计算机控制技术与及系统
《计算机控制技术》课件

contents
目录
• 计算机控制技术概述 • 计算机控制系统组成 • 计算机控制系统的基本原理 • 计算机控制系统的设计方法 • 计算机控制系统的实现技术 • 计算机控制系统的应用实例
01
计算机控制技术概述
定义与特点
总结词
计算机控制技术的定义和特点
详细描述
计算机控制技术是指利用计算机对工业生产过程进行自动控制的技术。它具有 高精度、高效率、高可靠性的特点,能够实现生产过程的自动化、智能化和信 息化。
动控制。
监控软件
用于实时监控系统的运行状态 ,显示各种参数和数据,以及
进行故障诊断和报警等。
数据库软件
用于存储和管理各种数据,如 历史数据、实时数据等。
操作系统
提供计算机控制系统的运行环 境和基础服务。
人机接口
01
02
03
界面设计
设计易于操作的人机界面 ,包括图形界面和文本界 面等。
交互方式
提供多种交互方式,如鼠 标操作、键盘输入等,方 便用户进行操作和控制。
常见的开环控制系统有步进电机 控制系统、温度控制系统等。
闭环控制系统
闭环控制系统是一种包含反馈环节的控制系统,通过检测系统输出结果,将检测结 果反馈给输入端,与输入信号进行比较,根据比较结果调整输入信号。
闭环控制系统的优点是能够实时调整系统输出,提高控制精度和稳定性,但结构相 对复杂。
常见的闭环控制系统有伺服电机控制系统、数控机床控制系统等。
自适应控制
通过调整控制器参数,使系统能够自动适应环境变化和不确定性, 保持最优性能。
鲁棒控制
设计具有鲁棒性的控制系统,使系统在存在不确定性和干扰的情况 下仍能保持稳定和良好的性能。
《计算机控制技术》计算机控制系统的设计与实现

在以上硬件设计的每一个阶段,都应该遵循边设计,边调试, 边修改的原则,包括元器件测试、电路模块调试、子系统调试等。 这样,问题发现得越早,对整个控制系统的设计、研制的影响就越 小,付出的代价也越小。
(3)来自控制系统内部的干扰 主要由系统内部元器件及电路间的相互电磁辐射产生,
如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件 间的相互不匹配使用等。这都属于控制设备制造厂家对系统 内部进行电磁兼容设计的内容,比较复杂,作为应用部门无 法避免,可不必过多考虑,但要选择具有较多应用实绩或经 过考验的系统。
经过上述系统仿真调试,并取得满意控制性能的计算机控 制系统运到现场就可以进行现场安装调试了。现场调试是实际 生产过程对计算机控制系统性能的全面检查与性能评估,与实 验室的半实物调试相比,需要特别注意系统的安全性与抗干扰 等问题。在通过现场安装调试后,就可以投入实际生产过程进 行试运行。在试运行过程中,往往会出现许多错综复杂、时隐 时现的现象,暴露设计缺陷,这时设计者应当认真分析问题根 源,寻求解决方法。同时,系统的可靠性与稳定性也应当长期 考验,针对现场特殊的工作环境,采取行之有效的措施,在经 过一段时间的试运行并取得满意的性能评价之后,整个控制系 统就可以正式投入到实际运行中了。
8.2.4 系统的调试与运行 在硬件、软件的设计过程中,一般已经进行了分模块调试。在系
统投入现场运行之前,还需要在实验室进行硬件、软件的联合调试与 系统的仿真调试。软、硬件联调是整个调试的基础,这个步骤在硬件 设计时就开始了,即逐个功能模块进行边设计边调试,并将调试好的 模块逐步加入硬件系统进行联调。在硬件调试通过的情况下,就可将 软件系统加入进去,进行控制系统硬件软件的联合调试,联合调试的 目的是检验系统硬件、软件设计的正确性与运行的可靠性。在联合调 试过程中,不但会发现软件错误,还会发现一些在硬件调试中未发现 的硬件故障或设计缺陷,可根据情况予以修正。上述软件、硬件的联 合调试一般是脱离实际的被控过程进行的,主要在于检验系统硬件、 软件设计在功能上的正确性,不能全面反映整个控制系统的性能,因 此,还必须经过整个系统的仿真试验来检验系统的实际控制性能是否 能满足指标要求。
微型计算机控制技术与系统 自考

