奥赛专题4 三角 平面向量 复数
复数与平面向量三角函数的联系课件

随着数学和其他学科的发展,未来研究可以探索新的方法和工具来研究复数、平面向量与 三角函数的关系,以推动相关领域的发展。
THANKS
感谢观看
利用平面向量表示三角函数的性质
向量模长与三角函数关系
平面向量的模长可以表示三角函数的大小关系。
向量夹角与三角函数关系
平面向量的夹角可以表示三角函数的相位关系。
向量旋转与三角函数周期性
通过平面向量的旋转,可以直观地理解三角函数的周期性。
复数与平面向量在三角函数图像中的应用
图像绘制
利用复数和平面向量,可 以方便地绘制出三角函数 的图像。
题效率。
05
总结与展望
总结复数、平面向量与三角函数的关系
01
复数与三角函数
复数可以表示为三角函数的形式,即复数z=r*(cosθ+i*sinθ),其中r为
模长,θ为辐角。这使得复数与三角函数之间建立了密切的联系。
02 03
平面向量与三角函数
平面向量可以用三角函数表示,例如,一个向量的坐标可以表示为 (r*cosθ, r*sinθ),其中r为模长,θ为与x轴的夹角。这表明平面向量与 三角函数之间也存在关联。
图像变换
通过平面向量的变换,可 以实现对三角函数图像的 平移、旋转等操作。
图像分析
利用复数和平面向量,可 以对三角函数图像进行分 析,了解其性质和特点。
04
复数与平面向量在解决三 角函数问题中的应用
利用复数解决三角函数问题
复数与三角函数具有密切的联系,可以通过复数运算来求解三角函数问题。 利用复数表示三角函数,可以将三角函数问题转化为复数运算,简化计算过程。
三角函数的定义
三角函数是描述直角三角形中边 长和角度关系的数学工具,包括 正弦、余弦、正切等。
高数学复数的向量表示及复数的三角形式

复数的向量表示及复数的三角形式基础概念一、基础知识概述由于解方程的需要,我们引进了复数和及其四则运算,并建立了复数集C 和复平面内所有的点构成的集合之间的一一对立,我们还学过向量及其运算,在些基础上,我们现在一起来学习复数的向量表示、复数的三角形式及其运算、复数的指数形式、复数的运算的几何意义.二、重点知识归纳及讲解 1、复数的向量表示:2、复数的三角形式及运算:(1)复数的幅角:设复数bi a Z +=对应向量OZ ,以x 轴的正半轴为始边,向量OZ 所在的射线(起点为O )为终边的角θ,叫做复数Z 的辐角,记作ArgZ ,其中适合πθ20<≤3、复数的几何意义:(1)复数模的几何意义:||||OZ Z =,即Z 点到原点O 的距离,一般地||21Z Z -即1Z 点到4、复数的指数形式:把模为1,辐角为θ(以弧度为单位)的复数θθsin cos i +用记号θi e 表示,即θθθsin cos i e i +=,由此任何一个复数)sin (cos θθi r Z +=就可以表示为θi re Z =形式,我们把这一表达式叫做复数的指数形式. 三、难点知识剖析复数的几何意义的理解是本讲的难点.由于复数集与平面点集间的一一对应关系,使得复数问题常常可用几何方法来解决,几何问题常常可用复数语言来表述,要善于运用“数形结合”的解题思想来思考,分析这类问题,找出最简捷的解题方法.复数的模可以帮助我们表示出一些常用曲线方程. 如圆:r Z Z =-||0;线段中垂线:||||21Z Z Z Z -=-;椭圆:|)|2(2||||2121Z Z a a Z Z Z Z ->=-+- ; 双曲线:|)|2(2||||||2121Z Z a a Z Z Z Z -<=--- .典型例题解析: 方法一: ∵11||1||=+≤-ZZ Z Z .||Z 、R Z ∈||1.∴1||1||1≤-≤-Z Z ,∴⎪⎩⎪⎨⎧≤--≥-+01||||01||||22Z Z Z Z ,∴215215+≤≤-r .ZZ Z Z 1||1|+=-, ∴当i Z 215-±=时,215min -=r ;而当i Z 215+±=时,max =r 方法二:设)sin (cos θθi r Z +=.215+≤≤r ,且当i Z215-±=时,215min -=r ; 当i Z 215+±=时,max =r 高考中对复数的考查多集中在复数的概念以及复数的代数运算,对复数的三角形式的考查不多.有时可能采取一题多法,即设复数的代数形式和复数的三角形式均可解,只不过运用三角形式解答时较方便.基础练习一、选择题 1、复数)()1(2224Z n i i Z n ∈--=+ 的辐角主值是( )A .3个B .2个C .1个D .0个A .iB .1-C .0D .1A .1B .2C .5D .7( )A .8、1Z 、2Z 是两个非零复数,且分别对应点1Z 、2Z ,则21OZ OZ ⊥的充要条件是( )A .i Z Z 21±=9、复数Z 满足条件:|||12|i Z Z -=+,则||Z 的最大值是( )A 10、设yi x Z +=(x 、R y ∈),且x Z =-|2|,则复数Z 的对应点Z 的轨迹是( ) A .圆B .抛物线C .椭圆D .双曲线 二、综合题值范围.数Z .(1)求Z 点的轨迹方程,并指明轨迹类型; (2)求||Z 的最小值.13、已知复数1Z 、2Z 、3Z 的辐角主值分别是α、β、γ,又1||1=Z ,k Z =||2,k Z -=2||3,且0321=++Z Z Z ,问k 取何值时,)cos(γβ-分别取得最大值和最小值?并求出)cos(γβ-的最大值和最小值?。
高三数学专题训练三:三角 复数 平面向量

