微机械及其微细加工技术

合集下载

微细加工技术概述及其应用

微细加工技术概述及其应用

2011 年春季学期研究生课程考核(读书报告、研究报告)考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院学生所在学科:机械设计及理论学生姓名:杨嘉学号:10S008214学生类别:学术型考核结果阅卷人微细加工技术概述及其应用摘要微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。

本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。

关键词:微细加工;电火花;微铣削1微细加工技术简介及国内外研究成果1.1微细加工技术的概念微细加工原指加工尺度约在微米级范围的加工方法。

在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。

广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。

从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。

微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。

目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。

微细机械加工技术

微细机械加工技术

能化等 传统机 械无法 比拟 的优 点 ,在 精密模 具 、航
空航天 、精密 仪器 、生物 医疗 等领域 有着广 阔 的应 用 潜力 ,并成 为纳米 技术研 究 的重要 手段 , 因而受 到欧美等 发达 国家 的高度 重视 , 被列 为 2 世 纪 重点 1 发展 的关键技 术 。 微 细 机 械 加 工 技 术 是 制 造 微 机 械 的关 键 和 基
要 求 。图 2为用单 晶金 刚石 刀头加 工的微 型丝杠 。
化 蚀除金 属 的一种加 工技 术 。
由于其在微 细轴 孔加 工及微 三维 结构 制作 方面
存 在 的巨大潜 力和应 用背 景 ,得 到 了高度 重视 。实 现 微细 电火花 加工 的关键 在于微 小 电极 的制作 、微
小能量放 电电源 、工 具 电极 的微 量伺 服进 给 、加 工
间脉冲火 花放 电产 生 的瞬 时、 局部 高温来熔 化和 汽
2 微细 切 削加工
微细 切 削技术 是一种 由传统 切 削技术 衍生 出来 的微 细 切削加 工方法 ,主 要包 括微 细车 削、微细 铣 削、微细 钻 削、微 细磨 削、微 冲压 等 。微 细车 削是 加 工微 小型 回转类 零件 的主要 手段 ,与宏 观加 工类 似 ,也 需要微 细车床 以及 相应 的检 测与控 制系统 , 但 其对 主轴 的精度 、刀 具 的硬 度和 微型化 有很 高的
微 细 钻 削 的关 键 是微 细钻 头 的制 备。 目前 借助 于 电 火花 线 电极磨 削可 以稳 定地制 成直 径为 1 m 的 0p
钻 头 ,最小 的可达 65p . m。微细 铣削可 以实现 任
意 形状 微三维 结构 的加 工 ,生产效 率高 ,便于扩 展
状 态检测 、系 统控制 及加 工工 艺方法 等 。

微细加工技术

微细加工技术

(b)
各向同性刻蚀
(a)各向同性刻蚀(搅拌);(b)各向同性刻蚀(不搅拌)
2)各向异性刻蚀
各向异性刻蚀是指某个方向上的刻蚀速率远大于另 一方向。刻蚀速度与基底材料的结晶取向密切相关;硅 材料是一种各向异性材料,在3个晶面上表现出不同的性 质。对于特定的刻蚀剂,硅的[100]晶面的腐蚀速度最快, [110]晶面次之,[111]晶面的腐蚀速度最慢。硅各向异性 刻蚀在几何形状控制上具有许多优点,可以制作出许多 具有垂直侧壁的微机械零件。
随着微/纳米科学与技术的发展,以形状尺寸微小或操 作尺度极小为特征的微机械成为人们在微观领域认识和 改造客观世界的一种高新技术。
一般认为,微机械依其特征尺寸可以划分为:小型机 械(1mm-10mm),微型机械(1um-1mm)以及纳米机 械(1nm-1um)。从广义来讲,微机械包括微小型机械 和纳米机械。
微细加工是由多项技术构成的一个技术群体,主要 包括:
(1)由IC工艺技术发展起来的硅微细加工技术;
(2)在特种加工和常规切削加工基础上发展形成的微 细制造技术;
(3)由上述两种技术集成的新方法,如LIGA、准 LIGA技术等。
微细加工与常规尺寸加工的区别:
(1)加工精度的表示方法不同:一般尺度加工,加工精 度常用相对精度表示,微细加工用绝对精度表示;
所谓牺牲层技术就是在微结构层中嵌入一层牺牲 材料,在后续工序中有选择地将这一层材料腐蚀掉 而不影响结构层本身。这种工艺的目的是使结构薄 膜与衬底材料分离,得到各种所需的表面微结构。 常用的衬底材料为单晶硅片,结构层材料沉积的多 晶硅、氮化硅等,牺牲层材料多为二氧化硅。
(2)加工机理存在很大的差异:微细加工中加工单位急 剧减小,必须考虑晶粒在加工中的作用;

