方法专题-整式的化简求值技巧
化简求值的方法

化简求值的方法化简求值是数学中常用的一种方法,可以将复杂的表达式或方程简化为更简单的形式,并求得其数值。
这种方法在数学计算、物理问题求解和工程应用中都有广泛的应用。
化简求值的方法有很多种,下面我将介绍几种常见的方法。
一、代入法代入法是一种常用的化简求值方法,它的基本思想是将变量用具体的数值代入表达式或方程中,然后进行计算得到结果。
通过代入不同的数值,我们可以得到不同的结果,从而对原表达式或方程进行评估。
例如,我们要求表达式f(x) = 3x^2 - 2x + 1在x = 2处的值,可以将x代入表达式中计算得到f(2) = 3(2)^2 - 2(2) + 1 = 11。
通过代入不同的数值,我们可以得到不同的f(x)值,从而对其进行评估。
二、分解法分解法是将复杂的表达式或方程分解为更简单的形式,然后进行求值的方法。
通过将表达式或方程分解为若干个部分,可以更容易地对其进行计算,并得到最终结果。
例如,我们要求表达式g(x) = x^3 + 2x^2 - x - 2的值,可以将其分解为g(x) = x(x^2 + 2x - 1) - 2,然后分别计算x、x^2和x^3的值,再进行加减运算得到最终结果。
三、化简公式法化简公式法是利用数学中的一些常见公式或性质对表达式或方程进行化简的方法。
通过运用公式或性质,可以将复杂的表达式或方程简化为更简单的形式,并得到其数值。
例如,我们要求表达式h(x) = sin^2(x) + cos^2(x)的值,可以利用三角函数的平方和公式sin^2(x) + cos^2(x) = 1,将表达式化简为h(x) = 1,从而得到其值为1。
四、化简推导法化简推导法是通过逐步推导和变换,将复杂的表达式或方程化简为更简单的形式,并最终求得其数值的方法。
通过逐步的代数变换和运算,可以将原表达式或方程化为更简单的形式,然后进行计算得到结果。
例如,我们要求方程2x + 3 = 7的解,可以通过逐步变换将其化简为x = 2,从而得到方程的解为x = 2。
【中考抢分通关秘籍】通关秘籍03 整式和分式化简求值(解析版)

通关秘籍03 整式和分式化简求值目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)化简求值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。
2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!易错点一 整式化简中整体代入求值【例1】(23-24八年级上·四川巴中·期末)先化简,再求值:()()()22262a a b a b a b b b -++-+-÷⎡⎤⎣⎦,其中210a b -+=.【答案】23b a --,2-. 【分析】本题考查了整式的运算,先进行括号内的单项式乘以多项式,平方差公式和合并同类项运算,再多项式除以单项式运算即可,把210a b -+=变形为21b a -=,然后利用整体代入求值即可,熟练掌握运算法则及整体代入是解题的关键. 【详解】解:原式()2222462a ab b a b b =-+--÷,()24262b ab b b =--÷,23b a =--,∵210a b -+=, ∴21b a -=,【例2】(2024·江苏盐城·模拟预测)已知2230x x --=,求代数式()()()2(1)433x x x x x -+-+-+的值.【答案】1 【分析】本题主要考查了整式的混合运算、代数式求值等知识点,根据整式的运算法则进行化简是解此题的关键. 由2230x x --=可得223x x -=,然后再运用整式的混合运算法则化简原式,然后将223x x -=整体代入计算即可. 【详解】解:∵2230x x --=, ∴223x x -=,∴()()()2(1)433x x x x x -+-+-+2222149x x x x x =-++-+- 2368x x =--()2328x x =-- 338=⨯-1=.【例3】(2024·浙江宁波·模拟预测)(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭;(2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 【答案】(1)3;(2)13. 【分析】本题考查了实数的运算,整式的混合运算.(1)根据负整指数幂的性质,化简绝对值,特殊角的锐角三角函数值计算即可; (2)由已知求得241x x -=,再对所求式子利用乘法公式化简,再整体代入求解即可.【详解】解:(1)212tan 6012-⎛⎫︒+ ⎪⎝⎭14=3=;(2)∵2410x x --=,利用整式的运算法则,乘法公式进行化简,再整体代入求值.∴241x x -=,∴()()()22311x x x --+-2241129x x x -+=-+ 201231x x -+=()20431x x -+=3110=⨯+ 13=.易错点二 分式化简后取值要使分式有意义【例1】(2024·陕西榆林·一模)先化简:21221121x x x x x ++⎛⎫-÷ ⎪--+⎝⎭,再在1-,1,2中选择一个合适的数代入求值.