高三数学专题训练三:三角 复数 平面向量一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中)(10×5=50)1.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f = )A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==,D .23ωϕπ==,2.复数21ia bi i+=+-,则点(),a b 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.对于向量,,a b c 和实数λ,下列命题中真命题是( ) A .若=0a b ,则0a =或0b =B .若λ0a =,则0λ=或=0aC .若22=a b ,则=a b 或-a =b D .若a b =a c ,则b =c4.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数5.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值X 围是( ) A.[-6,1] B.[48],C.(-6,1] D.[-1,6]6.向量()()()()22,,,,1,1,2,2a x y b x yc d ====,若1a c b d •=•=,则这样的向量a有A .1个,B .2个,C .多于2个,D .不存在。
7.若0是ABC 所在平面内的一点,且满足()()00000B C C A +•-=,则ABC 一定是A .等边三角形,B .斜三角形,C .等腰直角三角形,D .直角三角形。
复数与平面向量、三角函数的联系PPT教学课件

• 孔子不懂农业生产, 也鄙视劳动。
• 孔子也有被难倒的 时候,并非“万事 通”。
从上面这些事实看来,孔子并不是一个道貌岸然 的超人,更不是先天的圣人,而是一个有感情、有
② 向量OZ、OZ’分别是OZ1、OZ2 的和与差吗? ③ 第②问从向量的坐标运算入手能得到结论吗?
[设计意图] 根据杜威倡导的“从做中学”,布鲁纳的发现学习论,
设置此环节,学生自主探究,自由讨论,充分发挥学生的 主动性,使每个学生都亲身体验探索过程中的思与喜。
学生在组内讨论交流比当着老师或全班同学的面发言 心理压力小些,这便于学生间的合作交流,同时,也便于 学生作出评价和自我评价(肯定的话,学生能体味到成功的 喜悦,增强自信;否定的话,能取人之长,补己之短,从 而作出调整,提升自我),这也体现了“研究性学习”的宗旨。
学生重在参与、合作、交流,重在联想、分析讨 论。适当借助多媒体有利于突出重点,突破难点。
三、教学过程及设计意图
1、课前准备
1.1 划分学习小组 让学生自愿组合,分若干组,然后微调,争取
在每组中安排数学能力、表达能力、组织能力较强 的同学至少一位,并让学生推选出组长。
1.2 明确学习任务 研究复数与平面向量、三角函数的联系 老师要求各个小组在课前做好准备工作 :复习
在整个过程中,教师根据反馈得到的信息,运用一 系列问题来调控进程与节奏,调控学生的思维、情感活 动,注重老师的引导,组织作用,突出了学生的主体地 位。学生的自主意识、协作能力、探究能力、应用知识 解决问题的能力都得到了培养和提高,也大大增强了学 生学习数学的兴趣。
高中数学竞赛_三角 平面向量 复数

专题四 三角 平面向量 复数一 能力培养1,数形结合思想 2,换元法 3,配方法 4,运算能力 5,反思能力 二 问题探讨问题1设向量(cos ,sin )a αα=,(cos ,sin )b ββ=, 求证:sin()sin cos cos sin αβαβαβ+=+.问题2设()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 2)b x x =,x R ∈(I)若()1f x =[,]33x ππ∈-,求x ; (II)若函数2sin 2y x =的图象 按向量(,)()2c m n m π=<平移后得到函数()y f x =的图象,求实数,m n 的值.问题3(1)当4x π≤,函数2()cos sin f x x x =+的最大值是 ,最小值是 .(2)函数32cos sin cos y x x x =+-的最大值是 .(3)当函数22sin 2sin cos 3cos y x x x x =++取得最小值时,x 的集合是 . (4)函数sin (0)cos 1xy x x π=<<+的值域是 .问题4已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,且4,5a b c =+=,tan tan A B +=tan tan )A B -,求角A.三 习题探讨 选择题1在复平面内,复数12ω=-+对应的向量为OA ,复数2ω对应的向量为OB , 那么向量AB 对应的复数是A,1 B,1- D,2已知α是第二象限角,其终边上一点P(x 且cos x α=,则sin α=D, 3函数2sin(3)4y x π=-图象的两条相邻对称轴之间的距离是A,3π B,23π C,π D,43π4已知向量(2,0)OB =,向量(2,2)OC =,向量(2,)CA αα=,则向量OA 与向量OB 的夹角的取值范围是A,[0,]4πB,5[,]412ππ C,5[,]122ππ D,5[,]1212ππ5已知(,2)a λ=,(3,5)b =-,且a 与b 的夹角为钝角,则λ的取值范围是 A,103λ>B,103λ≥ C,103λ< D,103λ≤ 6若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的值域是A,[1,)-+∞ B,[1- C, D,1]2填空题7已知sin sin 1αβ⋅=,则cos()αβ+= .8复数13z i =+,21z i =-,则12z z z =⋅在复平面内的对应点位于第 象限.9若tan 2α=,则224sin 3sin cos 5cos αααα--= .10与向量1)a =-和(1b =的夹角相等,c = . 