( x ﹣ y ) 2.【分析】 根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【解答】 解:原式 =(x ﹣ y )3+4+2=( x ﹣ y )9.【点评】 本题考查了同底数幂的乘法运算, 要求熟练记忆同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加.26.( 2016 春 ?湘潭期末)已知 a x =3, a y =2,求 a x +2y 的值.【分析】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【解答】 解:∵ a x =3 ,a y=2,x +2yx 2y 2∴a =a × a =3× 2 =12.【点评】 此题主要考查了同底数幂的乘法运算以及幂的乘方运算, 正确应用同底数幂的乘法运算法则是解题关键.27.( 2016 春 ?江都区校级期中)已知2x+5y=3,求 4x ?32y的值. 【分析】 根据同底数幂相乘和幂的乘方的逆运算计算.【解答】 解:∵ 2x +5y=3,∴4 xy 2x?2 5y2x +5y3.?32 =2 =2 =2 =8【点评】 本题考查了同底数幂相乘, 底数不变指数相加; 幂的乘方,底数不变指数相乘的性 质,整体代入求解也比较关键.28.( 2016 秋 ?简阳市期中)已知 x m =2, x n =3,求 x2m +3n的值. 【分析】 利用幂的乘方以及同底数的幂的乘法公式,x 2m +3n =( x m ) 2?( x n )3=22× 33代入求 值.【解答】 解: x 2m +3n m2 n3 2 3=( x ) ?( x ) =2 × 3 =4× 27=108 .【点评】 本题考查了同底数幂的乘法,积的乘方的性质, 同底数幂的除法, 熟练掌握运算性 质和法则是解题的关键.29.( 2016 秋 ?孟津县校级期中)已知5m =a ,25n =b ,求: 53m +6n的值 (用 a ,b 表示). 【分析】 先将条件中的等式化同底,然后利用同底指数幂公式进行运算即可【解答】 解:由题意可知: 25n =( 5 2) n ,∴ 52n =b ,∴原式 =53m × 56n =(5m ) 3×( 52n ) 3=a 3b 3,【点评】 本题考查同底数幂运算公式,要注意公式的灵活运用.30.( 2016 秋 ?荣成市校级期中)计算: (﹣ 0.125) 2014× 82015.【分析】 先将原式变形为(﹣ 0.125× 8)2014× 8,然后根据幂的乘方与积的乘方的运算法则求解即可.【解答】 解:原式 =(﹣ 0.125×8) 2014× 8=(﹣ 1) 2014×8 =8.【点评】 本题考查了幂的乘方与积的乘方, 解答本题的关键在于将原式变形为 (﹣ 0.125× 8)2014×8,然后根据幂的乘方与积的乘方的运算法则求解.。

(完整word版)北师大版七年级下册数学同底数幂的乘法练习

(完整word版)北师大版七年级下册数学同底数幂的乘法练习

同底数幕的乘法1、计算m 6 m 3的结果是()F 列各式中,计算过程正确的是(2x 3x)37、计算:(2)3( 2)2 =26& 计算:(a) a ( a)239、 计算:(x y) ( x y)8410、计算:3 10 (4 10 )•整点L 阿雇戴粗的鼻注 豪贞■俣:|门诅蓦隹戯:冋肮散牺HI 秦,抵豪不童■指敌HI 加H 试亍审不为犷 y ・^<»4•(皿也蛛览圏f ■序:在进行同底牲運的乘崔运血 背先炭弭相同 底盘的矗.毬I ;底盘不变.亶弼論Ik 相加.序即的和化士积 的播■ BMStt*.H«Aft40RH4 It 运川潦迄篇性 域.底?r 缔!刚打庭 M 慈 n n 餌fM I ]下理运算正第的是 _______ (理埴吁号hJ :%播理.此就NJ 和J 用乂记臭耳.不能乂軒督井:讯常 艮丘为胪:I 正囁.沌茸齐中、叫狎融楚J ,间不走a曹案L•聲皆」同底嶽帚的黑命咗底的逆曲赛点解诸:运暮惟质犷・毎是王豊ft )反近秦* 粛 严 Y •■/【-»』都星正整萤》也咸业-[^2]匕如/"討“,*卜列齐式的值 i L 》・**'■分析:见将嗚罩的氏于爲負屁总數孤时*能的船人,再痔已 左奉忡乳人即可.■ :=r ・ “%⑴严=』”『=<?• 4=2一=“■ + ■・-^=2*4 » j-fla 1 189A.mB.mC.m 32D.m2、(2016福建福州中考)下列算式中,结果等于 的是( 4 2 2 2 2a a B a a aC a 2 aD a4、如果等式 x 6成立,那么m=(A. 2B. 3C. 4D. 55、若2,a n5,则 n的结果是( A. -10B.10C.7D.-76、若 x 2 x 416则括号内应填的代数式是(10A.x8B.xC. 42x D ・X11、计算:(1) a 5 ( a 2) ( a)332 (2) 10 10 10000 10y)m (x y)12,求(4m 2 2m 1) 2(2m 2 m 5)的值13、太阳系的形状像一个以太阳为中心的大圆盘,光沿直径通过这个圆盘的时间约为4 54 10 s ,光的速度约是 3 10 kms ,求太阳系的直径。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