微机械与微细加工技术

微机械与微细加工技术
の効果を実験的に調べるために、小さな旋盤を作り、性能や効果を調べました。 写真1が世界最小のマイクロ旋盤です。寸法は長さ32mm、奥行き25mm、高さ30.5mmです。重量は
100gです。主軸を回すモータの定格動力は1.5Wで、乾電池4個(直流6V)で動きます。普通の旋盤と比 較すると、大きさ約1/50、重さ約1/5000、モータの動力は1/500以下になります。
写真の一番左が刃物台で、バイト(切削工具)を固定します。主軸に材料を固定し、1分間に1万回転 の速度で回転させます。そして、X-Y送り機構で切込みを与え、材料を削ります。小型化する上で特に工 夫した点は、X-Y送り機構です。ここには圧電素子(電圧を加えると伸び縮みする性質を持ったセラミック ス)を使用しています。
1. 微系统技术的含意和特点
试作一个比较: 生物或者超大规模集成电路是由大量 微小单元构成的复杂系统,它们都具有十分复杂和高级的 功能。而与它们相比,机械给人的印象则是粗大和功能单 一。下表给出了生物、集成电路和机械系统的相互比较。 从基本单元的尺寸来看,生物以分子作为单元在nm量级、 集成电路在um量级,而机械在mm量级。
3. 微加工和微机械电子系统,江刺正喜 藤田博之 五十岚
伊势美 和杉山进,培风馆,1992年。 4.Methodology for the modeling and simulation of microsystems, by Bartlomiej F. Romanowicz, Kluwer Academic Publishers, 1998
生物、集成电路和机械的比较
功能
生物 高级
集成电路 中等
机械 低
单元数(复杂程度) 多(极其复杂) 中(复杂)
少(简单)

第36节微机械及其微细加工技术

第36节微机械及其微细加工技术
信息和通讯
➢ 光开关、波分复用器、集成化RF组件、打印喷头
娱乐消费类
➢ 游戏棒、虚拟现时眼镜、智能玩具
27
3.6 微机械及其微细加工技术
微机电技术已经受到工业发达国家的 高度重视。从微机电发展的总体水平看, 许多关键技术已经突破,正处于从实验 室研究走向实用化、产业化阶段。
• 美国国家自然科学基金、先进研究计划、 国防部等投资1.4亿美元进行微机电系统 技术的研究。
精度高,重量轻,惯性小。
2.性能稳定,可靠性高。 微机械器件体积极小,封装后几乎
可以摆脱热膨胀、噪声和挠曲等因素的 影响,具有较高的抗干扰性,可以在比 较恶劣的环境下稳定工作。
8
3.6 微机械及其微细加工技术
3.能耗低,灵敏性和工作效率高(响应时 间短) 。 完成相同的工作,微机械所消耗的 能量仅为传统机械的十几或几十分之一, 却能以数十倍以上的速度运作。微机电 系统不存在信号延迟等问题,从而更适 合高速工作。
21
3.6 微机械及其微细加工技术
2. MEMS在医疗和生物技术领域的应用 生物细胞的典型尺寸为1~10um,生
物大分子的厚度为纳米量级,长度为微 米量级。微型器件尺寸也在这范围之内, 因而适合操作生物细胞和生物大分子。 另外,临床分析化验和基因分析遗传诊 断所需要的各种微泵、微阀、微镊子、 微沟槽、微器皿和微流量计等。
29
3.6 微机械及其微细技术加工
• 我国的微系统研究起步并不晚,目前从 事微机电系统研究的单位有60多个,主 要集中在高校、中科院及信息产业部的 研究所。已积累了一些基础技术,取得 了一些传感器和微执行器的研究经验和 科研成果,多数为实验室产品,商品化 工作刚刚起步,离产业化要求相距甚远。
30