【详解】解:21121x x x -÷ ⎪--+⎝⎭ ()()22111111x x x x x x +-+⎛⎫=-÷ ⎪--⎝⎭- ()()212121x x x x --=⋅-+ 21x x x -=+,【例2】(2024·浙江宁波·模拟预测)先化简,再求值:211121m m m m ⎛⎫-÷ ⎪+++⎝⎭,并从1-,0,1选一个合适的数代再求值. 【例3】(2024·湖北黄冈·模拟预测)先化简,再求值:()()21111aa a ⎡⎤+÷⎢⎥--⎢⎥⎣⎦,化简后从23a -<<的范围内选一个你喜欢的数作为a 的值代入求值.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,选择自己喜欢的数代入求值事,一定要注意使分式有意义.题型一 整式的运算【例1】(2024·江苏宿迁·一模)计算:()1012024tan 302π-⎛⎫+-︒ ⎪⎝⎭.【例2】(2024·广东深圳·()101220246cos304π-⎛⎫--+--︒ ⎪⎝⎭.负指数幂,零次幂,立方根,特殊角的三角函数值,再算乘法,最后算加减即可求解.1.(2024·四川内江·一模)计算:2202501(1)3tan 30(2024)2022|2π-⎛⎫-++︒--+ ⎪⎝⎭. 【答案】2024 【分析】本题考查了特殊角三角函数值的混合运算,根据负整数指数幂,零指数幂,特殊角的三角函数值进行计算即可求解.【详解】解:2202501(1)3tan 30(2024)20222π-⎛⎫-++︒-- ⎪⎝⎭14312022=-+++2024=.2.(2024·甘肃白银·一模)计算:()21sin 45202412-︒---⎛⎫ ⎪⎝⎭-.【详解】解:()01sin 45202412⎛⎫︒---- ⎪⎝⎭)114-+6=【点睛】本题主要考查特殊角的三角函数值,零次幂,绝对值,负整数次幂运算,掌握相关运算法则是解题的关键.题型二 整式化简后直接代入求值【例1】(2024·广西·一模)先化简,再求值:()()()23332x x x x x +-+-÷,其中4x =.【答案】29x -,1-【分析】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.根据平方差公式及多项式除以单项式法则分别计算乘除,再相加即可.【详解】解:()()()23332x x x x x +-+-÷()2292x x x =-+-29x =-,【例2】(2024·广西南宁·一模)先化简,再求值:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦,其中1x=,1y=-.【答案】21x y,+-【分析】本题考查整式的混合运算及因式分解的应用,熟知乘法公式、整式的四则运算法则和因式分解的方法是正确解决本题的关键.按整式运算法则或先运用因式分解化简再代入计算即可.【详解】解:化简方法一:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦()()2224x y x y x y y⎡⎤=++-+÷⎣⎦()244x y y y⎡⎤=+⨯÷⎣⎦2x y=+化简方法二:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦()()22224444x xy y x y y⎡⎤=++--÷⎣⎦()222244+44x xy y x y y=++-÷()24+84xy y y=÷244+84xy y y y=÷÷2x y=+当1x=,1y=-时,原式()1211=+⨯-=-.1.(2024·湖南长沙·一模)先化简,再求值:()()()()222a b a b a b a a b-++---,其中20241a b==-,.【答案】2ab,4048-【分析】整式的混合运算,正确掌握相关运算法则是解题关键.根据平方差公式及多项式除以单项式法则分别计算乘除,再相加求解.本题主要考查了整式的化简求值,先根据完全平方公式,平方差公式和单项式乘以多项式的计算法则去括号,然后合并同类项即可.【详解】解:()()()()222a b a b a b a a b -++---22222224a ab b a b a ab =-++--+2ab =,当20241a b ==,时,原式()2202414088=⨯⨯-=-.2.(2024·湖南娄底·一模)先化简,再求值:()()()()22224x y x y x y x x y -+-+--,其中=1x -,2y =. 【答案】2243x y +,16【分析】此题主要考查整式的化简求值,解题的关键是熟知整式的混合运算法则.先根据完全平方公式、平方差公式将多项式展开,再去括号、合并同类项,最后代入值计算即可. 【详解】解:()()()()22224x y x y x y x x y -+-+-- 原式222224444x xy y x y x xy =-++--+ 2243x y =+当=1x -,2y =时, 原式()224132=⨯-+⨯412=+16=题型三 分式中化简后直接代入求值【例1】(2024·广东湛江·一模)先化简,再求值:22692333x x x x x x x ⎛⎫-+++÷- ⎪-+⎝⎭,其中3x =.【例2】(2024·安徽合肥·一模)先化简,再求值: 22111x x x x x +-⎛⎫-÷ ⎪+⎝⎭,其中2x =-.1.