(精心整理)等差数列的概念
初中一年级数学等差数列的概念和性质

初中一年级数学等差数列的概念和性质等差数列是初中一年级数学中的一个基础概念,它的性质在数学学习中也有着重要的应用。
本文将详细介绍等差数列的概念和性质。
一、等差数列的概念等差数列是指具有相同公差的数列,公差指的是相邻两项之间的差值。
用数学符号表示,等差数列的通项公式为an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差,n表示项数。
例如,以下数列都是等差数列:2, 5, 8, 11, 14...3, 6, 9, 12, 15...-4, -1, 2, 5, 8...二、等差数列的性质等差数列有很多有趣的性质,下面将介绍其中几个重要的性质。
1. 公差性质等差数列的相邻两项之间的差值始终相等,这个差值就是公差。
公差可以是正数、负数或零。
如果一个数列的相邻两项之间的差值不相等,那么这个数列就不是等差数列。
2. 通项公式等差数列的通项公式为an = a1 + (n-1)d。
通过这个公式,我们可以根据首项、公差和项数来求解数列的任意一项。
3. 首项与末项的关系在等差数列中,首项a1和末项an之间存在着如下关系:an = a1 + (n-1)d。
4. 求和公式等差数列的前n项和可以用求和公式来计算,公式为Sn = (n/2)(a1+ an)。
5. 通项之和等差数列的任意几项之和也可以通过通项公式来计算。
假设等差数列的前n项之和为Sn,那么有Sn = n(a1 + an)/2。
6. 等差中项如果一个等差数列有奇数项,那么它的中项就是第(n+1)/2项。
如果一个等差数列有偶数项,那么它的中项就是第n/2项和第(n/2)+1项的平均值。
三、例题分析下面通过几个例题来进一步理解等差数列的概念和性质。
例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。
解析:根据等差数列的求和公式,可以直接求解。
将a1 = 2, d = 3, n = 5代入公式Sn = (n/2)(a1 + an),可以得到Sn = (5/2)(2 + a5)。
等差数列的概念和求和公式

等差数列的概念和求和公式等差数列是数学中一种常见且重要的数列类型,它的表达形式为每一项与前一项之间的差值固定。
在本文中,我们将介绍等差数列的基本概念以及求和公式,并讨论其应用。
一、等差数列的概念等差数列由首项(a)和公差(d)两个基本要素来定义。
首项表示数列中的第一项,公差表示每一项与前一项之间的差值。
等差数列的通项公式可表示为:an = a + (n-1)d,其中an表示数列中的第n项。
例如,考虑一个等差数列:2,5,8,11,14......其中首项a=2,公差d=3。
使用通项公式,我们可以计算数列中任意一项的值。
二、等差数列的求和公式求和公式是用来计算等差数列中前n项的和的公式。
等差数列的求和公式可以通过两种方法来推导:几何解法和代数解法。
1. 几何解法:通过将等差数列按照首项和公差的倍数进行分组,并且将这些分组拼接成一个等差数列的倒序数列,可以得到一个长方形的面积公式。
根据这个面积公式,我们可以得到等差数列的求和公式:Sn = (2a + (n-1)d) * n / 2。
2. 代数解法:通过将等差数列的前n项和Sn与其后n项和Sn'进行相加,可以得到Sn + Sn' = (a + an') * n。
将an'表示为a + (n-1)d,将Sn'表示为Sn - a,代入公式得到Sn = (a + an') * n / 2 = (2a + (n-1)d) * n / 2。
三、等差数列的应用等差数列的求和公式在实际应用中非常有用,特别是在数学和物理等领域。
以下是几个具体的应用场景:1. 统计数据分析:等差数列的求和方法可以用于计算一段时间内的某项指标的总和,比如销售额、人口增长等。
2. 资金管理:等差数列可以帮助我们计算每月存入或取出固定金额下的总资金变化情况,以便进行合理规划和决策。
3. 物理学:在物理学中,等差数列广泛用于描述具有均匀加速度的运动,如自由落体运动的距离和速度的计算等。
等差数列知识点总结

等差数列知识点总结等差数列是一种形式简单、规律明显的数列,研究等差数列有利于培养学生发现数学问题、观察数学规律、提高问题解决能力的能力。
在学习等差数列的过程中,我们需要掌握以下几个关键知识点。
一、等差数列的概念等差数列是指一个数列中,从第二项开始,每一项与前一项之差都相等的数列。
这个差值被称为等差数列的公差。
二、等差数列各项的计算公式等差数列的计算公式是指通过已知条件计算等差数列中的某一项的表达式。
对于等差数列来说,知道首项a1、公差d和项数n,就可以根据计算公式求出第n项的值。
三、等差数列的通项公式通项公式是指能够表示等差数列中第n项的公式。
对于等差数列来说,通项公式可以根据已知条件(首项a1和公差d)推导而来。
通项公式的一般形式为an=a1+(n-1)d。
四、等差数列首项、末项和项数的关系等差数列的首项、末项和项数之间存在一定的关系。
首项a1、末项an和项数n之间的关系可以用通项公式和求和公式来表示。
五、等差数列的和等差数列的和是指将等差数列中的所有项相加的结果。
对于等差数列的和,我们可以通过求和公式来计算,也可以通过找出等差数列的首项、末项和项数之间的关系来计算。
六、等差数列的应用等差数列在实际生活和科学研究中有着广泛的应用。
例如,在数学中,等差数列可以用来求解一元二次方程、计算抛物线的顶点坐标等;在物理学中,等差数列可以用来描述物体的运动轨迹等。
七、等差数列的性质等差数列具有一些特殊的性质,包括:1.等差数列中任意三项的和是一定的;2.等差数列中相等的差值对应相同的差分;3.等差数列的和等于首项和末项的平均值乘以项数。
八、等差数列的应用题等差数列的应用题是指将等差数列的概念、公式和性质应用到实际问题中解决相关的数学问题。
这类题目可以帮助学生将抽象的数学知识与实际问题相结合,提高解决实际问题的能力。
综上所述,等差数列是一种基础、重要的数学概念,它有着丰富的性质和广泛的应用。
在学习等差数列的过程中,我们需要掌握等差数列的概念、公式和性质,并能够应用这些知识解决相关的数学问题。
等差数列的概念、性质(优质课)教案

