调和函数与解析函数
调和函数、解析函数与调和函数的关系

2
y 2
=
0,
则称 (x, y) 为区域������内的调和函数.
定理1:区域������内的解析函数的实部与虚部,都是������内的调和函数.
证明:设 w = f (z) = u(x, y) + iv(x, y) 是区域������内的解析函数,
那么在区域������内满足柯西-黎曼方程:u = v , u = − v x y y x
由 f (0) = i ,得 C = 1,从而 f (z) = x3 − 3xy2 + i(3x2 y − y3 +1).
另外,还可以通过不定积分的方法,由已知调和函数直接求 得解析函数. 解析函数 f (z) = u(x, y) + iv(x, y) 的导数仍为解析函数,
f ' (z) = ux + ivx = ux − iuy = vy + ivx
=
6x;u y
=
−6xy,2u y2
=
−6x
从而
2u x2
+
2u y 2
= 0,所以:u(x, y) =
x3
− 3xy2 是调和函数.
( ) 由 v = u = 3x2 − 3y2 ,得 v(x, y) = 3x2 − 3y2 dy = 3x2 y − y3 + c(x) y x
定义2:设 u(x, y) 为区域������内的调和函数,称满足柯西-黎曼方程
u = v , u = − v x y y x
的调和函数 v(x, y) 为 u(x, y) 的共轭调和函数.
说明:(1)区域������内的解析函数的实部与虚部为共轭调和函数;
(2)如果已知一个调和函数u(x, y),则可利用柯西-黎曼方 程求得它的共轭调和函数 v(x, y),从而构成一个解析函数
第六讲_解析函数与调和函数的关系

2
2
又解 f'(z)uxivx uxiuy
(2xy)i(x2y)
不
2(xiy)i(xiy)
定
(2i)(xiy)
积
2iz
分
f(z)2i z2ic
法
2
f(z ) (x 2 y 2 x) y i( 1 x 2 2 x y 1 y 2 c )
2
2
第四章 级数
CH4§4.1 复数项级数
1. 复数列的极限 2. 级数的概念
要想 u使 iv在 D内解 ,u及 析 v还必须 C满 R 足 方程v, 必即 须 u的 是共轭调 .由和 此函 ,数
已知一个解析函数 部u的 (x,实 y),利用CR方 (虚 部 v(x, y))
程可求得它的v(虚 x, y部),从而构成解析函数
uiv.
(实 部 u(x, y))
设D一单连通,u(区 x,y域 )是区D域 内的调和
(2)
8in
8n收
敛 , (8i)n绝
对
收
n0 n! n0n!
n0 n!
(3 ) n 1( n 1 )n 收n 1 敛 2 1 n 收 , 敛 n 1(( n 1 ), n2 in)收 . 敛
又
(1)n
条
件 收
敛 原 ,级 数 非
绝.
对
n1 n
例3
讨论
zn的 敛 散 性 。
分
22
法
x2
y2
v(x,y) 2x y c
2
2
f(z ) (x 2 y 2 x) y i( 1 x 2 2 x y 1 y 2 c )
2
2
又解 v2xy v2x yy2(x)
高校工程数学第3节解析函数和调和函数教学课件

共轭调和函数
u( x , y ), v ( x , y ) 在D内调和 u v x y C—R方程成立 v u y x
f ( z ) u( x, y ) iv( x, y )
在D内解析
注: 区域D内的解析函数的虚部为实部的共轭调和函数.
[例1]
得:
3 y 2 g( x ) 3 y 2 3 x 2 ,
故 g ( x ) 3 x dx x c ,
2
3
(c 为任意常数)
因此
v(x,y)=x3–3xy2+c
从而得到一个解析函数
w=y3–3x2y+i(x3–3xy2+c)
[例1]
偏积分法也可以是下列形式:
适用于已知实部u 求 f ( z ),
适用于已知虚部 v 求 f ( z ),
4、不定积分法
[例3] 用不定积分法求解[例1]中的解析函数 f ( z )
实部 u( x, y ) y 3 3 x 2 y.