微型结构零件的精细加工技术

微型结构零件的精细加工技术

微型结构零件的精细加工技术现代科技的急速发展推动着各种工业系统的进步与创新。

其中微型结构零件的加工技术则是一个成熟而重要的技术分支。

微型结构零件的加工是一门精细化的技术,需要高度的技术水平和创新能力。

今天我们将就微型结构零件的精细加工技术进行一番探讨。

一、微型结构零件的定义及应用领域微型结构零件是指尺寸在数微米至数十毫米之间、复杂程度高、几何形状丰富的零部件,其一般集成于微机电系统(MEMS)、微流体、微电子机械系统(NEMS)、集成光学系统、集成显微镜以及太赫兹系统等多个领域。

如MEMS是将微电子技术、机械工程技术、工艺技术、半导体技术和材料科学等多学科交叉的新兴技术领域,其在生命科学、医疗器械、工业机械、机器人、汽车、航空等领域中具有广泛应用前景。

相应的,微型组件在MEMS领域中迅速发展,其制造工艺也在不断改进。

二、微型结构零件加工的困难目前,微型结构零件的科学技术水平和制造工艺还处于探索和发展阶段,面临诸多挑战。

一方面,本身加工材料和结构参数的复杂度,一方面则是微型结构零件加工项目日益繁杂,多种重要的技术手段较为复杂,操作难度大,周期长,效果不尽人意。

整个过程中普遍存在的零件加工难度主要有以下几个方面:1.微型尺寸的制造精度要求很高由于零部件形状、大小、精度和表面结构等制造要求和实际应用的限制,微型结构零部件的制造难度较高。

2.缺乏优质辅助材料微型结构零件加工过程中不仅需要使用到稳定性高的机床和辅助设备,同时还需要使用到耐磨、耐高温、高强度等优质辅助材料,这样才能够在零件加工过程中保证零整件不出现误差和失真现象。

3.精细加工工程的全面规划微型结构零件加工流程的规划需要精心设计,严格实施,必须考虑到加工以及后续的一系列工序,包括缺陷检测、界面化处理、表面修整等。

三、微型结构零件加工的技术针对微型结构零件加工难题,近年来采用的微型加工技术不断发展进步。

常见的微小切削加工工艺技术有以下几种:1.喷射加工技术喷射加工技术是以高速流体为研磨剂进行微细加工,通常是将悬浮在液体介质中的磨料、气泡、固体颗粒等喷入加工区,对微型结构零件进行精细加工。