(2024·湖北孝感·一模)先化简,再求值:526222m m m m -⎛⎫+-÷⎪--⎝⎭,其中3m =-+ 【详解】解:222m m m ⎛⎫+-÷⎪--⎝⎭ ()()2252226m m m m m +---=⋅--利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再把x 值代入求值.()292223m m m m --=⋅-- ()()()332223m m m m m +--=⋅--32m +=,当3m =-+=2.(2024·江苏淮安·模拟预测)先化简,再求值:22469111x x x x -+⎛⎫-÷⎪+-⎝⎭,其中3x =+【详解】解:2469111x x x x -+⎛⎫-÷⎪+-⎝⎭()()()23141111x x x x x x -+⎛⎫=-÷ ⎪+++-⎝⎭ ()()()211313x x x x x +--=⋅+- 13x x -=-,当3x =原式=1.题型四 分式中化简后整体代入求值【例1】(2024·江苏宿迁·一模)先化简,再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足210x y +-=. 【答案】()22x y +,2【例2】(2024·广东东莞·一模)先化简,再求值:232()121x x x x x x --÷+++,其中x 满足220180x x +-=.1.(2024·浙江宁波·一模)(1()045tan 602cos30tan303π︒+︒-︒︒+- (2)已知11a a -=,求()2225161122444a a a a a a a a -⎡⎤---÷-⎢⎥--++⎣⎦的值.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,整体代入求值.【分析】(1)直接把各特殊角的三角函数值代入进行计算即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再对已知整理成21a a=+,然后整体代入计算即可求出值.【详解】2332321223313313=+-⨯+131113=+;(2)()252a aaa⎡--⎢-⎣a题型五分式中化简与三角函数值求值【例1】(新考法,拓视野)(2024·辽宁盘锦·模拟预测)先化简,再求值:22931693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中112cos603x -⎛⎫=+︒ ⎪⎝⎭.【详解】解:2931693x x x x -⎛⎫÷- ⎪+++⎝⎭()()()2333333x x x x x +-+-=÷++ ()()()23333x x x x x +-=÷++ ()()()23333x x x x x +-+=⋅+ 3x x-=, 当1412cos6132023x -⎝︒=+=⨯⎫+ ⎪⎭=⎛时,原式43144-==.【例2】(2024·新疆伊犁·一模)先化简,再求值:2211211m m m m ⎛⎫÷+ ⎪-+-⎝⎭,其中3tan301m =︒+.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再根据负指数幂,零次幂,立方根,特殊角的三角函数值,代入求值.【详解】解:2211211m m m m ⎛⎫÷+ ⎪-+-⎝⎭()2211111m m m m m -⎛⎫÷+ ⎪--⎝⎭-=()2211m mm m =÷-- ()2211m m mm -⋅-=1mm =-,3tan 301311m =︒+==,把1m =代入得:原式1===1.(2024·黑龙江哈尔滨·一模)先化简,再求代数式24211339a a a a -+⎛⎫-÷⎪++⎝⎭的值,其中2cos301a =︒+.题型六 分式中化简与不等式(方程)组求值【例1】(新考法,拓视野)(2024·四川达州·模拟预测)先化简,再求值:222221211a a a a a a a +++⎛⎫-÷ ⎪-+⎝⎭,从不等式组31511325134x x x x -+⎧-≤⎪⎨⎪-+⎩<的整数解中选择一个适当的数作为a 的值代入求值.【例2】(2024·四川达州·一模)先化简,再求值:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a ,其中a ,b 满足()230a b +-=,利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再求出新的数值,代入求值.【详解】解:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a()()()222a b a b b a a ab a b a b ⎛⎫+-=÷- ⎪ ⎪---⎝⎭ 22b a ba a ab a b a b +⎛⎫=÷- ⎪---⎝⎭22b a b aa ab a b +-=÷-- ()2b b a a b a b =÷-- ()2b a b a a b b -=⨯- b a=, ()230a b +-=,∴22030a b a b -+=⎧⎨+-=⎩, 解得:1383a b ⎧=⎪⎪⎨⎪=⎪⎩,∴2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a 81833b a ==÷=.1.先化简,再求值:28213331a a a a a a a ++⎛⎫+-÷- ⎪+++⎝⎭,其中a 为不等式组121224a a -≤-⎧⎪⎨-≤-⎪⎩的整数解.