[解] f ( z ) U ( z ) ux iuy
3i ( x 2 2 xyi y 2 ) 3iz 2 ,
[例1]
2u 2u 于是 2 0, 故 u( x , y ) 为调和函数. 2 x y
v u 6 xy, (2) 因为 y x
v 6 xydy 3 xy2 g( x ),
v 3 y 2 g( x ), x v u 2 2 3 y 3 x , 又因为 x y
2、共轭调和函数的定义
设 u( x , y ) 为区域 D 内给定的调和函数 , 我 们把使 u iv 在 D 内构成解析函数的调和 函数 v ( x , y ) 称为 u( x , y ) 的共轭调和函数 .
解析函数与调和函数的关系

定义 若二元实变函数 ϕ ( x , y )在 D内具有二阶连
续偏导数且满足 Laplace 方程 : ∂ 2ϕ ∂ 2ϕ + 2 =0 2 ∂x ∂y 即( ∆ ϕ = 0 )
则称 ϕ ( x , y )为 D内的调和函数 .
ϕ ( x, y ) = x 2 + xy − y 2 ϕ ( x, y ) = ln x 2 + y 2 例:
定理 若f ( z ) = u( x , y ) + iv( x , y )在区域D内解析
内的调和函数。 ⇒ u = u( x , y ),v = v ( x , y )是D内的调和函数 。
证明:设f (z)=u(x,y)+i v(x,y)在区域 内解析,则 证明: 在区域D内解析, 在区域 内解析
内的调和函数。 ∴ u = u( x , y ),v = v ( x , y )是D内的调和函数 。
思考:
若u , v是任意选取的在区域 D内的两个调和函数 , 则u + iv在D内一定解析吗?
答:不一定,
u = x + y , v = x + y.
要想使 u + iv 在 D 内解析 , u 及 v还必须满足 C − R 方程 .
练习:证明 u = −3 xy + x 为调和函数,
2 3
并求其共轭调和函数 v ( x, y )和由他们 构成的解析函数 f ( z ),使 f (0) = i。
例1
证明u ( x, y ) = x 2 + xy − y 2为调和函数,并求其 共轭调和函数v( x, y )和由它们构成的解析函数 f ( z )使f (i ) = −1 + i.43; y ⇒ v = 2 xy + + g ( x) ∂y 2 ∂v ⇒ = 2 y + g ' ( x) = 2 y − x ∂x
解析函数与调和函数的关系

已知实部u,求虚部v(或者已知v,求u),使 f(z)=u(x,y)+iv(x,y)解析.
例:已知 u x y ,可以求得 v 2 xy C
2 2
f ( z) x y i(2xy C) z C'
2 2 2
(1)
则称 H ( x, y)为区域D 内的调和函数(harmonic function).
2 2 注:运算符号 ,称为拉普拉斯算子. 2 2 x y
2 2 H H 方程 0 ,记作 H 0 称为拉普拉斯方程. 2 2 x y
2.解析函数与调和函数的关系
定理2.2 若函数 f(z)=u(x,y)+iv(x,y) 是区域D
内的解析函数,则 u(x,y)和v(x,y) 均为区域D 内的
调和函数. 思考 如果 u, v 是任意选取的在区域D 内的两个
调和函数,那么 f(z)=u(x,y)+iv(x,y) 在D 内一定解
析吗?
定义2.5 在区域D 内,满足C-R方程
满足C-R方程
v 为u 在区域D内的共轭调和函数
解析函数与调和函数的关系 解析函数
f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)
调和函数
u(x,y),v(x,y) 为调和函数 v为u的共轭调和函数
注:研究复变量的问题转化为研究实变量的问题.
验证:解析函数的实、虚部的任意阶偏导数 也是调和函数. 应用 构造解析函数
§2.2
解析函数与调和函数的关系
引言
解析函数 f(z)=u(x,y)+iv(x,y) u,v满足C-R方程 解析函数具有无穷可微性 u,v为调和函数
§3.7 解析函数与调和函数的关系

0,0
( x, y )
u u dx dy C y x
0,0
x 0
2 x 1 dx 2 ydy C
y 0
2 x 1 dx 2 ydy C
x2 2 x y 2 C
f z u iv 2 x 1 y x 2 2 x y 2 C i
例2(P103 30题(3))
已知f(z)=u+iv解析,u=2(x-1)y,f(2)=-i,求f(z). 方法1 不定积分法
u u 2 y, 2 x 1 x y u u f z i 2 y 2 x 1 i x y
2i x iy 2i 2iz 2i
得证!