微机械及其微细加工技术

微机械及其微细加工技术

第三节 微机械及其微细加工技术
a) LIGA 工艺得到的三个镍材料的微型齿 轮,每个齿轮高100m
b) 组装后的电磁驱动微马达的SEM 照片,由 牺牲层和LIGA技术获得,转子直径为150m, 三个齿轮的直径分别为77m,100m和150m
第三节 微机械及其微细加工技术
微机械具有以下几个基本特点:
体积小,精度高,重量轻。 性能稳定,可靠性高。 能耗低,灵敏性和工作效率高。
多功能和智能化。
适于大批量生产,制造成本低廉。
第三节 微机械及其微细加工技术
一些典型的微机械产品
研制国家及单位 主要工艺方法 美国斯坦福大学,加州弗里蒙特新传感器制造公司,日 异向刻蚀工艺及加硼控制 本横河电机公司等 法 微加速度传感器 航空航天,汽车工业 美国斯坦福大学, 制版术和 加州弗里蒙特新传感器制造公司, 刻蚀工艺, 德国卡尔斯鲁核研究中心微结构技术研究所, LIGA技术 瑞士纳沙泰尔电子和微型技术公司等 微型温度传感器 航空航天, 美国斯坦福大学, 制版术和 汽车工业 加州弗里蒙特新传感器制造公司等 刻蚀工艺 德国慕尼黑夫琅霍费固体工艺研究所等 制版术和 螺旋状振动式压力传感器和加 航空航天, 速度传感器 汽车工业 刻蚀工艺 智能传感器 微机械人 德国菲林根施韦宁根微技术研究所 制版术和 刻蚀工艺 微型冷却器 制版术和 航空航天和电子工业, 美国斯坦福大学, 用于集成电路中 加州弗里蒙特新传感器制造公司等 异向刻蚀工艺 微型干涉仪 类似于电子滤波器 美国IC传感器制造公司等 制版术和 刻蚀工艺 硅材油墨喷嘴 计算机设备 美国斯坦福大学 异向刻蚀工艺 分离同位素的微喷嘴 核工业 德国卡尔斯鲁核研究中心微结构技术研究所等 LIGA技术 微型泵 医疗器械, 日本东北大学,荷兰特温特大学,德国慕尼黑夫琅霍费 刻蚀工艺 电子线路 固体工艺研究所等 和堆装技术 微型阀 医疗器械 德国慕尼黑夫琅霍费固体工艺研究所 制版术 和刻蚀工艺 微型开关(密度12400个/cm2) 航空航天和武器工业 美国明尼苏达州大学 制版术 和异向刻蚀工艺 分离层技术, 微齿轮,微弹簧及微曲柄,叶 微执行机构,核武器安 美国加利福尼亚大学伯克利分校, 片,棘轮 全装置 圣迪亚国家实验室 制版术 和刻蚀工艺 直径的微静电电机 分离层技术 计算机和通讯系统的控 美国加利福尼亚大学伯克利分校, 制 麻省理工学院 产 品 硅压力传感器 主要应用领域 航空航天,医疗器械

微机电系统及微细加工技术

微机电系统及微细加工技术

微机电系统及微细加工技术微机电系统(Micro-Electro-Mechanical Systems,MEMS)是一种将微米尺度的机械结构、电子元器件和微处理器集成在一起的技术。