题型七 分式中化简过程正误的问题【例1】(新考法,拓视野)(2024·浙江宁波·一模)先化简,再求值:21424a a ++-,其中2a =.小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程. 原式=()()222114424a a a a ⋅-+⋅-+-……① 24a =-+……② 2a =+……③当2a =时,原式【答案】小明的解答中步骤①开始出现错误,正确解答见解析 【分析】此题考查了分式的化简求值,先利用分式的加法法则计算,得到化简结果,再把字母的值代入计算即可. 【详解】【例2】(2024·山西临汾·一模)(1)计算:()21183522-⎛⎫-⨯---+⨯ ⎪⎝⎭;(2)下面是小明同学化简分式2239211933a a a a a a a ⎛⎫-++-÷⎪-++⎝⎭的过程,请认真阅读.完成下列任务: 解:原式()()()332113333a a a a a a a a ⎡⎤-++=-÷⎢⎥+-++⎣⎦……第一步利用分式运算法则进行化简,注意分式最后要约分得到最简结果.3211333aa a a a a ++⎛⎫=-÷⎪+++⎝⎭……第二步 1331a a a a ++=⋅++……第三步 1=.……第四步任务:①第一步变形用的数学方法是______; ②第二步运算的依据是______;③第______步开始出错,错误的原因是:______; ④化简该分式的正确结果是______.1=;(2)任务:①第一步变形用的数学方法是因式分解; ②第二步运算的依据是分式的基本性质;③第三步开始出错,错误的原因是去括号时,第二项没有改变符号;1.(2024·山西晋城·一模)(1)计算:12111122225-⎛⎫⎛⎫+⨯--÷ ⎪ ⎪⎝⎭⎝⎭(2)下面是小宇同学进行分式化简的过程,请认真阅读并完成相应任务.224216926a a a a a -+÷-+++()()()222231(3)2a a a a a -++=⋅-++……第一步()2213a a -=-+……第二步 ()22333a a a a -+=-++……第三步 ()()223a a =--+……第四步7a =-……第五步任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是____________. ②第______步开始出现错误.任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请根据平时学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【详解】解:(1)原式212254=+⨯-⨯2310=+- =5-(2)任务一:①三,分式的基本性质(或分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变); ②四()()()()22223123a a a a a -++=⋅-++ ()2213a a -=-+ ()22333a a a a -+=-++ ()2233a a a ---=+ 73a a -=+ 则正确结果为73a a -+; 任务三:最后结果化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;有去括号时注意符号的变化混淆.。
第二章整式的化简求值及整式中的整体思想(教案)

-举例:化简整式(2x^2 + 3x - 1)(x^2 - 2x + 1)。
在教学中,教师应针对这些难点和重点,采用适当的例题、图表、动画等教学辅助手段,帮助学生直观理解并逐步突破难点,确保学生对核心知识点的理解透彻。同时,通过反复练习和变式训练,巩固学生对重点内容的掌握。
第二章整式的化简求值及整式中的整体思想(教案)
一、教学内容
第二章整式的化简求值及整式中的整体思想:
1.章节内容:本章节主要围绕整式的化简求值和整体思想进行讲解。
a.整式的化简:包括合并同类项、去括号、整式的乘法与除法。
b.整式的求值:运用代入法、整体代入法求解整式的值。
c.整式中的整体思想:通过具体实例,引导学生理解整体思想在整式化简和求值中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的化简求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式化简求值及整体思想的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式的化简求值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。
2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。
2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。
七年级苏教版数学复习要点考点专题二:整式化简求值及应用(教师用,附答案分析)