11在复数集C 内,方程22(5)60x i x --+=的解为 .12若[,]1212ππθ∈-,求函数cos()sin 24y πθθ=++的最小值,并求相应的θ的值.13设函数11()22x x f x ---=-,x R ∈,若当02πθ≤≤时,2(cos 2sin )f m θθ++(22)0f m --<恒成立,求实数m 的取值范围.14设5arg 4z π=,且22z R z-∈,复数ω满足1ω=,求z ω-的最大值与最小值勤.15已知向量33(cos,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈ (I)求a b ⋅及a b +; (II)求函数()4f x a b a b =⋅-+的最小值.16设平面向量(3,1)a =-,13(,22b =.若存在实数(0)m m ≠和角((,))22ππθθ∈-,使向量2(tan 3)c a b =+-,tan d ma b θ=-+,且c d ⊥.(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.问题1证明:由cos cos sin sin a b αβαβ⋅=+,且cos()cos()a b a b αβαβ⋅=⋅-=- 得cos()αβ-=cos cos sin sin αβαβ+ ① 在①中以2πα-代换α得cos[()]2παβ-+=cos()cos sin()sin 22ππαβαβ-+-.即sin()αβ+=sin cos cos sin αβαβ+.温馨提示:向量是一种很好用的工具.运用好它,可简捷地解决一些三角,平几,立几,解几等问题.问题2解:(I)可得2()2cos 212sin(2)6f x x x x π==++由12sin(2)6x π++=1得sin(2)62x π+=- 又33x ππ-≤≤,得52266x πππ-≤+≤,有26x π+=3π-,解得4x π=-. (II)函数2sin 2y x =的图象按向量(,)c m n =平移后得到函数2sin 2()y n x m -=-, 即()y f x =的图象.也就是1y -=2sin 2()12x π+的图象.而2m π<,有12m π=-,1n =.问题3解:(1)22151sin sin (sin )24y x x x =-+=--+而4x π≤,有sin 22x -≤≤,当1sin 2x =,即6x π=时,max 54y =;当sin x =即4x π=-时,min 32y =(2)32cos (1cos )cos y x x x =+--,令cos t x =,则11t -≤≤,有321y t t t =--+,得'2321y t t =--令'0y =,有11t =,213t =-①当113t -≤<-时,'0y >,y 为增函数;②当113t -<<时,'0y <,y 为减函数. 32111()()()1333y =-----+极大=3227,而y =x=111110--+=,于是y 的最大值是3227.(3) 22cos 1sin 2sin 2cos 22)24y x x x x x π=++=++=++当2242x k πππ+=-,即38x k ππ=-时,min 2y =(4)可得cos 2sin y x y x +=,有sin cos 2x y x y -=)2x y ψ+=,有sin()1x ψ+=≤,得y ≤≤,又0y >,于是有y的值域是.问题4解:由已知得tan tan 1tan tan A BA B+=-⋅即tan()A B +=又000180A B <+<得0120A B +=,060C =.又4,5,a b c =+=得5,b c =-由余弦定理22016(5)8(5)60c c c cos =+---. 得72c =,32b =. 由正弦定理得0742sin sin 60A =,有sin A =. 又a c b >>,得A 为最大角.又01sin sin 302B =<=,有030B <,于是090B C +<.所以得A π=-. 