注:解析函数中u与v不独立即是一对矛盾,已知u 求v, 或已知v求u均可.
例1 已知f(z)=u+iv解析,v=2xy,求f(z).
方法1 线积分法 u u du dx dy x y
u
( x, y )
0,0
( x, y )
u u dx dy C x y
§3.7 解析函数与调和函数的关系 一、分析上解析函数是调和函数
若二元实函数u(x,y) 满足Laplace方程
2u 2u 2 0 2 x y
则称u(x,y) 是调和函数。 定理1 若 w f z u iv 是解析函数,则U和V均为调 和函数.
证明: f z 是解析函数
2 iz 2 zi C f z 2iz 2i dz
f 2 C i
f z iz 2 2 zi i
第四讲 解析函数和调和函数讲诉
例1、验证u(x,y)=x3-3xy2是二维平面上的调和函数,并求以它 为实部的解析函数。
解:
2u x2
6x
2u y2 6x
显然:2u 2u 0 , u(x,y)为调和函数。
x2 y2
若以u(x,y)为实部,则函数解析必须满足C-R条件,所以:
v x
u y
6xy,
(1)
v
u
3x2
3y2,
第二节 解析函数和调和函数
1、共轭调和函数
由复变函数的可微的充要条件,函数可微必须满足C-R条 件,即:u v , u v 。而由C-R条件有:
x y y x
2u x2
2v xy
,
2u y 2
2v yx
显然有:2u
x2
2u y 2
0,
2v x2
2v y 2
0
定义1(调和函数):如果实函数u(x,y)在区域D中有二阶连续偏
y0 )
v(x0 , y0 ) v(x0 , y0 ) v(x0 , y0 ) v(x0 , y0 ) 0
y
x
x
y
很显然,两个共轭调和函数的等值曲线在交点处正交。
例2,在复平面上的解析函数f (z) az2 b 解: f (z) az2 b a(x iy)2 b
a x2 y2 b i2axy 所以:u(x, y) a x2 y2 b
定理2:在区域D中解析的复变函数f(z)=u(x,y)+iv(x,y),其实部 和虚部为该区域上的共轭调和函数。
2、共轭调和函数的几何意义
在区域D中解析的复变函数f(z)=u(x,y)+iv(x,y),若f’(z)0,并分 别取u(x,y),v(x,y)的等值线:
第三章第四节 解析函数与调和函数
②刻划解析函数又一等价条件
f ( z) u iv在区域D内解析
定理3.18
定理 3.19
在区域D内,v是u 的共轭调和函数.
注7 由于任一二元调和函数都可作解析函数的实 部(或虚部),由解析函数的任意阶导数仍解析知,任 一二元调和函数的任意阶偏导数也是调和函数.
虽然在直线x 0上满足Laplace方程, 但直线不是区域,
即在z平面的任一区域, xy 2不能作为解析函数的实部.
y 例2 证明 : u( x, y) x y , v( x, y) 2 都是 2 x y
2 2
调和函数, 但f ( z ) u( x, y) iv( x, y)不是解析函数.
使u iv在D内解析.
u u 2 0, 方法一: 应用曲线积分 由于 2 x y u u 即 - 与 在D内具有连续的一阶偏导数, y x
2 2
u u u u 且 , 记 P , Q , 则Py Qx , y y x x y x
( x, y )
注4
对(3.22)分别对x, y求偏导数, 得
u v u v , x y y x
由定理3.15知, u iv在D内解析.