七年级苏教版数学复习要点考点专题二:整式化简求值及应用知识点一 整式化简求值1.求代数式的值的一般方法(1)直接代入法:直接将字母的值代入代数式进行计算.(2)间接代入法:先计算出对应的字母的值,再把求得的值代入代数式进行计算.(3)整体代入法:先求出含一个字母或多个字母的整体值,然后将代数式变形为含有此整体的代数式并进行计算.注意:化简求值的扩充方法 ①设k 法遇到连等式、连续比例式的题,解决这类题型的最佳方法是设k 法. ②赋值法在解题过程中,对于难以化简求值问题,我们也可以通过给未知数赋一些特殊值来解决问题. 例1(玄武区期中)已知223A x mx x =+-,21B x mx =-++,其中m 为常数,若2A B +的值与x 的取值无关,则m 的值为( ) A .0B .5C .15D .15-【解答】解:已知223A x mx x =+-,21B x mx =-++,222232(1)A B x mx x x mx +=+-+-++, 2223222x mx x x mx =+--++,52mx x =-+因为2A B +的值与x 的取值无关,所以510m -=解得15m =.故选:C . 例2(溧水区期中)已知代数式2x y +的值是2,则代数式124x y --的值是( ) A .1- B .3- C .5- D .8-【解答】解:根据题意得:22x y +=, 方程两边同时乘以2-得:244x y --=-,方程两边同时加上1得:124143x y --=-=-,故选:B .知识点二 整式运算应用一、常见找规律基本类型 1.等差型规律相邻两项之差(后减前)等于定值的数列.例如:4,10,16,22,28…,增幅是6,第一位数是4,所以,第n 位数为:()41662n n +-⨯=-. 2.等比型规律相邻两项之比(后比前)等于定值的数列.例如:3,6,12,24,48…,比值是2,第一位数是3,所以,第n 位数为:132n -⨯. 3.符号型规律符号型数列的特点是,正数与负数交替出现;解决方法:先不考虑符号,找到数列的规律,并用含n 的式子表示,然后再乘以()1n-或()11n +-.补充:①平方型规律;②求和型规律;③周期型规律二、定义新运算:是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算. 在定义新运算中的※,,∆……与+、-、⨯、÷是有严格区别的.解答定义新运算问题,必须先理解新定义的含义,遵循新定义的关系式把问题转化为一般的 +、-、⨯、÷运算问题.注意:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.三、程序框图运算:程序框图运算是定义新运算中的一种特殊类型,解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 注意:程序框图中的运算是由前到后....依次进行的,不存在先乘除后加减的问题.例1(建邺区期中)一组有规律排列的数:1、3、7、______、31⋯⋯,在下列四个数中,填在横线上最合理的是( )A .9B .11C .13D .15 【解答】解:3121=⨯+,7321=⨯+,15721=⨯+,311521=⨯+, ∴后一个数是它前一个数的2倍加上1,故选:D . 例2(鼓楼区期末)小红在计算2320201111()()()4444+++⋯+时,拿出1张等边三角形纸片按如图所示方式进行操作.①如图1,把1个等边三角形等分成4个完全相同的等边三角形,完成第1次操作;②如图2,再把①中最上面的三角形等分成4个完全相同的等边三角形,完成第2次操作;③如图3,再把②中最上面的三角形等分成4个完全相同的等边三角形,⋯依次重复上述操作.可得2320201111()()()4444+++⋯+的值最接近的数是( )A .13B .12C .23D .1【解答】解:设2320201111()()()4444S =+++⋯+,则232019111141()()()4444S =++++⋯+, 2020141()4S S -=-,2020131()4S =-,202011()1433S -=≈,故选:A . 例3(建邺区期中)有一列数1a ,2a ,3a ,4a ,5a ,n a ⋯,从第二个数开始,等于1与它前面的那个数的差的倒数,若13a =,则2019a 为( )A.2019B.23C.12-D.3【解答】解:依题意得:13a=,211132a==--,3121312a==+,413213a==-;∴周期为3;20193673÷=所以2019323a a==.故选:B.例4(溧水区期中)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果40a m=,20b m=,求整个长方形运动场的面积.【解答】解:(1)2[()()]2()4()a b a b a b a b a m++-=++-=(2)2[()()]2()8()a ab a a b a a b a a b a m++++-=++++-=(3)解:(22)(22)4()()S a b a b a b a b=-⨯+=+-m,当40a=,20b=时原式4(4020)(4020)4800=+-=m,答:整个长方形运动场的面积为4800 m.【提优训练】一、单选题(共6小题)1.(苍溪县期末)已知一个多项式与239x x+的和等于2341x x+-,则此多项式是() A.2651x x---B.51x--C.2651x x-++D.51x-+【解答】解:由题意得:22341(39)x x x x+--+,2234139x x x x=+---,51x=--.