北师大版数学七年级下册第一章整式的乘除第1节同底数幂的乘法课后练习

北师大版数学七年级下册第一章整式的乘除第1节同底数幂的乘法课后练习

第一章整式的乘除第1节同底数幂的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =13 2.(﹣a )2•a 3=( )A .﹣a 5B .a 5C .﹣a 6D .a 63.如果xm =2,xn =14,那么xm +n 的值为( ) A .2 B .8 C .12 D .2144.我们知道:若am =an (a >0且a ≠1),则m =n .设5m =3,5n =15,5p =75.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ;①m +n =2p ﹣1;①n 2﹣mp =1.其中正确的是( )A .①①B .①①C .①①D .①①①5.计算28+(-2)8所得的结果是( )A .0B .216C .48D .296.下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A .1B .2C .3D .47.下列运算中,正确的是( )A .4312=a a aB .()32639a a =C .23•a a a =D .()224ab ab = 8.下列计算正确的是( )A .()()43224a a a a -⋅-⋅-=-B .()()43224a a a a -⋅-⋅-=C .()()4329a a a a -⋅-⋅-=-D .()()4329a a a a -⋅-⋅-= 9.201120102009222--其结果是( )A .20092B .20102C .20092-D .数太大,无法计算评卷人得分二、填空题10.已知92781m n⨯=,则646m n--的值为______.11.计算23()()a a-⋅-的结果等于_____________.12.已知2x+3y﹣1=0,则9x•27y的值为______.13.计算(x﹣y)2(y﹣x)3(x﹣y)=__(写成幂的形式).14.计算:235m m⋅=______.15.已知53x=,54y=,则25x y+的结果为______ .16.如图,正方形的边长为()1a a>,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l,……如此继续下去,第n次操作后得到的长方形的周长为________.17.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a=,则用含a的代数式表示下列这组数50515299100222 (22)++++的和_________.评卷人得分三、解答题18.如果ac=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.19.计算:(1)﹣b 2×(﹣b )2×(﹣b 3)(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)520.(1)先化简,再求值:2(x 2﹣xy )﹣(3x 2﹣6xy ),其中x =12,y =﹣1.(2)已知am =2,an =3,求①am +n 的值;①a 3m ﹣2n 的值.21.把下列式子化成()na b -的形式:()()()()()3452 a b b a a b b a a b -⋅----+-22.如果c a b =,那么规定(),a b c =. 例如:如果328=,那么()2,83=()1根据规定,()5,1= ______, 14,16⎛⎫= ⎪⎝⎭()2记()3,6a =,() 3,7b =, () 3,x c =,若a b c +=,求x 值.23.根据同底数幂的乘法法则,我们发现:m n m n a a a +=⋅(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算解决以下问题:(1)若()11h =-,则()2h =______;()2019h =______;(2)若()7128h =,求()2h ,()8h 的值;(3)若()()442h h =,求()2h 的值; (4)若()()442h h =,直接写出()()()()()()()()2462123h h h h n h h h h n ++++的值.24.(1)已知:210,a a +-=则43222000a a a +++的值是_____(2)如果记162a =,那么1231512222+++++=_____(3)若232122192,x x ++-=则x=_____(4)若5543254321021),x a x a x a x a x a x a -=+++++(则24a a +=_____25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).参考答案:1.C【解析】【分析】根据科学记数法表示的数的计算方法,乘号前面的数相乘,乘号后面的数相乘,再根据同底数幂相乘,底数不变指数相加进行计算,最后再化成科学记数法即可得解.【详解】解:(7×106)(5×105)(2×10)=(7×5×2)×(106×105×10)=7×1013所以,a=7,n=13.故选:C.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则与科学记数法表示的数的计算方法是解题的关键.2.B【解析】【分析】根据同底数幂相乘,底数不变,指数相加解答,即am•an=am+n.【详解】解:(﹣a)2•a3=a2•a3=a2+3=a5,故选:B.【点睛】此题考查同底数幂的乘法计算,正确掌握同底数幂的乘法公式是解题的关键.3.C【解析】【分析】根据同底数幂的乘法进行运算即可.【详解】解:如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式.4.B【解析】【分析】根据同底数幂的乘法公式即可求出m、n、p的关系.【详解】解:①5m=3,①5n=15=5×3=5×5m=51+m,①n=1+m,①5p=75=52×3=52+m,①p=2+m,①p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;①m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;①n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①①.故选:B.