微机械与微细加工技术

合集下载

微细加工技术概述

微细加工技术概述

1、电子束微细加工技术
电子束加工的原理
电子束加工是在真空条件下, 利用聚焦后能量密度极高(106~ 109W/cm2)的电子束,以极高的 速度冲击到工件表面极小的面 积上,在很短的时间(几分之一 微秒)内,其能量的大部分转变 为热能,使被冲击部分的工件 材料达到几千摄氏度以上的高 温,从而引起材料的局部熔化 和气化,被真空系统抽走。
微细加工的特点
微细加工作为精密加工领域中的一个极重要的关键技术, 目前有如下的几个特点: 1. 微细加工和超微细加工是多学科的制造系统工程; 2. 微细加工和超微细加工是多学科的综合高新技术; 3. 平面工艺是微细加工的工艺基础; 4. 微细加工技术和精密加工技术互补; 5. 微细加工和超微细加工与自动化技术联系紧密; 6.微细加工检测一体化。
所谓微细加工技术就是指能够制造微小尺寸零件 的加工技术的总称。 • 广义地讲,微细加工技术包含了各种传统精密加 工方法和与其原理截然不同的新方法,如微细切削 磨料加工、微细特种加工、半导体工艺等; • 狭义地讲,微细加工技术是在半导体集成电路制 造技术的基础上发展起来的,微细加工技术主要是 指半导体集成电路的微细制造技术,如气相沉积、 热氧化、光刻、离子束溅射、真空蒸镀等。
电子束切割
利用电子束在磁场中偏转的原理,使电子束在工 件内部偏转,还可以利用电子束加工弯孔和曲面。
电子束微细焊接
电子束焊接是利用电子束作为热源的一种焊接工艺,在 焊接不同的金属和高熔点金属方面显示了很大的优越性, 已成为工业生产中的重要特种工艺之一。 电子束焊接具有以下的工艺特点: (1)焊接深宽比高。 (2)焊接速度高,易于实现高速自动化。 (3)热变形小。 (4)焊缝物理性能好。 (5)工艺适应性强。 (6)焊接材料范围广。

微机电系统与微细加工技术

微机电系统与微细加工技术

广泛应用的新兴技术 。微 系统 的应用主要可 以分为 以下
四个方面 :
图 1 微型机器人
2 微细加工及其关键技术 .
通过微细加工技术加工 出的三维微 随着微机 电系统 的发 展 ,微 型制 造技 术 作 为实 现 ME S M 技术的关键 也开始引起世界发达 国家的材料科学 工作者和工业界的极大关 注。要想加工 出精密 的微机 电 器件 , 必须要具备相应微细加 工技术 。
之一 ,它 的特点是生长的外 延层能保持与衬底 相 同的晶 向 ,因而在外延层上可以进行各种横 向与纵 向的掺杂 分 布与腐蚀加工 ,以制得各种结构。
( )特种微细加工技术 6 ①微 细电火花加 工。微细
电火花加工 的原理与普通 电火 花加工并无本 质区别。实
现微细电火花加 工的关键 在于微小轴 ( 工具 电极 )的制 作 、微小能量放电电源 、 工具 电极 的微量伺 服进给 、加 工状态检测 、系统控 制及加 工工艺方法 等。应用微细 电 火 花加工技术 ,目前 已可加工 出直径 25m的微细轴 和 . 5m的 微 细 孔 ,可 制 作 出 长 05 m .m 、宽 02 m、深 .r a
级, 而且有很高的垂直度、平行度和重复精度。LG IA
技术包括 以下三个 工艺过程 : ①深层同步辐射 x射线光 刻。利用同步辐射 x射线透过掩 膜对 固定 于金属基底上 的厚度可达 05 m 的 x射 线抗蚀 剂 ( 刻胶 )进 行曝 .r a 光
光,然后将其显影制成初级模板,该模板即为掩膜覆盖
维普资讯
刻出极其微细的线条 , 而且不 产生热量 ,材料受 光束焦
啊 一
图 2 微型飞机
点作用处的周 围没有热扩散 和烧 焦现象 。这种准 分子激 光器所产生的远紫外线 ,其波长 为 13m,重复频率为 9r i 1z H 或大于 1 z H ,脉冲宽度 为 1n。一 个脉 冲即可蚀刻 2s 出几微 米的沟槽 。利用这种激光脉 冲,能够 把材料逐层 剥下来蚀刻出微细 的线条 。氟化氙准分子 激光器产 生的 近紫外线的波长为 3O m 0h ,其蚀 刻过程是 ,放在氯 气中