注5 (3.21)可由下式简便记忆
v v dv( x, y ) dx dy x y
C R方程
u u dx dy y x
第三章 复变函数的积分
第十二讲
第四节 解析函数与调和函数
1. Laplace算子与共轭调和函数 2. 解析函数的等价刻画 3. 调和函数的平均值定理与极值原理
2.2 解析函数与调和函数的关系
§2.2 解析函数与调和函数的关系
一、调和函数 二、共轭调和函数 共轭调和函数 三、构造解析函数
1
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数
一、调和函数
引例 考察三维空间中某无旋无源力场(或流速场)的势函数。 考察三维空间中某无旋无源力场(或流速场)的势函数。 无旋无源力场 设该力场为 F = { P ( x , y , z ) , Q ( x , y , z ) , R( x , y , z ) } . (1) 无旋场 沿闭路做功为零(即做功与路径无关)。 沿闭路做功为零 即做功与路径无关) 保守场或者梯度场或者有势场。 又称为保守场或者梯度场或者有势场 又称为保守场或者梯度场或者有势场。 存在势函数 ϕ ( x , y , z ) , 使得
11
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数 解 (2) 求虚部 v( x, y )。 方法二: 方法二:全微分法
C1
( x, y)
C2
∂v ∂u ∂v ∂u 2 2 =− = 6xy , 由 = = 3x − 3 y , ∂x ∂y ∂y ∂x
⇒ dv = v ′x dx + v ′y dy = 6 xy dx + ( 3 x 2 − 3 y 2 )dy ,
∂ 2 u ∂ 2v , ⇒ = 2 ∂y∂x (?) ∂x
∂ 2v ∂ 2v + 2 = 0. 同理 2 ∂x ∂y
5
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数
二、共轭调和函数 共轭调和函数
定义 设函数 u( x , y ) 及 v ( x , y ) 均为区域 D 内的调和函数, 内的调和函数,
解析函数与调和函数的定义与性质
解析函数与调和函数的定义与性质函数在数学中扮演着重要的角色,不同类型的函数具有不同的性质和定义。
解析函数与调和函数就是其中两种重要的函数类型。
本文将对解析函数和调和函数的定义与性质进行详细解析。
一、解析函数的定义与性质解析函数是复变函数中的一种特殊类型,其定义如下:设f(z)=u(x,y)+iv(x,y)是定义在D上的复变函数,其中u(x,y)和v(x,y)是实变函数,如果f(z)在D内是可导的,且f'(z)在D内处处存在,则称f(z)在D内是解析的。
解析函数具有以下几个重要性质:1. 解析函数的实部和虚部均是调和函数。
即u(x,y)和v(x,y)都满足拉普拉斯方程,即∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,以及∇^2v=∂^2v/∂x^2+∂^2v/∂y^2=0。
2. 解析函数的复共轭也是解析函数。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其复共轭f*(z)=u(x,y)-iv(x,y)也是解析函数。
3. 解析函数满足柯西-黎曼方程。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其满足柯西-黎曼方程∂u/∂x=∂v/∂y和∂u/∂y=-∂v/∂x。
二、调和函数的定义与性质调和函数是实变函数中的一种特殊类型,其定义如下:设u(x,y)是定义在二维欧氏空间R^2上的二次连续可微函数,如果u(x,y)满足拉普拉斯方程∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,则称u(x,y)为调和函数。
调和函数具有以下几个重要性质:1. 调和函数的高阶导数也是调和函数。
即如果u(x,y)是调和函数,则其高阶偏导数∂^nu/∂x^n和∂^nu/∂y^n也是调和函数。
2. 调和函数的积分在闭合曲线上的值为0。
即对于调和函数u(x,y)和任意的闭合曲线C有∮C[∂u/∂s(ds/dt)dt]=0,其中∮C表示对曲线C 上点P到点P绕行一周的积分,s为曲线C上的弧长参数,t为弧长参数t与x轴正向的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f '( z ) ux ivx ux iu y v y ivx
U ( z)
已知实部 u 求 f ( z ) 已知虚部 v 求 f ( z )
V ( z)
f ( z ) U ( z )dz C f ( z ) V ( z )dz C
———— 不定积分法
8
u(x, y)=y3-3x2y
u v u v , x y y x
的两个实值函数 u, v 中,v 称为 u 在区域 D 内的 共轭调和函数.
注 区域 D 内的解析函数的虚部为实部的共轭调 和函数.