【点睛】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法公式.5.D【解析】【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.6.A【解析】【分析】利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答.【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误;2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.7.C【解析】【分析】根据单项式乘单项式,可判断A ,根据同底数幂的乘法,可判断C ,根据积的乘方,可判【详解】A 、单项式与单项式相乘,把系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,故A 错误;B 、3得立方是27,故B 错误;C 、同底数幂的乘法底数不变指数相加,故C 正确;D 、积的乘方等于乘方的积,故D 错误;故选:C .【点睛】此题考查幂的运算,单项式与单项式的乘法,解题关键在于掌握幂的运算和单项式的运算.8.D【解析】【分析】根据积的乘方的运算法则,分别将各项的结果计算出来再进行判断即可.【详解】A . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项A 错误;B . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项B 错误; C . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项C 错误; D . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项D 正确. 故选:D .【点睛】此题主要考查了积的乘方与同底数幂的乘法运算,熟练掌握运算法则是解题的关键. 9.A【解析】【分析】先提取公因式20092,再进行计算,即可求解.【详解】201120102009222--=220091(221)2--⨯=200912⨯=20092故选A .【点睛】本题主要考查同底数幂的乘法法则的逆运用,掌握分配律以及同底数幂的运算法则,是解题的关键.10.2-【解析】【分析】将92781m n ⨯=进行整理,得到232349273333m n m n m n +⨯=⨯==,即234m n +=,代入即可求解.【详解】解:①232349273333m n m n m n +⨯=⨯==,①234m n +=,①()64662236242m n m n --=-+=-⨯=-,故答案为:2-.【点睛】本题考查同底数幂相乘的应用,将92781m n ⨯=变形得到234m n +=是解题的关键. 11.5a -【解析】【分析】根据同底数幂的乘法运算法则进行计算即可.【详解】225533=()(())()a a a a a +-⋅--=--=故答案为:5a -.【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.3【解析】【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:①2x +3y ﹣1=0,①2x +3y =1.①9x •27y =32x ×33y =32x+3y =31=3.故答案为:3.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键. 13.﹣(x ﹣y )6##-(y-x )6【解析】【分析】将原式第二个因式提取-1变形后,利用同底数幂的乘法法则计算,即可得到结果.【详解】解:(x ﹣y )2(y ﹣x )3(x ﹣y )=﹣(x ﹣y )2(x ﹣y )3(x ﹣y )=﹣(x ﹣y )6.故答案为:﹣(x ﹣y )6.【点睛】此题考查了同底数幂的乘法运算,熟练掌握法则是解本题的关键.14.55m【解析】【分析】按照同底数幂相乘运算法则进行计算即可.【详解】23(23)5555m m m m +⋅== 故答案为:55m【点睛】本题考查了同底数幂相乘,掌握同底数幂相乘底数不变,指数相加是解题的关键 15.144【解析】【分析】先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解即可.【详解】解:53x =,54y =,25x y +∴2255x y =⨯22(5)(5)x y =⨯2234=⨯916=⨯144=.故答案为:144.【点睛】本题考查了同底数幂的乘法,解答本题的关键在于先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解.16. 52a - 21112222nn n a +-+-+ 【解析】【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得.【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-, 则第一次得到的长方形的周长为12(21)522a a a +-=-, 第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-, 第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+,第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+,第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦, 故答案为:52a -,21112222nn n a +-+-+. 【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键.17.22a a -【解析】【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ①5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.18.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【解析】【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)①33=27,①(3,27)=3,①40=1,①(4,1)=0,①2﹣2=14,①(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:①(3,5)=a,(3,6)=b,(3,30)=c,①3a=5,3b=6,3c=30,①3a×3b=5×6=3c=30,①3a×3b=3c,①a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.19.