习题:1得2122ω=--,11()()2222AB OB OA i =-=----+=,选D.2 OP又2cos 4x x α==,得x =舍去),有cos α=sin α==,选A.3它的对称轴为:342x k πππ-=+,即34k x ππ=+,有(1)[]()34343k k πππππ++-+=,选A.4(数形结合)由(2)CA αα=,知点A 在以C (2,2)为圆心(如图),过原点O 作圆C 的切线'OA ,'A 为切点,由OC =,'A C =知'6AOC π∠=,有'4612AOB πππ∠=-=,过点O 作另一切线''OA ,''A 为切点,则''54612A OB πππ∠=+=,选D.5由310a b λ⋅=-+,2a b λ⋅=+,设a 与b 的夹角为θ,则090180θ<<,有1cos 0θ-<<,即31010λ-+-<<,得225603203100λλλ⎧+->⎨-+<⎩,有103λ>,选A.6由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=,选D. 7显然sin 0α≠且sin 0β≠,有1sin sin αβ=, 当0sin 1β<≤时,11sin β≥,有sin 1α≥,于是sin 1α=,得sin 1β=,则cos cos 0αβ== 得到cos()cos cos sin sin 1αβαβαβ+=-=-, 当1sin 0β-≤<时,同理可得cos()1αβ+=-.8 12(3)(1)24z z z i i i =⋅=++=+,它对应的点位于第一象限.9由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即221cos 4cos αα-=.则21cos 5α=,原式=222216cos 6cos 5cos 5cos 1αααα--==.10设(,)c x y =,则1)(,)a c x y y ⋅=-⋅=-,(1(,)b c x y x ⋅=⋅=.设c 与a ,b 的夹角分别为,αβ,则cosa c a c α⋅==⋅,cos b c b c β⋅==⋅由αβ=,y -=x ①;由c 得222x y +=.②由①,②得, 11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩于是c =或(11设x a bi =+,,a b R ∈,代入原方程整理得22(2256)(45)0a b a b ab a b i --+-++-=有2222560450a b a b ab a b ⎧--+-=⎨+-=⎩,解得11a b =⎧⎨=⎩或3232a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以1x i =+或3322x i =-.12解:cos()sin 2cos()cos(2)442y πππθθθθ=++=+-+22c o s ()c o s ()144ππθθ=-++++ 令cos()4t πθ=+,得2219212()48y t t t =-++=--+ 由1212ππθ-≤≤,得643πππθ≤+≤,有1cos()242πθ≤+≤,122t ≤≤.于是当t =,即cos()4πθ+=,得12πθ=-时,min 12y =.13解:由1()1()22()x x f x f x ------=-=-,知()f x 是奇函数,而'11'11()2ln 22ln 2(1)2ln 22ln 20x x x x f x x ------=---=+>得()f x 在R 上为增函数,则有2cos 2sin 22m m θθ+<+,令sin t θ=有22(21)0t mt m -++>,[0,1]t ∈恒成立.①将①转化为:22(1)(1)m t t ->-+,[0,1]t ∈ (1)当1t =时,m R ∈;(2)当01t ≤<时,22()2[(1)]1m h t t t >=--+-,由函数2()g x x x=+在(0,1]上递减,知 当0t =时,min ()1h t =-,于是得12m >-. 综(1),(2)所述,知12m >-.14解:设(,)z a bi a b R =+∈,由5arg 4z π=得0b a =<,得222222(1)2(1)(1)(1)z a i a a i z a i a ----++-==+ 由22z R z-∈,得210a -=,从而1z i =--,设,z ω在复平面上的对应点分别为,W Z ,由条件知W 为复平面单位圆上的点,z ω-的几何意义为单位圆上的点W 到点Z 的距离,所以z ω-的最小值为1OZ OA -=;最大值为1OZ OA +=.15解(I)33coscos sin (sin )cos 22222x xa b x x x ⋅=+-=, 33(cos cos ,sin sin 2222x xa b x x +=+-,得22cos 2cos a b x +=+=2cos 2x =([0,]2x π∈).(II)22()cos28cos 2cos 8cos 12(cos 2)9f x x x x x x =-=--=-- 当且仅当cos 1x =时,min ()7f x =-.16解:(I)由c d ⊥,13102a b ⋅=⋅=,得2[(tan 3)][tan ]c d a b ma b θθ⋅=+-⋅-+ =223(tan 3tan )0ma b θθ-+-=,即223(tan 3tan )m a b θθ=-,得31(tan 3tan )()422m ππθθθ=--<<. (II)由tan t θ=,得31()(3),4m g t t t t R ==-∈求导得''23()(1)4m g t t ==-,令'()0g t =,得11t =-,21t =当(,1)t ∈-∞-,'()0g t >,()g t 为增函数;当(1,1)t ∈-时,'()0g t <,()g t 为减函数; 当(1,)t ∈+∞时,'()0g t >,()g t 为增函数. 所以当1t =-,即4πθ=-时,()m g t =有极大值12;当1t =,即4πθ=时,()m g t =有极小 值12-.。
第六章 平面向量和复数第五节复数的三角形式及乘除运算

r
r
a
的象限就是复数相对应的点Z a,b所在象限.
