专题2整式化简求值的方法

合集下载

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

第二章整式的化简求值及整式中的整体思想(教案)

第二章整式的化简求值及整式中的整体思想(教案)
生可能会感到困惑,不知从何入手。
-举例:化简整式(2x^2 + 3x - 1)(x^2 - 2x + 1)。
在教学中,教师应针对这些难点和重点,采用适当的例题、图表、动画等教学辅助手段,帮助学生直观理解并逐步突破难点,确保学生对核心知识点的理解透彻。同时,通过反复练习和变式训练,巩固学生对重点内容的掌握。
第二章整式的化简求值及整式中的整体思想(教案)
一、教学内容
第二章整式的化简求值及整式中的整体思想:
1.章节内容:本章节主要围绕整式的化简求值和整体思想进行讲解。
a.整式的化简:包括合并同类项、去括号、整式的乘法与除法。
b.整式的求值:运用代入法、整体代入法求解整式的值。
c.整式中的整体思想:通过具体实例,引导学生理解整体思想在整式化简和求值中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的化简求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式化简求值及整体思想的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式的化简求值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)

第2章 整式的化简求值-知识点精讲精练 人教版数学七年级上册课件

第2章 整式的化简求值-知识点精讲精练 人教版数学七年级上册课件

2
-a3b;④m2n和nm2;⑤-1和0;⑥a2与52;⑦ ab 与 2ab ,
3
5
其中是同类项的有( B)
A. 3组
B. 4组
C. 5组
D. 6组
【巩固】 2. 如果单项式-xyb+1与 1 xa-2y3 是同类项,那么(a-b)2021= 1 .
2
知识点二:合并同类项
合并同类项的定义: 把多项式中的同类项合并成一项,叫做合并同类项.
【例4】计算:
(4) 5x2 y [2x2 y (3xy xy2 ) 3x2 ] 2xy2 y2 .
方法 2:原式 5x2 y 2x2 y (3xy xy2 ) 3x2 2xy2 y2 5x2 y 2x2 y 3xy xy2 3x2 2xy2 y2 (5x2 y 2x2 y) (xy2 2xy2 ) 3xy 3x2 y2 3x2 y 3x2 3xy2 3xy y2
11a2 8ab 17b2
当a=-1,b=1时, 原式=-11×(-1)2+8×(-1)×1-17×12=-36.
【巩固】
1. 先化简,再求值:
(2)已知 (a 3)2 b 2 0 ,求 2(a2 ab) 3( 2 a2 ab) 的值.
3
(2)因为(a 3)2 0 , b 2 0
4
2
解:原式 1 x 4 y 3 x y
2
2
( 1 x 3 x) (4 y y) 22
x 5y
【例4】计算:
(4) 5x2 y [2x2 y (3xy xy2 ) 3x2 ] 2xy2 y2 .
解:方法 1:原式 5x2 y [2x2 y 3xy xy2 3x2 ] 2xy2 y2 5x2 y 2x2 y 3xy xy2 3x2 2xy2 y2 (5x2 y 2x2 y) (xy2 2xy2 ) 3xy 3x2 y2 3x2 y 3x2 3xy2 3xy y2

专题:整式化简求值的方法

专题:整式化简求值的方法

专题:整式化简求值的方法解题技巧专题:整式化简求值的方法在整式化简求值的题目中,有几种常见的类型。

针对不同类型,我们可以采取不同的解题策略。

类型一:先化简,再代入求值在这种类型的题目中,我们需要先将整式进行化简,再将所求的值代入化简后的式子中进行计算。

例如:1) 计算2x^3+4x-(x+3x^2+2x^3),其中x=-1.解:将式子化简得:2x^3+4x-(x+3x^2+2x^3)=4x-x-3x^2=3x-3.代入x=-1,得到3*(-1)-3=-6.2) 计算3x^2y-[2x^2y-(xy^2-x^2y)-4xy^2],其中x=-4,y=2.解:将式子化简得:3x^2y-2x^2y+xy^2-x^2y-4xy^2=xy^2-4x^2y-4xy^2=-3xy^2-4x^2y。

代入x=-4,y=2,得到-3*2^2-4*(-4)^2*2=-52.类型二:先变形,再整体代入求值在这种类型的题目中,我们需要将式子进行变形,然后将所求的值代入变形后的式子中进行计算。