它利用微细加工技术来制造微小的机械设备和传感器,以实现对物理量、化学量和生物量的检测、测量和控制。

微机电系统的核心是微细加工技术,它是一种将传统的集成电路制造技术与微机械加工技术相结合的新技术。

通过微细加工技术,可以在硅基材料上制造出微小的机械结构和电子元器件,从而实现微机电系统的功能。

微机电系统的制造过程包括多个步骤,其中最关键的是光刻、薄膜沉积和蚀刻。

光刻是将光敏树脂涂覆在硅基材料上,并利用光刻机将图形投射到光敏树脂上,然后利用化学蚀刻将暴露在光下的部分去除,形成所需的结构。

薄膜沉积是将金属或者绝缘材料沉积在硅基材料上,用于制作电极、传感器等部件。

蚀刻是通过化学反应将硅基材料腐蚀,从而形成微小的结构。

微机电系统具有多种应用领域。

在生物医学领域,微机电系统可以用于制造微型传感器,实现对生物体内生理参数的监测。

在环境监测领域,微机电系统可以用于制造微型气体传感器,实现对空气中有害气体的检测。

在信息技术领域,微机电系统可以用于制造微型显示器和微摄像头,实现信息显示和图像采集。

此外,微机电系统还可以应用于汽车行业、航空航天领域和工业控制领域等。

微机电系统在实际应用中面临着一些挑战。

首先,微机电系统的制造过程非常复杂,需要高度精确的设备和工艺控制,制造成本较高。

其次,微机电系统的性能和可靠性受到环境和温度的影响,需要进行合理的封装和温度补偿。

最后,微机电系统的集成度和功耗也是一个挑战,需要在保证性能的同时尽量减小尺寸和功耗。

微机电系统是一种基于微细加工技术的新型集成技术,具有广泛的应用前景。

随着微细加工技术的不断发展和改进,微机电系统将在多个领域发挥重要作用,为人们的生活和工作带来更多便利和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 微机械及其微细加工技术
从基本加工类型看,微细加工可大致分四类: 分离加工——将材料的某一部分分离出去的加工方式; 接合加工——同种或不同材料的附和加工或相互结合加工; 变形加工——使材料形状发生改变的加工方式; 材料处理或改性。
第三节 微机械及其微细加工技术
不同形式的微细加工方法
第七章 先进制造技术
第七章 先进制造技术
第一节 快速成形制造技术 第二节 精密超精密加工技术 第三节 微机械及其微细加工技术
第三节 微机械及其微细加工技术
一、 简介
微机械在美国常被称作微型机电系统(Microelectromechanical System, MEMS);在日本称作微机器(Micromachine);而在欧洲 则称作微系统(Microsystem)。按外形尺寸,微机械可划分为 110mm的微小型机械,1m1mm的微机械,以及1nm1m的纳米机 械。
第三节 微机械及其微细加工技术
二、微细加工技术
微细加工(Microfabrication)起源于半导体制造工艺, 原来指加工尺度约在微米级范围的加工方式。在微机械研 究领域中,它是微米级,亚微米级乃至毫微米级微细加工 的通称。 制造微机械常采用的微细加工又可以进一步分为微米级微 细加工(Micro-fabrication),亚微米级微细加工(Submicro-fabrication)和纳米级微细加工(Nano-fabrication)等。 广义上的微细加工技术,几乎涉及了各种现代特种加工、 高能束等加工方式。
第三节 微机械及其微细加工技术
微机械具有以下几个基本特点:
体积小,精度高,重量轻。 性能稳定,可靠性高。 能耗低,灵敏性和工作效率高。
多功能和智能化。
Hale Waihona Puke 于大批量生产,制造成本低廉。第三节 微机械及其微细加工技术
一些典型的微机械产品