复数的三角形式中,辐角 可以用弧度表示,也可以用角 度表示,可以写主值,也可以在主值上加2k 或k 360 (k Z ), 为简便起见, 在复数的代数形式化为三角形式时, 一般 只取主
值.(!复数的三角形式不惟一,若辐角取主值,则惟一.)
例1 把以下复数化成三角形式.
2
四象限,所以arg 1-i 7 ,于是1-i=
4
2
cos
7
4
,isin
7
4
;
(3) r = 1 0 1,因为与 1对应的点在x轴的负半轴上,
所以arg 1 ,于是, 1 cos isin ;
(4) r 0 32 3,因为和3i对应的点在y轴的正半轴上,
所以arg 3i
2
2 2
2 2
i
1-i.
例3 求复数Z = r cos +isin 的共扼复数的三角形式.
解 Z = r cos -isin r cos isin .
在这里要注意r cos -isin 并不是复数的三角形式.
二、复数三角形式的乘法和除法
1.乘法 设复数Z1, Z2的三角形式分别是 :
Z1 r1 cos1 isin1 , Z2 r2 cos2 isin2 , 则Z1Z2 r1 cos1 isin1 r2 cos2 isin2 r1r2 cos1 cos2 sin1 sin2 isin1 cos2 cos1 sin2 r1r2 cos 1 2 isin 1 2 ,
O
1
2
3x
的辐角.1+i2+i3+i =10i.
图6 20 例7图形
三角函数、平面向量、复数训练测试题
一致 掌 敦 掌 通 讯●蕙 0 年 月下半月 ● 第 月, 0 啪 职
.
魏 训练测试题
( A) . ( B) . ( c) 2 . ( D) .
中点 . E 作 F上 船 交 朋 于点 F. ( )证明 P ∥ 平面 E B; 1 A D
( A)一 2 ( . B)一 1 ( . C)3 ( . D)一 3 .
维普资讯
训练:试题魏 j i
5 .向量葫 : (,) 33 , = ( .)点 C满足I 一1o 。
=
I
有(
)
l则 1 1 , 菌 的取值范围是(
( A)E ,] 4 6.
B
CD 的距离相等 . 则动点 M 的轨迹
所形成_ 的曲线是(
( A)直 线 .
中点. ( )求异 面直线 A 与 B 成 的角 ; 1 B C 所 ( )求 MN 的长 } 2 ( )求 MN与底面 AB 3 C所成 的角.
( C)双 曲 线 . ( D)抛 物 线 . 二 、 空 题 填
三 、 答 题 解
选 择 题
1 .若 A、 B是锐角三角形 的两个 内角 , 则点 P(oB— cs
s A,i 一 1s 在 ( i s B 2 A) n n 0 )
( A)第一象限.
( C)第三象限.
( )第二 象限. B
( 第 四象 限. D)
I .如 图. 已 知 四 棱 锥 P —
3, ) 则 言与 的夹 角大 小 0 是
.
( 东省 邹城 市 实验 中学 2 3 O ) 万 兆峰 山 7 5 O
一
、
5 .等边 △A C 的边 长 为 a, D 是 BC边 上的 高 。 B A 沿 AD将 /A X BC折 成 直 二 面 角 则 点 A 到 BC 的距 离 是
三角函数平面向量复数
π 解析:∵f(x)=2sin(2x+θ+3)是奇函数, π ∴θ+3=kπ,k∈Z, π 2 π ∴θ=-3+kπ,k∈Z.f(x)=2sin(2x+3π)在[0,4]是减函数. π 对于D,f(x)=2sin(2x+π)=2sin 2x在[0,4]是增函数, 故D错.
答案:B
π 7.已知函数 f(x)=cos(2x-3)+sin2x-cos2x. (1)求函数 f(x)的最小正周期及图像的对称轴方程; (2)设函数 g(x)=[f(x)]2+f(x),求 g(x)的值域.
答案: D
2. 已知函数 f(x)=sin x-cos x 且 f′(x)=2f(x), f′(x)是 f(x) 1+sin2x 的导函数,则 2 =________. cos x-sin 2x
解析: 由题意知, f′(x)=cos x+sin x, 由 f′(x)=2f(x)得 cos x+sin x=2(sin x-cos x),得 tan x=3, 1+sin2x 1+sin2x 所以 2 = 2 cos x-sin 2x cos x-2sin xcos x 2sin2x+cos2x 2tan2x+1 19 = 2 = =- 5 . cos x-2sin xcos x 1-2tan x
[解]
CB =0, (1)因为(2a+c) BC · BA +cCA ·
所以(2a+c)accos B+cabcos C=0, 即(2a+c)cos B+bcos C=0,则 (2sin A+sin C)cos B+sin Bcos C=0, 所以 2sin Acos B+sin(C+B)=0. 所以 sin A(2cos B+1)=0. 1 2π 即 cos B=- .所以 B= . 2 3
平面向量与复数专题培优课平面向量中的最值范围问题课件-2025届高三数学一轮复习
A.-12
B.-1
C.-2
D.-4
答案:B
题型三 与向量的模有关的最值(范围)问题
例 3 设向量a,b满足|a|=|b|=1,a·b=0,若向量c满足|c-a-b|=1,
则|c|的取值范围是( )
A.[ 2-1, 2+1] B.[ 2-1, 2+2]
C.[1, 2+1]
D.[1, 2+2]
答案:A
解析:∵|a|=|b|=1,a·b=0,且|c-a-b|=|c-(a+b)|=1, ∴作出图象如图,由图可知,|c|最小值为 2-1,最大值为 2 +1.故选A.