等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
等差数列的概念

等差数列的概念等差数列是数学中常见的一种数列,它的概念以及相关性质在数学领域中有着重要的地位。
本文将对等差数列进行详细的介绍和讨论。
一、等差数列的定义等差数列是指数列中相邻两项之间的差值保持不变。
也就是说,如果一个数列满足每一项与其后一项之间的差值都为同一个常数d,那么这个数列就是等差数列。
常数d称为等差数列的公差,用字母d表示。
例如:1, 3, 5, 7, 9, 11, ...这个数列中相邻两项之间的差值都是2,所以它是一个公差为2的等差数列。
二、等差数列的通项公式等差数列可以用一个通项公式来表示,通项公式可以根据等差数列的首项和公差来确定。
通项公式:an = a1 + (n-1)d其中,an表示等差数列的第n项,a1是第一项,d是公差。
通过这个公式,我们可以直接求出等差数列的任意一项。
三、等差数列的性质1. 等差数列的前n项和公式等差数列的前n项和可以通过以下公式来计算:Sn = n/2 * (a1 + an)其中,Sn表示前n项和,a1是第一项,an是第n项,n为项数。
这个公式可以用来计算等差数列的前n项和,方便进行数值计算。
2. 等差数列的性质(1)等差数列的项数奇偶性对于一个等差数列,如果首项、公差和末项已知,我们可以根据等差数列的性质来判断该数列的项数是奇数还是偶数。
- 当末项an已知时,如果公差d为正数,则an > a1,项数n为奇数;如果公差d为负数,则an < a1,项数n为偶数。
- 当末项an已知时,如果公差d为正数,则an < a1,项数n为偶数;如果公差d为负数,则an > a1,项数n为奇数。
(2)等差数列的中项对于一个项数为奇数的等差数列,我们可以根据等差数列的性质求出它的中项。
中项可以通过以下公式计算:中项 = (首项 + 末项) / 2四、等差数列的应用等差数列在数学中有着广泛的应用。
它不仅在数学领域中有重要作用,也在其他学科和实践中得到广泛的应用。
4.2.1.1等差数列得的概念和通项公式(知识梳理+变式+例题))

4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
等差数列的概念

等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。
在数学中,等差数列是一种重要的数列类型,具有广泛的应用。
它在数学、物理、经济等领域都有着重要的地位和作用。
一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。
数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。
公差可以是正数、负数或零,代表着数列中每一项之间的间隔。
2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。
3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。
根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。
4. 总和公式:等差数列的前n项和可以用总和公式来表示。
总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。
5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。
这种递推关系使得我们可以通过已知条件计算出其他项的值。
三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。
1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。
通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。
2. 物理应用:等差数列在物理学中也有重要的应用。
例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。
3. 经济应用:等差数列在经济学中的应用也非常广泛。
例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。
四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。
例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。
解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。
等差数列知识点总结

等差数列知识点总结在数学的世界里,等差数列是一个重要且基础的概念。
理解和掌握等差数列的相关知识,对于解决很多数学问题都有着至关重要的作用。
下面就让我们一起来详细了解一下等差数列。
一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母 d 表示。
例如:数列 1,3,5,7,9就是一个公差为 2 的等差数列;数列 10,8,6,4,2则是一个公差为-2 的等差数列。
二、等差数列的通项公式等差数列的通项公式为:an = a1 +(n 1)d ,其中 an 表示第 n 项的值,a1 表示首项,n 表示项数,d 表示公差。
通过通项公式,我们只要知道了首项、公差和项数,就能够求出相应的项的值。
例如:在等差数列 2,5,8,11中,首项 a1 = 2,公差 d = 3 ,那么第 5 项 a5 = 2 +(5 1)×3 = 14 。
三、等差数列的性质1、若 m,n,p,q ∈ N+ ,且 m + n = p + q ,则 am + an = ap + aq 。
比如在等差数列 3,6,9,12,15 中,因为 1 + 4 = 2 + 3 ,所以a1 + a4 = a2 + a3 ,即 3 + 12 = 6 + 9 。
2、从等差数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,且公差为原公差的倍数。
例如在等差数列1,4,7,10,13,16,19,22 中,抽出奇数项1,7,13,19 ,其公差为 6 ,是原公差 3 的 2 倍。
3、若数列{an}是等差数列,则{kan + b}(k,b 为常数)也是等差数列。
比如数列 2,5,8 是公差为 3 的等差数列,那么 2×2 + 1,2×5 +1,2×8 + 1 即 5,11,17 也是等差数列,公差为 6 。
四、等差数列的前 n 项和公式等差数列的前 n 项和公式有两个:1、 Sn = n(a1 + an) / 2 ,这个公式需要知道首项和末项的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2.1 等差数列的概念
【教学目标】
1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.
2. 逐步灵活应用等差数列的概念和通项公式解决问题.
3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.
【教学重点】
等差数列的概念及其通项公式.
【教学难点】
等差数列通项公式的灵活运用.
【教学方法】
本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
【教学过程】。