微型计算机控制技术与系统自考
微型计算机控制技术与系统是现代电子信息工程技术领域的重
要学科之一,它涉及到微型计算机在工业自动化、仪器仪表、通信、电力电子等领域的应用。
自考是指自主招生,学生可以通过自学教
材来准备考试,而不需要参加传统的课堂教学。
微型计算机控制技
术与系统的自考课程通常包括微型计算机原理、汇编语言程序设计、嵌入式系统原理与应用、自动控制原理、数字信号处理等内容。
在自考微型计算机控制技术与系统的过程中,学生需要通过自
学教材,理解微型计算机的基本原理和结构,掌握汇编语言程序设
计的基本技能,了解嵌入式系统的应用和实践,熟悉自动控制原理
和数字信号处理的相关知识。
此外,还需要进行大量的习题和实践
操作,以加深对知识的理解和掌握。
在备考过程中,学生可以通过阅读相关教材,参加自考辅导班,利用网络资源进行学习和交流,积极参加模拟考试和练习,以检验
和提升自己的学习成果。
此外,还可以结合实际工程项目进行实践
操作,加深对知识的理解和应用能力。
总的来说,自考微型计算机控制技术与系统需要学生具备较强
的自学能力和自律能力,需要进行系统的学习和实践,同时也需要
注重对知识的理解和应用能力的培养。
希望我的回答能够帮助到你,如果你有其他问题,也可以继续向我提问。
计算机控制技术PPT 第3章

3. 综合指标
在现代控制理论中,如最优控制系统的没计时,经常使用综
合性能指标来衡量一个控制系统。选择性能指标时.既要考虑
到能对系统的性能做出正确的评价,又要考虑到数学上容易处
理,以及工程上便于实现。因此,选择性能指标时,通常需要
做一定的试探和比较。综合性能指标通常有3种类型。
1)积分型指标:
(1)误差平方的积分:
3.5 线性离散时间系统的能控性与能观测性
线性定常离散时间系统的能控性定义及判据 线性定常离散时间系统的能观测性定义及判据
3.6 应用MATLAB进行离散系统分析
3.1 计算机控制系统概述
计算机控制系统(Computer Control System)是应用计算机 参与控制并借助一些辅助部件与被控对象相联系,以获得 一定控制目的而构成的系统。
为n,Qc为由系数矩阵A和B按一定规则组成的分块矩阵,
表达式是:
n为系统的维数。 判别线性定常系统能控性的判据还有 其他的形式。对于线性时变系统,判别能控性的条件要复 杂一些,而且系统是否能控,常常还依赖于初始时刻的选 取。对于完全能控的线性定常系统,通过特别选定的坐标 变换,可以将其状态方程化成标准的形式,称为能控规范 形。
3.3 控制系统的性能指标描述
对于一个控制系统来说,人们总是要求它能根据实际 的被控对象,在给定信号的作用下达到稳定、快速和准确 的性能指标。对于计算机控制系统,计算机相当于人的大 脑,因此有更多的功能可以实现,系统就能实现最佳的性 能指标。本章描述了控制系统的基本性能指标,以及这些 性能指标与系统的固有参数和设计参数的关系,从而为分 析和设计控制系统提供了依据。
计算机控制技术 --控制组件分布和集成
2008.6
计算机控制技术复习总结

计算机控制技术复习总结
一、计算机控制技术
计算机控制技术是处理自动化控制系统的一种技术,它可以控制外部设备、测量参数和控制变量,从而实现设计目标。
计算机控制技术主要涉及到对自动化控制系统的模型及结构、系统设计、信号处理、计算机控制算法和硬件技术等多个方面。
1、模型及结构
2、系统设计
系统设计是指选择适当的控制系统以及其组件,组成系统,达到设计要求。
系统设计需要考虑的因素有系统的实验数据、实际控制要求、安全性、精度等。
3、信号处理
信号处理指通过信号极化、误差补偿、延迟、非线性处理等方法,使控制系统的信号在到达控制端时,达到最佳控制效果。
4、计算机控制算法
5、硬件技术
硬件是指控制系统的硬件组件,合理组合各种硬件组件,形成安全可靠的自动控制系统是所有计算机控制技术的重要基础。
二、应用。
计算机控制技术专业

09
计算机控制技术基础
10
专业课程
计算机控制技术基础
计算机控制系统设计