例如:若x^2+xy=2,xy+y^2=1,则x^2+2xy+y^2的值是多少?解:将x^2+2xy+y^2变形得(x+y)^2=4,所以x+y=±2.由x^2+xy=2可得x^2+2xy+y^2=4,代入xy+y^2=1中可得xy=1- y^2.将x^2+xy=2代入中得x^2+2(1-y^2)=2,化简得x^2+2y^2=3.当x+y=2时,解得x=1,y=1,代入x^2+2y^2=3中得到答案为2.当x+y=-2时,解得x=-1,y=1,代入x^2+2y^2=3中得到答案为2.因此,x^2+2xy+y^2的值为2.类型三:利用“无关”求值或说理在这种类型的题目中,我们需要根据题目中给出的条件,利用“无关”求值或进行说理,得出所求的值。

例如:已知多项式2x^2+mx-y+3-(3x-2y+1-nx^2)的值与字母x的取值无关,求多项式(m+2n)-(2m-n)的值。

人教版七年级数学上册作业课件 第二章 整式的加减 专题(五) 整式的化简求值

人教版七年级数学上册作业课件 第二章 整式的加减 专题(五) 整式的化简求值

6.若x2+ax-2y+7-(bx2-2x+9y-1)的值与x无关,求-a-b的值. 解:原式=x2+ax-2y+7-bx2+2x-9y+1=(1-b)x2+(a+2)x-11y+8. 因为该整式的值与x无关,所以1-b=0,a+2=0,解得b=1,a=-2.所以 -a-b=-(-2)-1=1.
2.先化简,再求值:3x2y-[2x2-(xy2-3x2y)-4xy2], 其中|x|=2,y=12 ,且 xy<0. 解:原式=3x2y-2x2+xy2-3x2y+4xy2=5xy2-2x2, 因为|x|=2,y=12 ,且 xy<0,所以 x=-2,y=12 , 所以原式=5×(-2)×(12 )2-2×(-2)2=-52 -8=-221 .
3.已知x2-2y-5=0,求3(x2-2xy)-(x2-6xy)-4y的值. 解:原式=3x2-6xy-x2+6xy-4y=2x2-4y. 因为x2-2y-5=0,所以x2-2y=5,所以原式=2(x2-2y)=2×5=10.
4.已知x+4y=-1,xy=-5,求(6xy+7y)+[8x-(5xy-y+6x)]的值. 解:原式=6xy+7y+(8x-5xy+y-6x)= 6xy+7y+8x-5xy+y-6x=xy+2x+8y. 当x+4y=-1,xy=-5时,原式=xy+2(x+4y)=-5+2×(-1)=-7.

5.已知 A=2x2+4xy-2x-3,B=-x2+xy+2,且 3A+6B 的值与 x 无关, 求 y 的值.
解:3A+6B=3(2x2+4xy-2x-3)+6(-x2+xy+2)= 6x2+12xy-6x-9-6x2+6xy+12=18xy-6x+3=(18y-6)x+3. 因为 3A+6B 的值与 x 无关,所以 18y-6=0,解得 y=13 .

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。

2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。

七年级苏教版数学复习要点考点专题二:整式化简求值及应用(教师用,附答案分析)

七年级苏教版数学复习要点考点专题二:整式化简求值及应用(教师用,附答案分析)