微机械及微细加工技术

微机械及微细加工技术
特点:加工范围广,设备成本相对较低, 生产效 率、相对精度高, 且其相关基础技术研究成熟 等。
上海海洋大学
刘璇
5.2 微细切削加工
概念:微细切削是一种三维实体加工技术,可 制作毫米级尺寸以下的微机械零件。
常用的方法主要包括微细车削、铣削、钻削、 冲压,适合所有的金属材料、塑料及工程陶瓷 等。但多是单件加工,单件装配,其批量制作 可通过模具加工、电铸、注塑等方法实现。
图5-4是采用金刚石车刀车削而成的11um轴做 电极,在厚度为20um的金箔上加工出19um微 孔的扫描电子显微镜图片。
上海海洋大学
刘璇
5.2.2 微细钻削
上海海洋大学
刘璇
5.2.3 微细铣削
微细铣削技术因具有高精度、高效率、 高柔性、能加工复杂三维形状和多种材 料的特点,已成为一个非常活跃的研究 热点。
上海海洋大学
刘璇
5.1.2 微细加工技术
微细加工大致分四类:
1.分离加工—将材料的某一部分分离出去的加 工方式,如分解、蒸发、溅射(可去除材料, 也可增加材料)、破碎等;
2.接合加工—同种或不同材料的附和加工或相 互结合加工,如蒸镀、淀积、掺入、生长、 就结等;
3.变形加工—使材料形状发生改变的加工方式 ,如塑性变形加工、流体变形加工等;
4.材料处理或改性,如一些热处理或表面改性
上海海洋大学
刘璇
等。
5.1.2 微细加工技术
微细加工技术概念:微细加工技术是指制作微 机械或微型装置的加工技术。
主要包括:微细切削加工技术、硅微细加工技 术、LIGA技术等。新的高科技微细加工方法 层出不穷,如聚焦离子束(FIB)微细加工技术、 微/纳压印加工技术等。这些技术曾经广泛应 用于大规模和超大规模集成电路的加工制作。

微细加工技术

微细加工技术

(b)
各向同性刻蚀
(a)各向同性刻蚀(搅拌);(b)各向同性刻蚀(不搅拌)
2)各向异性刻蚀
各向异性刻蚀是指某个方向上的刻蚀速率远大于另 一方向。刻蚀速度与基底材料的结晶取向密切相关;硅 材料是一种各向异性材料,在3个晶面上表现出不同的性 质。对于特定的刻蚀剂,硅的[100]晶面的腐蚀速度最快, [110]晶面次之,[111]晶面的腐蚀速度最慢。硅各向异性 刻蚀在几何形状控制上具有许多优点,可以制作出许多 具有垂直侧壁的微机械零件。
随着微/纳米科学与技术的发展,以形状尺寸微小或操 作尺度极小为特征的微机械成为人们在微观领域认识和 改造客观世界的一种高新技术。
一般认为,微机械依其特征尺寸可以划分为:小型机 械(1mm-10mm),微型机械(1um-1mm)以及纳米机 械(1nm-1um)。从广义来讲,微机械包括微小型机械 和纳米机械。
微细加工是由多项技术构成的一个技术群体,主要 包括:
(1)由IC工艺技术发展起来的硅微细加工技术;
(2)在特种加工和常规切削加工基础上发展形成的微 细制造技术;
(3)由上述两种技术集成的新方法,如LIGA、准 LIGA技术等。
微细加工与常规尺寸加工的区别:
(1)加工精度的表示方法不同:一般尺度加工,加工精 度常用相对精度表示,微细加工用绝对精度表示;
所谓牺牲层技术就是在微结构层中嵌入一层牺牲 材料,在后续工序中有选择地将这一层材料腐蚀掉 而不影响结构层本身。这种工艺的目的是使结构薄 膜与衬底材料分离,得到各种所需的表面微结构。 常用的衬底材料为单晶硅片,结构层材料沉积的多 晶硅、氮化硅等,牺牲层材料多为二氧化硅。
(2)加工机理存在很大的差异:微细加工中加工单位急 剧减小,必须考虑晶粒在加工中的作用;