计算机控制系统仿真
计算机控制系统实现
计算机控制系统应用
计算机控制系统维护与维修
实践课程
计算机控制技术实验
01
单片机应用实践
02
控制系统设计实践
03
机器人技术实践
04
自动化生产线实践
05
工业控制系统实践
06
就业方向
工业自动化领域
计算机控制技术专业毕业生可以从事自动化控制、机器人技术、人工智能等领域的工作。
01
随着科技的发展,计算机控制技术在工业、农业、医疗、交通等领域的应用越来越广泛,就业前景良好。
02
计算机控制技术专业人才需求量大,薪资水平较高,职业发展空间较大。
03
计算机控制技术专业毕业生可以选择继续深造,攻读硕士、博士学位,提高自身竞争力。
自动化生产线设计
01
自动化设备安装与调试
02
自动化控制系统开发与维护
03
自动化设备销售与技术支持
04
自动化设备故障诊断与维修
05
自动化设备项目管理与实施
06
智能控制领域
智能机器人:设计、研发、制造、维护
智能控制系统:设计、研发、调试、维护
智能交通系统:设计、研发、实施、维护
智能楼宇系统:设计、研发、实施、维护
熟悉计算机控制技术的发展趋势和应用领域
具备良好的团队协作和沟通能力,能够参与团队项目开发
具备良好的创新意识和创新能力,能够适应计算机控制技术的不断发展
3
2
1
4
5
专业课程
计算机控制技术课后习题详解答案

第一章计算机控制系统概述习题参考答案1.计算机控制系统的控制过程是怎样的计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。
(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。
(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。
2.实时、在线方式和离线方式的含义是什么(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。
(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。
(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。
3.微型计算机控制系统的硬件由哪几部分组成各部分的作用是什么由四部分组成。
(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
图微机控制系统组成框图(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
(3)外部设备:这是实现微机和外界进行信息交换的设备,简称外设,包括人机联系设备(操作台)、输入输出设备(磁盘驱动器、键盘、打印机、显示终端等)和外存贮器(磁盘)。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置

LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置一、概述LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置由控制屏、实验挂箱、实验桌组成,通过单片机开发实训台可完成单片机的接口扩展、数据采集、数据显示、键盘控制、定时器、打印机接口等实验,配备有仿真器。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置设有电流型漏电保护器,控制屏若有漏电现象,漏电流超过一定值,即切断电源,对人身安全起到一定的保护。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置采用组件式结构,更换实验模块便捷。
如需扩展功能或开发新实验,只需添加实验模块挂箱即可,永不淘汰。