七年级苏教版数学复习要点考点专题二:整式化简求值及应用知识点一 整式化简求值1.求代数式的值的一般方法(1)直接代入法:直接将字母的值代入代数式进行计算.(2)间接代入法:先计算出对应的字母的值,再把求得的值代入代数式进行计算.(3)整体代入法:先求出含一个字母或多个字母的整体值,然后将代数式变形为含有此整体的代数式并进行计算.注意:化简求值的扩充方法 ①设k 法遇到连等式、连续比例式的题,解决这类题型的最佳方法是设k 法. ②赋值法在解题过程中,对于难以化简求值问题,我们也可以通过给未知数赋一些特殊值来解决问题. 例1(玄武区期中)已知223A x mx x =+-,21B x mx =-++,其中m 为常数,若2A B +的值与x 的取值无关,则m 的值为( ) A .0B .5C .15D .15-【解答】解:已知223A x mx x =+-,21B x mx =-++,222232(1)A B x mx x x mx +=+-+-++, 2223222x mx x x mx =+--++,52mx x =-+因为2A B +的值与x 的取值无关,所以510m -=解得15m =.故选:C . 例2(溧水区期中)已知代数式2x y +的值是2,则代数式124x y --的值是( ) A .1- B .3- C .5- D .8-【解答】解:根据题意得:22x y +=, 方程两边同时乘以2-得:244x y --=-,方程两边同时加上1得:124143x y --=-=-,故选:B .知识点二 整式运算应用一、常见找规律基本类型 1.等差型规律相邻两项之差(后减前)等于定值的数列.例如:4,10,16,22,28…,增幅是6,第一位数是4,所以,第n 位数为:()41662n n +-⨯=-. 2.等比型规律相邻两项之比(后比前)等于定值的数列.例如:3,6,12,24,48…,比值是2,第一位数是3,所以,第n 位数为:132n -⨯. 3.符号型规律符号型数列的特点是,正数与负数交替出现;解决方法:先不考虑符号,找到数列的规律,并用含n 的式子表示,然后再乘以()1n-或()11n +-.补充:①平方型规律;②求和型规律;③周期型规律二、定义新运算:是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算. 在定义新运算中的※,,∆……与+、-、⨯、÷是有严格区别的.解答定义新运算问题,必须先理解新定义的含义,遵循新定义的关系式把问题转化为一般的 +、-、⨯、÷运算问题.注意:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.三、程序框图运算:程序框图运算是定义新运算中的一种特殊类型,解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 注意:程序框图中的运算是由前到后....依次进行的,不存在先乘除后加减的问题.例1(建邺区期中)一组有规律排列的数:1、3、7、______、31⋯⋯,在下列四个数中,填在横线上最合理的是( )A .9B .11C .13D .15 【解答】解:3121=⨯+,7321=⨯+,15721=⨯+,311521=⨯+, ∴后一个数是它前一个数的2倍加上1,故选:D . 例2(鼓楼区期末)小红在计算2320201111()()()4444+++⋯+时,拿出1张等边三角形纸片按如图所示方式进行操作.①如图1,把1个等边三角形等分成4个完全相同的等边三角形,完成第1次操作;②如图2,再把①中最上面的三角形等分成4个完全相同的等边三角形,完成第2次操作;③如图3,再把②中最上面的三角形等分成4个完全相同的等边三角形,⋯依次重复上述操作.可得2320201111()()()4444+++⋯+的值最接近的数是( )A .13B .12C .23D .1【解答】解:设2320201111()()()4444S =+++⋯+,则232019111141()()()4444S =++++⋯+, 2020141()4S S -=-,2020131()4S =-,202011()1433S -=≈,故选:A . 例3(建邺区期中)有一列数1a ,2a ,3a ,4a ,5a ,n a ⋯,从第二个数开始,等于1与它前面的那个数的差的倒数,若13a =,则2019a 为( )A.2019B.23C.12-D.3【解答】解:依题意得:13a=,211132a==--,3121312a==+,413213a==-;∴周期为3;20193673÷=所以2019323a a==.故选:B.例4(溧水区期中)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果40a m=,20b m=,求整个长方形运动场的面积.【解答】解:(1)2[()()]2()4()a b a b a b a b a m++-=++-=(2)2[()()]2()8()a ab a a b a a b a a b a m++++-=++++-=(3)解:(22)(22)4()()S a b a b a b a b=-⨯+=+-m,当40a=,20b=时原式4(4020)(4020)4800=+-=m,答:整个长方形运动场的面积为4800 m.【提优训练】一、单选题(共6小题)1.(苍溪县期末)已知一个多项式与239x x+的和等于2341x x+-,则此多项式是() A.2651x x---B.51x--C.2651x x-++D.51x-+【解答】解:由题意得:22341(39)x x x x+--+,2234139x x x x=+---,51x=--.故选:B.2.(常熟市期中)已知代数式2245x x-+的值为9,则272x x-+的值为()A.5B.6C.7D.8【解答】解:根据题意得:22459x x-+=,方程两边同时减去5得:2244x x-=,方程两边同时乘以12-得:222x x-+=-,方程两边同时加上7得:272725x x-+=-=,故选:A.3.(江阴市期中)已知2a b-=,2d b-=-,则2()a d-的值为()A.2B.4C.9D.16【解答】解:2a b-=,2d b-=-,()()4a b d b∴---=,则4a b d b--+=,4a d-=,2()16a d∴-=.故选:D.4.(姑苏区期末)如果a 和14b -互为相反数,那么多项式2(210)7(23)b a a b -++--的值是( ) A .4- B .2- C .2 D .4【解答】解:由题意可知:140a b +-=,41a b ∴-=-,∴原式242071421b a a b =-++-- 3121a b =--3(4)1a b =--31=--4=-,故选:A .5.(路北区三模)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6()m n -B .3()m n +C .4nD .4m 【解答】解:设小矩形的长为a ,宽为()b a b >,则3a b n +=,阴影部分的周长为22()2(3)222264224n m a m b n m a m b m n n m +-+-=+-+-=+-=,故选:D . 6.(宿豫区期中)下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,⋯则第70个图形中〇的个数为( )A .280B .349C .2485D .2695【解答】解:第①个图形中基本图形的个数1(11)4312⨯+=⨯+, 第②个图形中基本图形的个数2(21)8322⨯+=⨯+, 第③个图形中基本图形的个数3(31)11332⨯+=⨯+, ⋯∴第n 个图形中基本图形的个数为(1)32n n n ++当70n =时,707137026952⨯⨯+=,故选:D .二、填空题(共5小题)7.(海州区期中)如果23x x -的值是1-,则代数式2396x x -+-的值是 . 【解答】解:根据题意得:231x x -=-, 方程两边同时乘以3-得:393x x -+=,方程两边同时减去6得:396363x x -+-=-=-,故答案为:3-. 8.(邗江区一模)若1m n -=-,则2()22m n m n --+= .【解答】解:1m n -=-,2()22m n m n ∴--+2()2()m n m n =---2(1)2(1)=--⨯-12=+3=.9.(无锡期末)若代数式22x x -的值为5,则代数式2363x x --的值为 . 【解答】解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1210.(凤山县期末)如图所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,⋯,则第2019次输出的结果为 .【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1⋯,发现从8开始循环.则201942015-=,201545033÷=⋯,故第2019次输出的结果是2.故答案为:2 11.(秦淮区期中)如图所示的数表是由从1开始的连续自然数组成的.观察数表特征,第n 行最中间的数可以表示为 .(用含n 的代数式表示)【解答】解:由图中的数字可知,第n 行第一个数字是2(1)1n -+,最后一个数字是2n ,则第n 行最中间的数可以表示为:222(1)112n n n n -++=-+,故答案为:21n n -+.三、解答题(共2小题)12.(海州区期中)化简或求值 (1)化简:3(2)2(3)a b a b --+(2)先化简,再求值:22225(3)4(3)a b ab ab a b --+;其中1a =,12b =-.【解答】解:(1)原式(63)(26)632649a b a b a b a b a b =--+=---=-;(2)原式22222215541239a b ab ab a b a b ab =---=-,当1a =,12b =-时,原式3915244=--=-.13.(玄武区期中)如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题: (1)用含a 、b 的代数式表示小江家的住房总面积S ;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a 、b 的代数式表示铺设地砖的总费用W ; (3)在(2)的条件下,当6a =,4b =时,求W 的值.【解答】解:(1)小江家的住房总面积:83S a b =-;(2)3(8)508(3)40W b a =-⨯+-⨯1200150320960b a =-+-320150240a b =-+; (3)当6a =,4b =时32061504240W =⨯-⨯+1920600240=-+1560=.。