微细加工工艺技术

微细加工工艺技术

微细加工工艺技术微细加工工艺技术是一种应用于微电子、光学、纳米学等领域的高精度加工技术,该技术能够实现对微细结构的精密加工。

在微细加工工艺技术中,常常采用的加工方法有激光刻蚀、化学蚀刻、光刻以及微电子束等。

激光刻蚀是一种应用激光照射,通过激光束的高能量将材料表面局部蚀刻的加工方法。

与传统的机械刻蚀相比,激光刻蚀具有高精度、高效率的优点。

在激光刻蚀中,光束的聚焦度和光斑直径是影响加工精度的重要参数。

化学蚀刻是一种利用特定的化学反应,在材料表面选择性地产生化学蚀刻产物,并将其去除的加工方法。

化学蚀刻通常需要制备特定的蚀刻溶液,通过控制溶液的浓度和温度,来影响化学反应的速率和选择性。

化学蚀刻可以实现微细结构的高精度加工,并被广泛应用于光学元件和微流控芯片等领域。

光刻是一种基于光化学反应的加工方法,通过光阻的选择性暴露和去除,来形成所需的图案结构。

在光刻过程中,首先在材料表面涂敷一层光刻胶,然后利用光刻机的紫外光照射和显影等步骤,实现图案的转移。

光刻具有高精度、高分辨率和高重复性的优点,是微细加工中不可或缺的工艺之一。

微电子束也是一种实现微细结构加工的重要方法。

微电子束利用高能电子束在材料表面定向照射,经过准直、聚焦和偏转等步骤,将电子束的能量转化为对材料的加工作用。

通过控制电子束的参数,如能量、聚焦度和扫描速度等,可以实现对微细结构的精密加工。

微电子束在高精度加工领域具有很大的应用潜力,尤其在微电子器件、光电器件以及半导体器件等方面,具有广阔的发展前景。

总的来说,微细加工工艺技术是一种实现高精度加工的重要方法,包括激光刻蚀、化学蚀刻、光刻和微电子束等。

这些加工方法在微电子、光学、纳米学等领域发挥着重要作用,推动了相关技术的进步和应用的发展。

未来随着科学技术的不断进步,微细加工工艺技术将继续发展壮大,为人类社会带来更多的科技成果和应用产品。

微机械及其制造加工技术

微机械及其制造加工技术

微机械及其制造加工技术摘要:微机械制造工艺是我国现代化工制造的重要模块。

微细切削加工技术与微机械制造技术的研发,扩大了机械化的影响范围。

基于此,具体介绍了微细车削、微细铣削、超微细切削这三项微机械细切削加工技术,并详细阐述了Vision Pro PC、印刷电路+MEMS、纳米载体这几种微机械制造工艺,分析了促进微机械和制造行业的可持续发展的方向,希望能够为微机械制造领域的发展提供参考。