二、主要技术参数1、输入电源:AC220V±10% 50Hz2、工作环境:温度-10℃~+40℃相对湿度<85%(25℃)3、装置容量:200VA4、重量:100Kg5、外形尺寸(cm):160×75×1506、挂箱尺寸(mm):410×240×607、输出电源:有漏电、短路、过流保护A.~220V,通过安全插座输出B.直流稳压电源:±5V/1A ±12V/2A三、装置构成(一)实验屏:实验时放置实验挂箱,并提供实验电源,铁质双面亚光密纹喷塑结构。
(二)实验桌:钢木结构,桌面为防火、防水、耐磨高密度板,电脑桌连体设计,造型美观大方。
(三)实验模块:1、LGDP-01 单片机实验挂箱(一)LED点阵显示模块、点阵式字符液晶显示模块、8253定时计数器、A/D转换、D/A转换、V/F 转换、F/V转换、串引EEPROM、EEPROM、Flash Rom、SRAM、I2C总线接口2、LGDP-02 单片机实验挂箱(二)8251串行口扩展、232总线串行接口、单片机最小应用系统1、单片机最小应用系统2、拔码开关输出3、LGDP-03 单片机实验挂箱(三)ISD 1420语音控制、IC卡读写接口、实时时针/日历、USB接口、RS232转RS485接口4、LGDP-04 单片机实验挂箱(四)8279接口电路、8255 I/O扩展、8155 I/O扩展、动态扫描显示模块、转换接口、MC14433、整列式键盘实验模块5、LGDP-05 单片机实验挂箱(五)步进电机驱动程序示列、温度传感器与温度控制、汽车转弯信号灯/十字路口交通灯、数字频率计、看门狗6、LGDP-06 单片机实验挂箱(六)十六位逻辑电平显示、继电器控制接口、常用器件接口、八位逻辑电平输出、单次脉冲、扬声器、串引静态显示模块、查询式键盘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常规仪表控制系统 按照给定值形式分类:
定值控制系统:控制过程中给定值保持不变的系统。 随动控制系统:控制过程中给定值是变化的但变化 的规律是未知的。 程序控制系统:控制过程中给定值是变化的但变化 的规律是已知的。
§1-4 过程控制系统品质指标
一 控制系统的静态、动态与过渡过程
静态:被控量保持不变的状态称为系统的静态。 静态是系统的相对稳定状态,也称稳态。 动态:被控量处于变化的状态称为系统的动态。 动态是控制系统的调节状态。 过渡过程:控制系统克服干扰的调节过程。
运动控制系统(拖动系统):电机传动控制
工业生产过程:连续的或者按照一定周期运行的工业生产对象。 如石油、化工、电力、冶金、轻工、建材、制药等。
生产的连续性:时间上:连续运行 特征 工艺上:一道工序接着另一道工序 主要参数:温度、流量、压力、物位、成分等热工参数 过程控制系统 常规过程控制系统:采用常规仪表的控制系统
r t y t y t
二 典型输入与过渡过程形式
单调衰减:无超调、调节过程缓慢 衰减振荡:具有一定的快速性和稳定性 等幅震荡:临界稳定状态 发散震荡:振幅发散,直至系统破坏
y
t y t
§1-4 过程控制系统品质指标
三 品质指标
1 衰减比:n=B1/B2
衰减比衡量过渡过程的快慢程度和 稳定裕量。 一般取n=4:1--10:1
机械工业出版社 机械工业出版社 清华大学出版社 中国石化出版社
清华大学出版社 化学工业出版社 清华大学出版社 机械工业出版社 重庆大学出版社Leabharlann 计算机控制技术与系统
第一章 过程控制系统的基础知识
本章主要内容 §1-1 过程控制系统的特点 §1-2 过程控制系统的发展概况 §1-3过程控制系统的组成与类别 §1-3过程控制系统的品质指标
§1-3 过程控制系统的组成与类别
一 过程控制系统的组成
眼睛 大脑
液体储槽液位控制系统
手
§1-3 过程控制系统的组成与类别
液体储罐 调节器
调节阀
液位测量仪表
图1-1 过程控制系统组成示意图
设定值r + e 调节器 u 调节阀 q 液体储罐 储罐液位H
-
ym
差压变送器
图1-2 液位控制系统原理方框图
§1-1 过程控制系统的特点
过程控制系统的特点取决于被控对象的特点