整式加减的化简求值

整式加减的化简求值

− [5x − x
− (2x
− x)]
,其中x =
1 2

【注意】化简时,一定要注意去括号和合并同类项的正确.
3
.整体代入求值
在单个字母取值不确定的情况下,某些代数式的求值要借助于“整体代入法”,即把某个代数式看作一个整体. 用“整体代入法”求值的关键是确定“整体”. (1)观察法 通过观察就可确定代换的“整体”,这类题目较简单. 若a + b = 2005 ,c + d = −5 ,则代数式a + c + b + d = . (2)拼凑法 需将要求式进行转化,“凑”出与已知式相同的式子再代入求值,这种构造“整体”的技巧,平时要注意总结. ,代数式(a − 2c) − (2d − b) =
2
+ 32b
2
− c
2
+ 3
的值.
2 2
+ ab + 3b
的值.
③代数式中省去的“× ”号或“⋅ ”号,代人具体数后应恢复原来的“× ”号,遇到字母取值是分数或者负数时,应 根据实际情况添上括号. ④代入时一定要书写规范,如当a = −3 时,a 反映出代数式所隐含的运算顺序.
2 2

改变.


②代人时,除按已知给定的数值,将相应的字母换成相应的数字外,其他的运算符号,运算顺序,原来的数值都不

例如:通过m
= m
⋅ m

3
2
将三次降为有些题目中会出现高次的整式,这样的式子我们一般很难直接进行求值.常用方法为降次.
4
18
/0
6/
12
6
.逐步降次代入求值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档