5
例1 验证 u(x, y)=y3-3x2y 是调和函数,并求以 u(x, y) 为实部的解析函数 f(z). 例2 已知一调和函数 v e x sin y, 求一解析函数 f(z)=u iv, 使 f(0)=1. 例3 已知一调和函数 v e x ( y cos y x sin y ) x y, 求一解析函数 f(z)= u iv, 使 f(0)=0.
§7 解析函数与调和函数的关系
问题1,解析函数的性质非常好,什么样的函数能构 成解析函数的实部和虚部
问题2. 解析函数的实部和虚部的二阶导数是什么关 系
问题3. 如何根据实部(虚部)求其满足的解析函数
1
•调和函数 若二元实函数 H(x, y) 在区域 D 内具 有二阶连续偏导,且满足 Laplace 方程
6
u(x, y)=y3-3x2y
解:)由 1 ux 6xy,u xx 6 y, u y 3 y 2 3x 2,u yy 6 y,
可得
(偏积分法)
u xx u yy 0.
利用C.-R.方程
从而u 调和. 2 )由 v y u x 6 xy 可得
2
利用C.-R.方程 的另一等式
(n)
高阶导数公式
n! f ( z) ( z0 ) dz,(n 1,2,) n 1 2 i C ( z z0 )
求I
C
f ( z )dz 型积分的步骤:
一、判断 f ( z )在C内部是否解析; 二、若 f ( z )解析,则I 0;
三、若 f ( z ) 在曲线 C 内只有一个奇点,则直接 利用柯西积分公式或高阶导数公式; 四、若 f ( z ) 在曲线 C内有多个奇点,则利用复 合闭路定理和柯西积分公式或高阶导数公式.
由解析函数高阶导数定理知,u 和 v 具有任 意阶连续偏导,故 v yx vxy ,
从而 同理
uxx u yy 0. vxx vyy 0.
因此 u 和 v 调和.
?
已知u, 能否找到 v, 使得 u iv 解析?
u+iv = f(z)
调和
解析 为 u 的共轭调和函数
•共轭调和函数 区域 D 内满足 C.-R.方程
v v y dy 6 xydy 3xy 2 g ( x),
2 2 u 3 x 3 ห้องสมุดไป่ตู้ , vx 3 y g'( x) y
则g ( x) x3 C, 从而v x3 3xy 2 C 因此 f ( z ) y3 3x 2 y i( x3 3xy 2 C ) 或 i( z 3 C )
I f ( z)dz
i 1 Ci
n
•调和函数 若二元实函数 H(x, y) 在区域 D 内具 有二阶连续偏导,且满足 Laplace 方程
2 H 2 H 2 0, 2 x y
则称 H(x, y) 为 D 内的调和函数. •共轭调和函数 区域 D 内满足 C.-R.方程
解:由u x 6 xy,u y 3 y 2 3x 2,
f '( z) ux iu y
6 xy i(3 y 2 3x 2 )
3i( x y 2 xyi) 3iz 2
2 2
f ( z ) 3iz 2dz iz 3 C
9
x v e sin y, 例2 已知一调和函数 求一解析函数 f(z)= u iv, 使 f(0)=1.
u v u v , x y y x
的两个调和函数 u, v 中,v 称为 u 在区域 D 内的 共轭调和函数.
14
2 H 2 H 2 0, 2 x y
则称 H(x, y) 为 D 内的调和函数.
2
区域D上解析函数的实部与虚部是调和函数。
反之,若D是单连通的,则D上的每个调和函数都是某 个解析函数的实部或虚部.
u,v是实值函数,若u+iv 解析,则v是u的共轭调和.
注:若v是u的共轭调和,则除非u,v都是常数,u不是v 的共轭调和.
10
x v e ( y cos y x sin y ) x y, 例3 已知一调和函数 求一解析函数 f(z)= u iv, 使 f(0)=0.
11
柯西基本定理
C
f ( z )dz 0
柯西积分公式
1 f ( z) f ( z0 ) dz 2 i C z z0 f
解析函数的虚部为实部的共轭调和函数。
定理 任何在区域 D 内解析的函数,它的实部和 虚部都是 D 内的调和函数. 证:设 D 内的解析函数 f ( z ) u iv
则
ux vy , u y vx , uxx vyx , u yy vxy ,
两等式分别关 于x, y求偏导