被控对象复杂多样;
生产过程大多比较复杂、规模差异大、机理不同 对被控对象的辨识比较困难。
设备庞大,存在容量、惯性和阻力,难以控制。 对象的输入与输出之间的关系通常是非线性的,实际控制系 统只能在一定范围内做线性处理,控制质量受到影响。 控制系统考虑的因素很多,系统变得庞大。
计算机控制技术与系统
计算机控制技术与系统
第一章 过程控制系统的基础知识
第二章 过程控制对象的特性
第三章 常规过程控制系统的基本类型
第三章 计算机控制系统的基本概念
第四章 过程计算机输入输出技术
第五章 过程计算机常规控制技术
第六章 过程计算机抗干扰技术
过程控制系统
自动控制系统 过程控制系统:针对工业生产过程的控制系统
计算机过程控制系统:采用计算机的控制系统
教学用书及参考书
过程控制系统
1 2 3 4
1 2 3 4 5
朱麟章 主编 过程控制系统及设计 邵裕森 主编 过程控制工程 第二版 金以惠 主编 过程控制 蒋慰孙、俞金寿 编著 过程控制工程
王锦标 编著 王慧 主编 王锦标 编著 李华、范多旺 杨天怡、黄勤 过程计算机控制 计算机控制系统 计算机控制系统 等编 计算机控制系统 等编 微型计算机控制技术
本章主要内容 §2-1 概述 §2-2 有自平衡能力对象的动态特性 §2-3 无自平衡能力对象的动态特性 §2-4 时域法辨识对象的动态特性 §2-5 频域法辨识对象的动态特性
§2-1 概述
一 对象特性
对象特性:被控对象在输入的作用下,输出变化的状态和特征。 描述对象输入与输出关系的数学模型。 二 研究对象特性的意义 其意义可归纳为以下几点: 制定控制系统设计方案 进行控制系统调试和参数整定 设计工业过程的故障检测与诊断系统 设计工业过程运行人员培训系统 指导设计生产工艺设备-从生产工艺角度考虑设备的结构
§1-3 过程控制系统的组成与类别
课堂问题
画出控制系统的方框图 指出:被控对象、被控参数、控制参数、主要扰动
流量控制系统示意图
§1-3 过程控制系统的组成与类别
二 过程控制系统的类型
根据控制设备的不同分类:
常规仪表控制系统:控制器(调节器)采用常规仪表 计算机控制系统:控制器采用计算机
多数对象存在纯滞后;
对象特性的非线性;
控制系统比较复杂;
§1-2 过程控制系统的发展概况
过程控制的目的: 保证生产安全、稳定、可靠、改善劳动条件。 提高产品产量、质量。 节能、降耗、高效。 随着控制理论、检测技术、电子技术、计算机技术的发 展,过程控制系统的发展可分为三个阶段: 初级阶段(40年代前后):手工控制、基地仪表 仪表化阶段(50-60年代):单元组合仪表 综合自动化阶段(70年代后):计算机控制技术
§1-3 过程控制系统的组成与类别
设定值r + e 控制器(调节器) u d 执行器 q 被控对象 被控参数 y
ym
检测、变送器
图1-3 过程控制系统原理方框图
控制器(调节器):控制系统中的分析、决策装臵。
控制器输入(e):偏差=设定值r - 测量值ym
控制器输出(u):控制作用,是控制器的决策结果。 设定值(给定值):希望被控参数保持的值 扰动(干扰 d):引起被控参数变化的所有因素。 内扰:经过控制通道的扰动。外扰:系统外部干扰因素
2 最大动态偏差:B1 或 A
过渡过程开始后,被控量的最大值 与新稳态值或设定值之差。 超调量:最大动态偏差与稳态值之比。
3 调整时间(过渡过程时间ts):
从过渡过程开始直到被控量达到新 稳态值的5%(2%)所经历的时间。
4 静态偏差(余差):C
过渡过程结束时被控量与设定值之差。
第二章 过程控制对象的特性
§1-3 过程控制系统的组成与类别
设定值r + e 控制器(调节器) u 执行器 q d 被控对象 被控参数 y
ym
检测、变送器
图1-3 过程控制系统原理方框图
被控对象:控制系统所控制的生产设备或装臵。
被控参数(被控量):控制系统中需要控制的参数 控制参数(操纵量):控制系统中起调节作用的参数 检测、变送器:控制系统中的反馈装臵。 执行器:(执行机构+调节机构):控制动作的执行者。