研制国家及单位 主要工艺方法 美国斯坦福大学,加州弗里蒙特新传感器制造公司,日 异向刻蚀工艺及加硼控制 本横河电机公司等 法 微加速度传感器 航空航天,汽车工业 美国斯坦福大学, 制版术和 加州弗里蒙特新传感器制造公司, 刻蚀工艺, 德国卡尔斯鲁核研究中心微结构技术研究所, LIGA技术 瑞士纳沙泰尔电子和微型技术公司等 微型温度传感器 航空航天, 美国斯坦福大学, 制版术和 汽车工业 加州弗里蒙特新传感器制造公司等 刻蚀工艺 德国慕尼黑夫琅霍费固体工艺研究所等 制版术和 螺旋状振动式压力传感器和加 航空航天, 速度传感器 汽车工业 刻蚀工艺 智能传感器 微机械人 德国菲林根施韦宁根微技术研究所 制版术和 刻蚀工艺 微型冷却器 制版术和 航空航天和电子工业, 美国斯坦福大学, 用于集成电路中 加州弗里蒙特新传感器制造公司等 异向刻蚀工艺 微型干涉仪 类似于电子滤波器 美国IC传感器制造公司等 制版术和 刻蚀工艺 硅材油墨喷嘴 计算机设备 美国斯坦福大学 异向刻蚀工艺 分离同位素的微喷嘴 核工业 德国卡尔斯鲁核研究中心微结构技术研究所等 LIGA技术 微型泵 医疗器械, 日本东北大学,荷兰特温特大学,德国慕尼黑夫琅霍费 刻蚀工艺 电子线路 固体工艺研究所等 和堆装技术 微型阀 医疗器械 德国慕尼黑夫琅霍费固体工艺研究所 制版术 和刻蚀工艺 微型开关(密度12400个/cm2) 航空航天和武器工业 美国明尼苏达州大学 制版术 和异向刻蚀工艺 分离层技术, 微齿轮,微弹簧及微曲柄,叶 微执行机构,核武器安 美国加利福尼亚大学伯克利分校, 片,棘轮 全装置 圣迪亚国家实验室 制版术 和刻蚀工艺 直径的微静电电机 分离层技术 计算机和通讯系统的控 美国加利福尼亚大学伯克利分校, 制 麻省理工学院 产 品 硅压力传感器 主要应用领域 航空航天,医疗器械
接 合 加 工 『结合 增长』
变 形 加 工
材料 处理 或 改性
第三节 微机械及其微细加工技术
微机械微细加工并不仅限于微电子(Microelectronics)制造技术,更重要 的是指微机械构件的加工(英文多为Micromachining)或微机械与微电 子、微光学等的集成结构的制作技术。目前,微机械微细加工常用的 有光刻制版、高能束刻蚀、LIGA、准LIGA等方法。
微细加工得到的铁塔微模型
第三节 微机械及其微细加工技术
微机械的 微细加工技术(Micromachining technology ) 有以下特点: 从加工对象上看,微细加工不但加工尺度极小,而且 被加工对象的整体尺寸也很微小; 由于微机械对象的微小性和脆弱性,仅仅依靠控制和 重复宏观的加工相对运动轨迹达到加工目的,已经很 不现实。必须针对不同对象和加工要求,具体考虑不 同的加工方法和手段; 微细加工在加工目的、加工设备、制造环境、材料选 择与处理、测量方法和仪器等方面都有其特殊要求。
加工 类型 分 离 加 工 加工机理 化学分解(热激活式)(液体、气体、固体) 电子化学分解(电解激活式)(液体、固体) 蒸发(热式)(气体、固体) 扩散分离(热式)(固体、液体、气体) 熔化分离(热式)(固体、液体、气体) 溅射(力学式)(固体) 离子化表面原子的电场发射 化学沉积及结合(固体、液体、气体) 电化学沉积及结合(固体、液体、气体) 热沉积及热结合(固体、液体、气体) 扩散结合(热式) 熔化结合(热式) 物理沉积及结合(力学式) 注入(力学式) 电子场发射 热表面流动 粘滞性流动(力学式) 摩擦流动(力学式) 塑性变形 分子定位 热激活(电子、光子、离子等) 混合沉积(电子、离子、光子束) 化学反应(电子、光子、离子等) 加能化学反应(电子、光子束、离子) 催化反应 加工方法 光刻、化学刻蚀、活性离子刻蚀、化学抛光 电解抛光、电解加工(刻蚀) 电子束加工、激光加工、热射线加工 扩散去除加工(融化) 熔化去除加工 离子溅射加工、光子直接去除加工(X射线) 用电场分离(STM加工、AFM加工) 化学镀、气相镀、氧化及氮化激活反应镀ARP 电镀、阳极氧化、电铸(电成型)、电泳成型 蒸发沉积、外延生长、分子束外延 烧结、发泡、离子渗氮 熔化镀、浸镀 溅射沉积、离子镀膜、离子束外延、离子束沉积 离子注入加工 STM加工 热流动表面加工(气体高温、高频电流、热射线、 电子束、激光) 液流(水)抛光、气体流动加工 微细粒子流抛光(研磨、压光、精研) 电磁成形、放电、悬臂弯曲、拉伸等 STM装置 淬硬、退火(金属、半导体)、上光、硬化 扩散、混合(离子) 聚合、解聚合 表面活性抛光 反应激励
相关文档
最新文档