关键词:微细切削;机械制造;纳米载体引言:现代机械制造工艺和精密加工技术不断发展,传统制造手段已经很难满足化工产业需求。

因此有必要探究现代化机械制设计制造工艺,创新精密加工技术,使微机械设计满足“高、精、尖”要求,降低设备制造能耗。

微细切削是一种加工精度高于其他工艺的微小零件加工技术,而微机械制造则是指用于制造微米领域中三维力学机械系统的制造工艺,两者在机械发展中都起到了重要的推动作用[1],因此,工作者应深入分析微细切削加工与微机械制造,并采取有效措施,优化两种技术工艺的应用效果,提升科技发展水平。

1.微细切削加工借助微细车削、微细铣削、超微细切削技术等满足对微小元件的加工需要,节省人力、物力、时间成本,优化微机械产品的生产效率和质量,提高化工企业产品生产力。

1.1微细车削就目前来看,微细切削加工工艺分为车削、铣削、超微细切削等多种类型,其中微细车削工艺的运行主要依赖于由光学显微装置、长约200mm微细车床、控制单元、监视器组成的车削系统。

该系统的参数为,转速3000~15000r/min、主轴功率0.5W、装夹工件直径0.3mm、径向跳动1μm、横纵方向给进分辨率4r/min。

在加工中,操作者可以利用系统中的光学显微镜,观察车削加工状态,同时使用专用的工件装卸设施,保障加工精度。

在此过程中,考虑到工件的直径通常较小,所以应以较小的幅度,来进行横纵移动车削。

此外,在细微车削系统的研发中,曾经用0.3mm的黄铜丝作为毛坯,来测试车削加工的精度,结果显示,该系统能够将黄铜丝毛坯的直径切削至10μm,还可以将其制作成一个螺距12.5μm、直径120μm的丝杠,呈现出了高精度的微米尺度零件加工效果,可以用于硬度、强度较高的材质加工,有助于微细切削工艺的发展。

第36节微机械及其微细加工技术

第36节微机械及其微细加工技术
信息和通讯
➢ 光开关、波分复用器、集成化RF组件、打印喷头
娱乐消费类
➢ 游戏棒、虚拟现时眼镜、智能玩具
27
3.6 微机械及其微细加工技术
微机电技术已经受到工业发达国家的 高度重视。从微机电发展的总体水平看, 许多关键技术已经突破,正处于从实验 室研究走向实用化、产业化阶段。
• 美国国家自然科学基金、先进研究计划、 国防部等投资1.4亿美元进行微机电系统 技术的研究。
精度高,重量轻,惯性小。
2.性能稳定,可靠性高。 微机械器件体积极小,封装后几乎
可以摆脱热膨胀、噪声和挠曲等因素的 影响,具有较高的抗干扰性,可以在比 较恶劣的环境下稳定工作。
8
3.6 微机械及其微细加工技术
3.能耗低,灵敏性和工作效率高(响应时 间短) 。 完成相同的工作,微机械所消耗的 能量仅为传统机械的十几或几十分之一, 却能以数十倍以上的速度运作。微机电 系统不存在信号延迟等问题,从而更适 合高速工作。
21
3.6 微机械及其微细加工技术
2. MEMS在医疗和生物技术领域的应用 生物细胞的典型尺寸为1~10um,生
物大分子的厚度为纳米量级,长度为微 米量级。微型器件尺寸也在这范围之内, 因而适合操作生物细胞和生物大分子。 另外,临床分析化验和基因分析遗传诊 断所需要的各种微泵、微阀、微镊子、 微沟槽、微器皿和微流量计等。
29
3.6 微机械及其微细技术加工
• 我国的微系统研究起步并不晚,目前从 事微机电系统研究的单位有60多个,主 要集中在高校、中科院及信息产业部的 研究所。已积累了一些基础技术,取得 了一些传感器和微执行器的研究经验和 科研成果,多数为实验室产品,商品化 工作刚刚起步,离产业化要求相距甚远。
30