故选:B.2.(常熟市期中)已知代数式2245x x-+的值为9,则272x x-+的值为()A.5B.6C.7D.8【解答】解:根据题意得:22459x x-+=,方程两边同时减去5得:2244x x-=,方程两边同时乘以12-得:222x x-+=-,方程两边同时加上7得:272725x x-+=-=,故选:A.3.(江阴市期中)已知2a b-=,2d b-=-,则2()a d-的值为()A.2B.4C.9D.16【解答】解:2a b-=,2d b-=-,()()4a b d b∴---=,则4a b d b--+=,4a d-=,2()16a d∴-=.故选:D.4.(姑苏区期末)如果a 和14b -互为相反数,那么多项式2(210)7(23)b a a b -++--的值是( ) A .4- B .2- C .2 D .4【解答】解:由题意可知:140a b +-=,41a b ∴-=-,∴原式242071421b a a b =-++-- 3121a b =--3(4)1a b =--31=--4=-,故选:A .5.(路北区三模)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6()m n -B .3()m n +C .4nD .4m 【解答】解:设小矩形的长为a ,宽为()b a b >,则3a b n +=,阴影部分的周长为22()2(3)222264224n m a m b n m a m b m n n m +-+-=+-+-=+-=,故选:D . 6.(宿豫区期中)下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,⋯则第70个图形中〇的个数为( )A .280B .349C .2485D .2695【解答】解:第①个图形中基本图形的个数1(11)4312⨯+=⨯+, 第②个图形中基本图形的个数2(21)8322⨯+=⨯+, 第③个图形中基本图形的个数3(31)11332⨯+=⨯+, ⋯∴第n 个图形中基本图形的个数为(1)32n n n ++当70n =时,707137026952⨯⨯+=,故选:D .二、填空题(共5小题)7.(海州区期中)如果23x x -的值是1-,则代数式2396x x -+-的值是 . 【解答】解:根据题意得:231x x -=-, 方程两边同时乘以3-得:393x x -+=,方程两边同时减去6得:396363x x -+-=-=-,故答案为:3-. 8.(邗江区一模)若1m n -=-,则2()22m n m n --+= .【解答】解:1m n -=-,2()22m n m n ∴--+2()2()m n m n =---2(1)2(1)=--⨯-12=+3=.9.(无锡期末)若代数式22x x -的值为5,则代数式2363x x --的值为 . 【解答】解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1210.(凤山县期末)如图所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,⋯,则第2019次输出的结果为 .【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1⋯,发现从8开始循环.则201942015-=,201545033÷=⋯,故第2019次输出的结果是2.故答案为:2 11.(秦淮区期中)如图所示的数表是由从1开始的连续自然数组成的.观察数表特征,第n 行最中间的数可以表示为 .(用含n 的代数式表示)【解答】解:由图中的数字可知,第n 行第一个数字是2(1)1n -+,最后一个数字是2n ,则第n 行最中间的数可以表示为:222(1)112n n n n -++=-+,故答案为:21n n -+.三、解答题(共2小题)12.(海州区期中)化简或求值 (1)化简:3(2)2(3)a b a b --+(2)先化简,再求值:22225(3)4(3)a b ab ab a b --+;其中1a =,12b =-.【解答】解:(1)原式(63)(26)632649a b a b a b a b a b =--+=---=-;(2)原式22222215541239a b ab ab a b a b ab =---=-,当1a =,12b =-时,原式3915244=--=-.13.(玄武区期中)如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题: (1)用含a 、b 的代数式表示小江家的住房总面积S ;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a 、b 的代数式表示铺设地砖的总费用W ; (3)在(2)的条件下,当6a =,4b =时,求W 的值.【解答】解:(1)小江家的住房总面积:83S a b =-;(2)3(8)508(3)40W b a =-⨯+-⨯1200150320960b a =-+-320150240a b =-+; (3)当6a =,4b =时32061504240W =⨯-⨯+1920600240=-+1560=.。
整式加减的化简求值

− [5x − x
− (2x
− x)]
,其中x =
1 2
.
