等差数列的概念教案
高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
等差数列的定义与通项公式教案

等差数列的定义与通项公式教案第一章:等差数列的概念引入1.1 等差数列的定义1.1.1 引导学生回顾自然数的排列,引入等差数列的概念。
1.1.2 通过具体例子,让学生理解等差数列的含义。
1.1.3 引导学生总结等差数列的特点。
1.2 等差数列的表示方法1.2.1 介绍等差数列的表示方法,引导学生理解首项、末项、公差等概念。
1.2.2 通过示例,让学生学会用符号表示等差数列。
1.2.3 让学生尝试自己表示一些等差数列,并判断其是否正确。
第二章:等差数列的性质2.1 等差数列的通项公式2.1.1 引导学生探究等差数列的通项公式。
2.1.2 通过推导,让学生理解并掌握等差数列的通项公式。
2.1.3 让学生运用通项公式计算等差数列的特定项。
2.2 等差数列的求和公式2.2.1 引导学生探究等差数列的求和公式。
2.2.2 通过推导,让学生理解并掌握等差数列的求和公式。
2.2.3 让学生运用求和公式计算等差数列的前n项和。
第三章:等差数列的通项公式的应用3.1 求等差数列的特定项3.1.1 让学生运用通项公式求解等差数列的特定项。
3.1.2 提供一些练习题,让学生巩固求特定项的方法。
3.2 求等差数列的前n项和3.2.1 让学生运用求和公式求解等差数列的前n项和。
3.2.2 提供一些练习题,让学生巩固求前n项和的方法。
第四章:等差数列的综合应用4.1 等差数列与函数的关系4.1.1 引导学生理解等差数列与函数的关系。
4.1.2 提供一些示例,让学生学会如何将等差数列问题转化为函数问题。
4.2 等差数列在实际问题中的应用4.2.1 提供一些实际问题,让学生运用等差数列的知识解决问题。
4.2.2 引导学生思考等差数列在其他领域的应用,如数学建模、数据处理等。
第五章:总结与拓展5.1 等差数列的定义与通项公式的总结5.1.1 与学生一起总结等差数列的定义与通项公式的关键点。
5.1.2 鼓励学生提出疑问,解答学生的疑惑。
《等差数列》教案优秀3篇

《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
数学等差数列教案优秀8篇

数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。
本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。
等差数列的概念教案

等差数列的概念教案等差数列的概念教案【教学目标】知识与技能:1、理解等差数列的定义,能根据定义判断一个数列是否为等差数列;2、了解公差的概念,会求一个给定等差数列的首项与公差;3、理解等差中项的概念,会利用等差中项解决相应的简单的等差数列问题。
过程与方法:1、通过对情景问题的分析理解和归纳概括,了解等差数列的简单产生过程;2、通过解决基本等差数列问题的过程,加深对等差数列概念、公差、等差中项的理解;情感态度与价值观:1、通过等差数列概念的归纳概括,培养学生的观察能力、分析探索能力激发学生积极思考,追求新知的创新意识;2、通过解决等差数列概念的基本问题,培养学生分析问题解决问题的能力,提高学生的运算能力。
【教学重点】1、理解等差数列的定义,理解等差中项的概念;2、了解公差的概念,根据给定的等差数列求公差。
【教学难点】探索等差数列定义的形成过程。
【教学方法】情境教学法、自主探究法、讲练结合法【教学用具】黑板电子白板【教学课型】新授课【教学设想】本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生分析出等差数列的特点,从而引出等差数列的定义,进一步引导学生通过定义来判断一个数列是否是等差数列。
整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教学中学生的主体作用。
【教学准备】1、教师认真备课、制作课件、布置预习内容;2、学生认真阅读课本内容,标出关键词以及不理解的地方,完成预习内容,做好上课准备。
【教学过程】教学环节课前预习学习内容阅读书本P7-9内容,在等差数列定义中的关键词下面用彩笔画线在现实生活中,我们会遇到下面的特殊数列。
活动一情境1:我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,,,,,…。
创设情境2:2000年,在澳大利亚悉尼举行的奥运会情境上,女子举重被正式列为比赛项目。
该项目共设、置了7个级别,其中较轻的4个级别体重组成数导入列(单位:kg):48,53,,63。
等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。
教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。
2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。
二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。
2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。
三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。
-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。
3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。
四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。
2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。
学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。
五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。
等差数列教学设计及教案

教案:等差数列教学设计及教案第一章:等差数列的概念1.1 引入通过实际例子(如计算连续自然数的和)引入等差数列的概念。
1.2 等差数列的定义引导学生理解等差数列的定义,即每一项与前一项的差是一个常数。
解释等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
1.3 等差数列的性质探讨等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
第二章:等差数列的求和2.1 等差数列的前n项和公式引导学生理解等差数列的前n项和的概念,即前n项的和。
解释等差数列的前n项和公式:Sn = n/2 (a1 + an),其中Sn表示前n项的和。
2.2 等差数列的求和应用通过例题引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第三章:等差数列的通项公式3.1 等差数列的通项公式的推导引导学生理解等差数列的通项公式,并解释如何推导出该公式。
利用等差数列的性质和数学归纳法推导出通项公式。
3.2 等差数列的通项公式的应用通过例题引导学生运用通项公式计算等差数列的特定项的值。
探讨等差数列的特定项的性质,如第n项的值与首项和公差的关系。
第四章:等差数列的性质和求和4.1 等差数列的性质引导学生理解等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
利用性质解决问题,如找出等差数列中的特定项的值。
4.2 等差数列的求和引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第五章:等差数列的综合应用5.1 等差数列的应用问题通过实际问题引导学生运用等差数列的知识解决实际问题,如计算工资、统计数据等。
5.2 等差数列的综合练习提供一些综合练习题,让学生运用等差数列的知识解决问题。
分析和解答练习题,帮助学生巩固等差数列的知识。
第六章:等差数列的图像和性质6.1 等差数列的图像引导学生绘制等差数列的图像,展示等差数列的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的概念
【教学目标】
1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.
2. 逐步灵活应用等差数列的概念和通项公式解决问题.
3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.
【教学重点】
等差数列的概念及其通项公式.
【教学难点】
等差数列通项公式的灵活运用.
【教学方法】
本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
【教学过程】。