题后师说 与向量的模有关的最值(范围)问题的两种常用方法
(1)代数法,把所求的模表示成某个变量的函数,或通过建立平面直 角坐标系,借助向量的坐标表示;需要构造不等式,利用基本不等式, 三角函数,再用求最值的方法求解;
巩固训练4 平面向量a,b满足|a|=|b|,且|a-3b|=1,则cos 〈b,3b-a〉的最 小值是________.
答案:2 2
3
1 . 已 知 向 量a , b , c满 足a =(3 ,0) ,b =(0 ,4) ,c =λa +(1 -
λ)b(λ∈R),则|c|的最小值为( )
A.56
答案:B
题后师说 与数量积有关的最值(范围)问题的两种常用解法
(1)坐标法:通过建立直角坐标系,运用向量的坐标运算转化为代数 问题处理.
(2)向量法:运用向量数量积的定义、不等式、函数性质等有关知识 解决.
巩固训练2
[2024·山东滨州模拟]在△ABC中,AB=2,AC=3,∠BAC=60°,
M是线段AC上任意一点,则MB·MC的最小值是( )
答案:C
4平面向量与复数
- . c・d 一 一
+
口t 6 一 y( 4 x ̄ -3 ) 口 ・6 +
—
—
+
——+
——+
2 F D=2 I AF1 .1 FDI
4 一 3 。 2
设I I — , 则I 商 J 一 一 . ( o ≤ ≤ )
・ . .
‘扩
.( i 蠢+一 F C ) :2 ( 一 ) 一一2 +
—
+
——+
——+
( 2 )AE AD+ DE;
— —
是 3
——+ ——+ ——+
+
——’
( 3) F B + F C : 2 F D 及 AF ・ F D =
点评 : 本题考查了平面向量数量积及其应用 等知
— — — — — —
Ai * I .I F D1 . 识, 考查 了综 合运用 知识分 析解 决问题 的能力 . 在 解
— —
+
B C、 C D的 中 点 , DE 与 AF 交 于 点 H , 设 AB=n ,
— —
+
——— +
B C =b , 则AH 一
. ( 用a , b表 示 )
.
.
B
D
I
E— l
f
6 .已知向量 口 =( 3 , 4 ) , 一( 2 , 一1 ) , 如果 n + 与一 垂直 , 则 一
・ . .
+
一
1 , ・ j B cl 一2 √ 2 .
在R t A AD C中 , AD= ,
— —
I n l 一2 , I l 一1 , 口. 一O
,
又・ I . c j - d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四 三角 平面向量 复数一 能力培养1,数形结合思想 2,换元法 3,配方法 4,运算能力 5,反思能力 二 问题探讨问题1设向量(cos ,sin )a αα= ,(cos ,sin )b ββ=,求证:sin()sin cos cos sin αβαβαβ+=+.问题2设()f x a b =⋅,其中向量(2cos ,1)a x =,(co s ,2)b x x =,x R ∈(I)若()1f x =-且[,]33x ππ∈-,求x ; (II)若函数2sin 2y x =的图象按向量(,)()2c m n m π=<平移后得到函数()y f x =的图象,求实数,m n 的值.问题3(1)当4x π≤,函数2()cos sin f x x x =+的最大值是 ,最小值是 .(2)函数32cos sin cos y x x x =+-的最大值是 .(3)当函数22sin 2sin cos 3cos y x x x x =++取得最小值时,x 的集合是 . (4)函数sin (0)co s 1x y x x π=<<+的值域是 .问题4已知A B C ∆中,,,a b c 分别是角,,A B C 的对边,且4,5a b c =+=,tan tan A B +=tan tan )A B -,求角A.三 习题探讨 选择题1在复平面内,复数122ω=-+对应的向量为O A ,复数2ω对应的向量为O B, 那么向量A B对应的复数是A,1 B,1- D,2已知α是第二象限角,其终边上一点P(x ),且co s 4x α=,则sin α=44C,4D,4-3函数2sin (3)4y x π=-图象的两条相邻对称轴之间的距离是A,3π B,23π C,π D,43π4已知向量(2,0)O B = ,向量(2,2)O C = ,向量,)C A αα=,则向量O A 与向量O B的夹角的取值范围是A,[0,]4π B,5[,]412ππ C,5[,]122ππ D,5[,]1212ππ5已知(,2)a λ=,(3,5)b =-,且a 与b 的夹角为钝角,则λ的取值范围是 A,103λ>B,103λ≥C,103λ<D,103λ≤6若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的值域是A,[1,)-+∞ B,[- C, D,1]2填空题7已知sin sin 1αβ⋅=,则cos()αβ+= .8复数13z i =+,21z i =-,则12z z z =⋅在复平面内的对应点位于第 象限. 9若tan 2α=,则224sin 3sin cos 5cos αααα--= .10与向量1)a =-和b =的夹角相等,的向量c = . 