【注意】化简时,一定要注意去括号和合并同类项的正确.
3
.整体代入求值
在单个字母取值不确定的情况下,某些代数式的求值要借助于“整体代入法”,即把某个代数式看作一个整体. 用“整体代入法”求值的关键是确定“整体”. (1)观察法 通过观察就可确定代换的“整体”,这类题目较简单. 若a + b = 2005 ,c + d = −5 ,则代数式a + c + b + d = . (2)拼凑法 需将要求式进行转化,“凑”出与已知式相同的式子再代入求值,这种构造“整体”的技巧,平时要注意总结. ,代数式(a − 2c) − (2d − b) =
2
+ 32b
2
− c
2
+ 3
的值.
2 2
+ ab + 3b
的值.
③代数式中省去的“× ”号或“⋅ ”号,代人具体数后应恢复原来的“× ”号,遇到字母取值是分数或者负数时,应 根据实际情况添上括号. ④代入时一定要书写规范,如当a = −3 时,a 反映出代数式所隐含的运算顺序.
2 2
爱
改变.
智
康
②代人时,除按已知给定的数值,将相应的字母换成相应的数字外,其他的运算符号,运算顺序,原来的数值都不
爱
例如:通过m
= m
⋅ m
智
3
2
将三次降为有些题目中会出现高次的整式,这样的式子我们一般很难直接进行求值.常用方法为降次.
4
18
/0
6/
12
6
.逐步降次代入求值
七年级数学上册 专题复习讲义 第五讲 整式的化简求值(无答案)(新版)新人教版

第五讲整式的化简求值一、知识精讲1.单项式、多项式数或字母的积组成的代数式,叫作单项式.单独的一个数或字母也叫作单项式.由若干个单项式的和组成的式子叫做多项式.2.整式单项式和多项式统称为整式.3.同类项多项式中,所含字母相同,并且相同字母的指数也分别相等项叫做同类项.4.整式加减的一般步骤(1)根据去括号法则去括号;(2)合并同类项,并将结果按某一字母的降幂或升幂排列.5.整式求值的一般方法(1)先化简后求值;(2)整体代入法;(3)特殊值法.二、典例解析【例 1】同时都含有a,b,c且系数为1 的7 次单项式有()个 A.4B.12C.15D.25【练1】同时含有字母a,b,c,且系数为-1 的5 次单项式共有个.【例2】已知多项式56x2 y m+ 2 +xy2 -12x3 + 6是六项四项式,单项式23x3n y5-m z的次数与个多项式的次数相同,求n的值.【练2】已知多项式15-x2 y m+1 +12xy2 -4x3 + 6是6 次4 项式,单项式4.5x2n y5-m 的次数与这个多项式的次数相同,求m2 +n2 的值.【例3】已知a +b =7,ab =10 ,求代数式(5ab+ 4a + 7b + 6a -3ab)-(4ab-3b)的值.【练 3】已知 xy=2,x+y=3, 求(3xy+10y)+[5x-(2xy+2y-3x)]的值.【例 4】已知 A=2x 2-3,B=-3x+1,C=5x2-x,且 2B+C=A-D,求 D.【练 4】已知A=a 2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,求 C.【练 5】一位同学做一道题:“已知两个多项式 A、B,计算 2A+B”,他误将“2A+B”看成“A+2B”,求得的结果为 6x 2-2x+5.已知 B=x2+3x-2,求正确答案.【例 5】已知关于x,y的式子(2m 2+mx-y+3)-(3x-2y+1-nx2)的值与字母 x的取值无关,求式子(m+2n)-(2m-n)的值.【练 6】若多项式2mx 2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2 - [2m2 - (5m - 4) +m]值.