微型结构零件的精细加工技术

微型结构零件的精细加工技术

微型结构零件的精细加工技术现代科技的急速发展推动着各种工业系统的进步与创新。

其中微型结构零件的加工技术则是一个成熟而重要的技术分支。

微型结构零件的加工是一门精细化的技术,需要高度的技术水平和创新能力。

今天我们将就微型结构零件的精细加工技术进行一番探讨。

一、微型结构零件的定义及应用领域微型结构零件是指尺寸在数微米至数十毫米之间、复杂程度高、几何形状丰富的零部件,其一般集成于微机电系统(MEMS)、微流体、微电子机械系统(NEMS)、集成光学系统、集成显微镜以及太赫兹系统等多个领域。

如MEMS是将微电子技术、机械工程技术、工艺技术、半导体技术和材料科学等多学科交叉的新兴技术领域,其在生命科学、医疗器械、工业机械、机器人、汽车、航空等领域中具有广泛应用前景。

相应的,微型组件在MEMS领域中迅速发展,其制造工艺也在不断改进。

二、微型结构零件加工的困难目前,微型结构零件的科学技术水平和制造工艺还处于探索和发展阶段,面临诸多挑战。

一方面,本身加工材料和结构参数的复杂度,一方面则是微型结构零件加工项目日益繁杂,多种重要的技术手段较为复杂,操作难度大,周期长,效果不尽人意。

整个过程中普遍存在的零件加工难度主要有以下几个方面:1.微型尺寸的制造精度要求很高由于零部件形状、大小、精度和表面结构等制造要求和实际应用的限制,微型结构零部件的制造难度较高。

2.缺乏优质辅助材料微型结构零件加工过程中不仅需要使用到稳定性高的机床和辅助设备,同时还需要使用到耐磨、耐高温、高强度等优质辅助材料,这样才能够在零件加工过程中保证零整件不出现误差和失真现象。

3.精细加工工程的全面规划微型结构零件加工流程的规划需要精心设计,严格实施,必须考虑到加工以及后续的一系列工序,包括缺陷检测、界面化处理、表面修整等。

三、微型结构零件加工的技术针对微型结构零件加工难题,近年来采用的微型加工技术不断发展进步。

常见的微小切削加工工艺技术有以下几种:1.喷射加工技术喷射加工技术是以高速流体为研磨剂进行微细加工,通常是将悬浮在液体介质中的磨料、气泡、固体颗粒等喷入加工区,对微型结构零件进行精细加工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
の効果を実験的に調べるために、小さな旋盤を作り、性能や効果を調べました。 写真1が世界最小のマイクロ旋盤です。寸法は長さ32mm、奥行き25mm、高さ30.5mmです。重量は
100gです。主軸を回すモータの定格動力は1.5Wで、乾電池4個(直流6V)で動きます。普通の旋盤と比 較すると、大きさ約1/50、重さ約1/5000、モータの動力は1/500以下になります。
写真の一番左が刃物台で、バイト(切削工具)を固定します。主軸に材料を固定し、1分間に1万回転 の速度で回転させます。そして、X-Y送り機構で切込みを与え、材料を削ります。小型化する上で特に工 夫した点は、X-Y送り機構です。ここには圧電素子(電圧を加えると伸び縮みする性質を持ったセラミック ス)を使用しています。
1. 微系统技术的含意和特点
试作一个比较: 生物或者超大规模集成电路是由大量 微小单元构成的复杂系统,它们都具有十分复杂和高级的 功能。而与它们相比,机械给人的印象则是粗大和功能单 一。下表给出了生物、集成电路和机械系统的相互比较。 从基本单元的尺寸来看,生物以分子作为单元在nm量级、 集成电路在um量级,而机械在mm量级。
3. 微加工和微机械电子系统,江刺正喜 藤田博之 五十岚
伊势美 和杉山进,培风馆,1992年。 4.Methodology for the modeling and simulation of microsystems, by Bartlomiej F. Romanowicz, Kluwer Academic Publishers, 1998
生物、集成电路和机械的比较
功能
生物 高级
集成电路 中等
机械 低
单元数(复杂程度) 多(极其复杂) 中(复杂)
少(简单)
材料 制造方法
形状 能量耗费
可靠性 其他
蛋白质
单晶硅
自组装
集成组装、(予组装) (串行加工、并行组装
立体
平面