11在复数集C 内,方程22(5)60x i x --+=的解为 . 解答题 12若[,]1212ππθ∈-,求函数co s()sin 24y πθθ=++的最小值,并求相应的θ的值.13设函数11()22x x f x ---=-,x R ∈,若当02πθ≤≤时,2(co s 2sin )f m θθ++(22)0f m --<恒成立,求实数m 的取值范围14设5arg 4z π=,且22z R z-∈,复数ω满足1ω=,求z ω-的最大值与最小值勤.15已知向量33(co s ,sin )22a x x = ,(co s ,sin )22x x b =- ,且[0,]2x π∈(I)求a b ⋅ 及a b + ; (II)求函数()4f x a b a b =⋅-+ 的最小值.16设平面向量1)a =- ,1(,22b = .若存在实数(0)m m ≠和角((,))22ππθθ∈-,使向量2(tan 3)c a b =+- ,tan d m a b θ=-+,且c d ⊥ .(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.参考答案:问题1证明:由cos cos sin sin a b αβαβ⋅=+,且co s()co s()a b a b αβαβ⋅=⋅-=-得cos()αβ-=cos cos sin sin αβαβ+ ① 在①中以2πα-代换α得co s[()]2παβ-+=co s()co s sin ()sin 22ππαβαβ-+-.即sin()αβ+=sin cos cos sin αβαβ+.温馨提示:向量是一种很好用的工具.运用好它,可简捷地解决一些三角,平几,立几,解几等问题.问题2解:(I)可得2()2co s 212sin (2)6f x x x x π=+=++由12sin (2)6x π++=1得sin (2)62x π+=-又33x ππ-≤≤,得52266x πππ-≤+≤,有26x π+=3π-,解得4x π=-.(II)函数2sin 2y x =的图象按向量(,)c m n =平移后得到函数2sin 2()y n x m -=-, 即()y f x =的图象.也就是1y -=2sin 2()12x π+的图象.而2m π<,有12m π=-,1n =.问题3解:(1)22151sin sin (sin )24y x x x =-+=--+而4x π≤,有sin 22x -≤≤,当1sin 2x =,即6x π=时,m ax 54y =;当sin 2x =-,即4x π=-时,m in 322y =-.(2)32cos (1cos )cos y x x x =+--,令cos t x =,则11t -≤≤,有321y t t t =--+,得'2321y t t =--令'0y =,有11t =,213t =-①当113t -≤<-时,'0y >,y 为增函数;②当113t -<<时,'0y <,y 为减函数.32111()()()1333y =-----+极大=3227,而y =x=111110--+=,于是y 的最大值是3227.(3) 22co s 1sin 2sin 2co s 22(2)24y x x x x x π=++=++=++当2242x k πππ+=-,即38x k ππ=-时,m in 2y =-(4)可得cos 2sin y x y x +=,有sin cos 2x y x y -=)2x y ψ+=,有sin ()1x ψ+=≤,得33y -≤≤又0y >,于是有y的值域是3.问题4解:由已知得tan tan 1tan tan A B A B+=-⋅即tan()A B +=又000180A B <+<得0120A B +=,060C =.又4,5,a b c =+=得5,b c =-由余弦定理2216(5)8(5)60c c c cos =+---.得72c =,32b =.由正弦定理得742sin sin 60A=,有sin 7A =. 又a c b >>,得A 为最大角.又01sin sin 30142B =<=,有030B <,于是090B C +<.所以得7A a rcπ=-.习题:1得2122i ω=--,11()()2222A B O B O A i =-=----+= ,选D.2 O P =又co s 4x x α==,得x =舍去),有co s 4α=-sin 4α==,选A.3它的对称轴为:342x k πππ-=+,即34k x ππ=+,有(1)[]()34343k k πππππ++-+=,选A.4(数形结合)由s )C A αα=,知点A 在以C (2,2)为圆心(如图),过原点O 作圆C 的切线'O A ,'A 为切点,由O C ='A C =知'6A O C π∠=,有'4612A OB πππ∠=-=,过点O 作另一切线''O A ,''A 为切点,则''54612A O B πππ∠=+=,选D.5由310a b λ⋅=-+ ,a b ⋅=设a 与b的夹角为θ,则0090180θ<<,有1cos 0θ-<<,即31010-+-<<,得225603203100λλλ⎧+->⎨-+<⎩,有103λ>,选A.6由03x π<≤,令sin co s (),4t x x x π=+=+而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin co s 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=,选D.7显然sin 0α≠且sin 0β≠,有1sin sin αβ=,当0sin 1β<≤时,11sin β≥,有sin 1α≥,于是sin 1α=,得sin 1β=,则cos cos 0αβ==得到c o s ()c o s c o s s i n αβαβαβ+=-=-,当1sin 0β-≤<时,同理可得cos()1αβ+=-.8 12(3)(1)24z z z i i i =⋅=++=+,它对应的点位于第一象限.9由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即221cos 4cos αα-=. 则21co s 5α=,原式=222216cos 6cos 5cos 5cos 1αααα--==.10设(,)c x y =,则1)(,)a c x y y ⋅=-⋅=-,(1,(,)b c x y x ⋅=⋅=+.设c 与a ,b 的夹角分别为,αβ,则co s a c a cα⋅==⋅,co s b c b cβ⋅==⋅由αβ=,y -=x +①;由c,得222x y +=.②由①,②得, 11122x y ⎧=⎪⎪⎨⎪=⎪⎩22122x y ⎧+=-⎪⎪⎨⎪=-⎪⎩于是11,)22c -=或11(,)22+--11设x a bi =+,,a b R ∈,代入原方程整理得22(2256)(45)0a b a b ab a b i --+-++-=有2222560450a b a b a b a b ⎧--+-=⎨+-=⎩,解得11a b =⎧⎨=⎩或3232a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以1x i =+或3322x i =-.12解:co s()sin 2co s()co s(2)442y πππθθθθ=++=+-+22c o s ()c o s ()144ππθθ=-++++ 令co s()4t πθ=+,得2219212()48y t t t =-++=--+由1212ππθ-≤≤,得643πππθ≤+≤,有1co s()242πθ≤+≤,122t ≤≤于是当2t =,即co s()42πθ+=,得12πθ=-时,m in 122y =-.13解:由1()1()22()x x f x f x ------=-=-,知()f x 是奇函数,而'11'11()2ln 22ln 2(1)2ln 22ln 20x x x x f x x ------=---=+>得()f x 在R 上为增函数,则有2cos 2sin 22m m θθ+<+,令sin t θ=有22(21)0t m t m -++>,[0,1]t ∈恒成立.①将①转化为:22(1)(1)m t t ->-+,[0,1]t ∈ (1)当1t =时,m R ∈;(2)当01t ≤<时,22()2[(1)]1m h t t t>=--+-,由函数2()g x x x=+在(0,1]上递减,知当0t =时,m in ()1h t =-,于是得12m >-.综(1),(2)所述,知12m >-.14解:设(,)z a bi a b R =+∈,由5arg 4z π=得0b a =<,得222222(1)2(1)(1)(1)z a i a a iz a i a----++-==+由22z R z-∈,得210a -=,从而1z i =--,设,z ω在复平面上的对应点分别为,W Z ,由条件知W 为复平面单位圆上的点,z ω-的几何意义为单位圆上的点W 到点Z 的距离,所以z ω-的最小值为1O Z O A -=;最大值为1O Z O A +=+.15解(I)33co s co s sin (sin co s 22222x xa b x x x ⋅=+-= ,33(co s co s ,sin sin )2222x xa b x x +=+- ,得2co s a b x +== 2cos 2x =([0,]2x π∈).(II)22()cos 28cos 2cos 8cos 12(cos 2)9f x x x x x x =-=--=-- 当且仅当cos 1x =时,m in ()7f x =-.16解:(I)由c d ⊥ ,11022a b ⋅== ,得2[(tan 3)][tan ]c d a b m a b θθ⋅=+-⋅-+=223(tan 3tan )0m a b θθ-+-= ,即223(tan 3tan )m a b θθ=-,得31(tan 3tan )(422m ππθθθ=--<<.(II)由tan t θ=,得31()(3),4m g t t t t R ==-∈求导得''23()(1)4m g t t ==-,令'()0g t =,得11t =-,21t =当(,1)t ∈-∞-,'()0g t >,()g t 为增函数;当(1,1)t ∈-时,'()0g t <,()g t 为减函数; 当(1,)t ∈+∞时,'()0g t >,()g t 为增函数. 所以当1t =-,即4πθ=-时,()m g t =有极大值12;当1t =,即4πθ=时,()m g t =有极小值12-.。