(1)b7;(2)(x﹣y)3(y﹣2)7.【解析】【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.20.(1)﹣x 2+4xy ,﹣94;(2)①6;①89. 【解析】【分析】(1)先利用整式的加减运算法则进行化简,再将x 、y 的值代入求解即可;(2)根据同底数幂的逆运算计算即可.【详解】(1)22()(23)6x xy x xy ---223262x xy x xy --+=24x xy =-+当1,12x y ==-时,原式2211194)4(1)222(44x xy =-=-⨯++⨯-=--=-; (2)2,3m n a a ==①236m n m n a a a +=⋅=⨯=;①323232328()()239m n m n m n a a a a a -=÷=÷=÷=. 【点睛】本题考查了整式的加减、同底数幂的运算,熟记整式的运算法则是解题关键.21.()53a b -【解析】【分析】将原式中的每项变成同度数幂,运用同底数幂的乘法法则进行计算即可得解.【详解】()()()()()3452 a b b a a b b a a b -⋅----+-, =()()()()()3245+a b a b a b a b a b -⋅---+-=()()()555 +a b a b a b --+-=()53a b -【点睛】此题主要考查了同底数幂的乘法,掌握并熟练运用同底数幂的忒覅覅买基金解题的关键. 22.(1)0,-2;(2)42【解析】【分析】(1)根据已知幂的定义得出即可;(2)根据已知得出3a =6,3b =7,3c =x ,同底数幂的乘法法则即可得出答案.【详解】(1)根据规定,(5,1)=0,(4,116)=-2, 故答案为:0;-2;(2)①(3,6)=a ,(3,7)=b ,(3,x )=c ,①3a =6,3b =7,3c =x ,又①a+b=c ,①3a ×3b =3c ,即x=6×7=42.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.23.(1)1;-1;(2)4;256;(3)4;(4)122n +-【解析】【分析】(1)将()2h 变形为()11h +,根据新定义计算即可;(2)将()7h 变形为()71h ⎡⎤⎣⎦,得出()1h ,即可得出()2h ,()8h 的值; (3)将等式变形()()()()42222h h h h +=,即可得解; (4)根据变形发现规律,即求()()()()123h h h h n ++++的值,求解即可.【详解】(1)()()()()()()21111111h h h h =+=⋅=--=;()()()()()()()()100920191201812018122016121h h h h h h =+=⋅=-+=-=-(2)()()771128h h ==①()12h =①()()()2114h h h =⋅=,()()()()817172128256h h h h =+=⋅=⨯= (3)()()()()()()()()4222224222h h h h h h h h +==== (4)由(3)得出()24h =,①()12h =①()()()()()()()()2462123h h h h n h h h h n ++++=()()()()123h h h h n ++++=124816222n n ++++++=-【点睛】 此题主要考查同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题关键. 24.(1)2001(2)1a -(3)52(4)﹣120【解析】【分析】(1)根据题意,得到21a a +=;再将原式进行变形即可得出答案(2)先设原式等于m ,利用2m -m 求出原式的值,最后将a 代入即可(3)根据幂的乘方运算公式对原式进行变形,然后进而的出答案(4)采用赋值法进行计算【详解】(1)由题意得:21a a +=;①43222000a a a +++=43322000a a a a ++++=()22322000a a a a a ++++=3222000a a a +++=()222000a a a a +++=12000+=2001 (2)设1231512222m =++++⋯+,则23416222222m =++++⋯+;①16221m m -=-,即1621m =-①原式=1a -(3)232122x x ++-=212x +∙22122x +-=2132x +⋅=192①21264x +=①216x +=①52x = (4)当x=1时,1=012345a a a a a a +++++ ……①当x=﹣1时,53-=012345a a a a a a -+--+ ……①当x=0时,-1=0a①+①=()0242a a a ++=513-即024a a a ++=5132- ①24a a +=5132-+1=﹣120 【点睛】本题主要考查了代数式的变形求值,掌握各类代数式求值的特点是解题关键25.(1)211﹣1(2)1+3+32+33+34+ (3)=1312n +-. 【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《同底数幂的乘法》典型例题
例1 计算:
(1)32a a a ⋅⋅ (2)32)()(y x y x +⋅+
(3))()(232x x x -⋅⋅- (4)212)2()2()2(+--⋅-⋅-m m y x y x y x
例2 计算题:
(1))2
1()21()21(65-⋅-⋅- (2)101010103158⨯⨯⨯ (3)865)()()(x x x -⋅-⋅--
例3 计算:
(1)333343)()(x x x x x x x x ⋅-⋅-+⋅⋅+⋅; (2)76254)3(33333-⋅+⋅-⋅;
(3)423211)()(--+--⋅-+⋅+⋅n n n n n x x x x x x .
例4 计算题:
(1))()()(43x y y x y x --- (2)323)()(a a a --- (3)32)2()2(x y y x -⋅-
例5 化简:2212122)()()()(-+---⋅-++--⋅-+n n n n b a c c b a b a c c b a .
例6 (1)已知m x =+22,用含m 的代数式表示x 2;
(2)已知32=a ,62=b ,122=c ,求a 、b 、c 之间的关系.
参考答案
例1 分析: 在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式。