【练 7】若多项式 2x 3-8x2+x-1 与多项式 3x3+2mx2-5x+3 的和不含二次项,则 m 等于()A.2B.-2C.4D.-4【练 8】已知 A =2x 2 +4xy -2x - 3, B =-x 2 +xy + 2 ,且3A+6B的值与x无关,你能求出字母 y的值吗?【例6】(1)代数式3x2 -4x + 6 的值为9,则x243-x +6的值为.(2)已知a2 +a -1= 0 ,则a3 +2a2 + 2007 的值为.(3)已知m 2+2mn=13,3mn+2n2=21,则2m2+13mn+6n2-44= .【练 9】如果代数式-2a+3b+8 的值为 18,那么代数式 9b-6a+2 的值等于()A.28B.-28C.32D.-32【练 10】已知已知2a²-3ab=2,4ab+b²=9,则 8a²+3b²= .【练 11】如果 x 2+2x=3, 那么 x4+7x3+8x2-13x+15= .【例 7】已知关于x的二次多项a(x 3-x2+3x)+b(2x2+x)+x3-5,当x=2 时的值为-17,求当 x=-2 时,该多项式的值.【练12】已知x =-4, y =13-,多项式ax3 +12by +5的值为2013,求当x =-2,y =13时,3ax-24by3+5024 的值.【练 13】y = ax 7 + bx 5 + cx 3 + dx + e y ,其中 a 、b 、c 、d 、e 为常数,当 x =2 时, y=23,当 x=-2 时,y =-35,那么 e 的值是( )A.-6B.6C.-12D.12【例 8】若 (2 x + 1)5= a 5 x 5 + a 4 x 4+ a 3 x 3+ a 2 x 2+ a 1 x + a 0 , 试求:① a 0 的值;② a 5 + a 4 + a 3 + a 2 + a 1 + a 0 的值;③ a 5 - a 4 + a 3 - a 2 + a 1 - a 0 的值;④ a 4 + a 2的值.【练 14】 若 (x 2 - x + 1)5 = a 10 x 10 + a 9 x 9+...+ a 3 x 3+ a 2 x 2+ a 1 x + a 0 , 试求:① a 10 + a 9 + ⋅ ⋅ ⋅ + a 3 + a 2 + a 1 + a 0 的值;② a 9 + a 7 + a 5 + a 3 + a 1 的值。
化简求值的解题方法

化简求值的解题方法
在数学中,化简求值是一种常见的解题方法。
它既可以被用来简化复杂的数学式子,也可以被用来求解数学问题中的答案。
化简求值的方法有很多种,其中一些比较常见的方法包括因式分解、合并同类项、消元等。
因式分解是化简求值的一种基本方法。
它的主要思想是把一个式子分解成一些因式的乘积,其中每个因式都是原式的因数。
这样可以使得原式更易于计算和理解。
例如,对于一个式子3x+6x,我们可以进行因式分解,得到3x(x+2)。
这样就可以更轻松地计算出式子的值。
合并同类项也是化简求值的一种基本方法。
它的主要思想是把一个式子中相同的项合并在一起,从而简化式子并减少计算量。
例如,对于一个式子2x+3x+5y,我们可以合并同类项x,得到5x+5y。
这样就可以更轻松地计算出式子的值。
消元是化简求值的一种重要方法。
它的主要思想是通过代数运算来消除一个式子中的某些变量,从而得到一个更简单的式子。
例如,对于一个方程2x+3y=8,我们可以通过消元来得到y的值。
首先将方程变形为y=(8-2x)/3,这样就可以用x的值来求出y的值。
在化简求值的过程中,我们还可以使用一些其他的方法,比如分离变
量、配方法等。
这些方法都可以帮助我们更轻松地解决数学问题,从而提高我们的数学能力。