自修复、冗长 无缺陷、容器内封装
自然物体/柔软
人造物体
(只有处理功能、设计
和检查量大)
金属等材料的组合
逐个依次组装 (平行加工、串行组装)
立体 大
低缺陷、润滑等 人造物体
机械之小、微、纳?
在微小尺寸范围,机械依其特征尺寸可以划 分 为 1-10mm 的 小 型 机 械 , 1um-1mm 的 微 型 机 械 以及1nm-1um的纳米机械。所谓微型机械从广义 上来讲包含了微小型和纳米机械。
微系统是指形体虽小,但是具有高级功能的微小机 电光集成系统。 它通常包括传感器、驱动器和必要的
电子线路等要素,以及它们的混合集成系统。微系统在 国际上尚未有一个统一的名称。在美国这方面的研究是 在半导体集成电路工艺的基础上延伸和发展开来的,故 称为MEMS,这也是目前广泛使用的名称。在欧洲称为 Microsystem Technology 即“微系统技术”,这一称谓 更加强调系统的观点,即如何将多个微型化的传感器、 执行器和处理电路集成为一个智能化的有机整体。在精 密机械加工方面有传统优势的日本称为Micromachine, 即“微型机械系统”或者“微型机械”。
Systems (MEMS Workshop) 9. Digest of Technical Papers in International Conference on Solid State Sensors and Actuators (TRANSDUCERS) 10. Proceedings of the International Workshop on Microfactories 11. Proceedings of International Microprocesses and Nanotechnology Conference 12 传感技术学报 (教育部) 13 微纳电子技术 (信息产业部电子13所主办) 14 压电与声光 (信息产业部电子26所主办) 15 微细加工技术(48研究所) 16 光学精密工程 (精密机械学会) 17 纳米技术与精密工程(天津大学)
5.微机械与微细加工技术,苑伟政 马柄和,西北工业大
学出版社,2000年
有关的参考论文源:
1.Journal of Microelectromechanical Systems; 2. Sensors and Actuators 3. Journal of Micromechanics and Micrengineering 4. Applied Physics Letter 5. Journal of Vacuum Science and Technology B 6. Japanese Journal of Applied Physics 7. Review of Scientific Intruments 8. Proceedings of IEEE Annual International workshop on Micro Electro Mechanical
ቤተ መጻሕፍቲ ባይዱ
能量供给
信号传输 和处理单元
传感器
致动器
微系统
能量供给
输入信号
微传感元件 传输单元
输出信号
MEMS微传感器
2. 典型MEMS和微系统产品
微传感器: 微加速度传感器、微压力传感器等 (所占市场份额最大)
微齿轮 微马达 微光学器件 微制造系统
看动画
返回
図2 世界最小のマイクロ旋盤
【マイクロ旋盤】 旋盤は材料を回転させて様々な形状を削り出す生産機械です。マイクロファクトリ実現の可能性やそ
主要参考书:
1.Fundamentals of Microfabrication, by M. Madou, CRC Press, 1997. 2.Micromachined Transducers Sourcebook, by Gregory T. A. Kovacs, McGraw-Hill Press, 1998.
「微型加工系统」 制造微小部件所需要消耗的能量应该比制造大部件少才对。但是在现在的工
厂里,即使是制造用镊子才能拿起来的微小部件也要用像人一样大的机器。由于 这个原因,不仅加工系统本身搬运和安装需要很多能量,工厂整体消耗的动力也 和制造大部件一样多。
相关文档
最新文档