例如(1)中的a ,(3)中的x ,(2)中的)(y x +,(4)中的)2(y x -。

指数可以是自然数,也可以是代表自然数的字母。

解:(1)632132a a a a a ==⋅⋅++ (2)53232)()()()(y x y x y x y x +=+=+⋅++
(3)7232232232)()()(x x x x x x x x -=-=-⋅⋅=-⋅⋅-++
(4)212)29)2()2(+--⋅-⋅-m m y x y x y x
32)
2()1(2)2()2(+++-+-=-=m m m y x y x
例 2 分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。

解:(1))21()21()21(65-⋅-⋅-;2
1)21()21(1212165=-=-=++ (2) 101010103158⨯⨯⨯;10102713158==+++
(3)865)()()(x x x -⋅-⋅--.)()(1919865x x x =--=--=++
例3 分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算。

解:(1)原式 33133143+++++++=x x x
777x x x ++=
73x =
(2)原式716254333+++--=
889333--=
88
8
8833)113(3333=--=--⋅=
(3)原式 )42(3)2()1()1(-+-++-+-+=n n n n n x x x
121
21212----=-+=n n n n x x x x
说明:(2)中用到88193333⋅==+,是逆向使用运算公式。

例4 分析:运用同底数幂相乘的法则要求必须“同底”,注意22-与2)2(-的不同,它们的底不同,必须变成相同的底数之后再运算。

解:(1)原式843)()()()(y x y x y x y x --=----=;
(2)原式8323)(a a a a =--=;
(3)原式532)2()2()2(x y x y x y -=-⋅-=。

说明:分别把x y y x --2,,看作一修整一,第一个是三个同底数幂相乘,但必须把2)2(y x -转化为2)2(x y -,或者把3)2(x y -转化为3)2(y x --,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数。

例5 解:原式12122)()]([)(+--++-+-⋅-+=n n n c b a c b a c b a 22)]([--+-⋅n c b a
)()()()(1414)
22()12()12(2=-++-+-=-++-+-=---++-+n n n n n n c b a c b a c b a c b a
说明:1)1(,1)1(2212=--=---n n
例6 分析:此题可以逆用同底数幂相乘的运算法则,m x x =⨯=+22222,从而达到化简的目的。

解:(1)m x =+22 ,∴ m x =⨯24,∴m x 4
12=。

(2)显然2623122⨯=⨯=,故22222223122+=⨯=⨯==a a c ,
122226122+=⨯=⨯==b b c ,故2+=a c ,1+=b c ,故32++=b a c 。

说明:此题答案并不惟一,如由12222362+=⨯=⨯==a a b 得1+=a b ,又由1+=b c ,故c a b +=2。

相关文档
最新文档