二阶龙格-库塔

合集下载

龙格-库塔方法(Runge-Kutta)

龙格-库塔方法(Runge-Kutta)

龙格-库塔方法〔Runge-Kutta〕3.2 Runge-Kutta法3.2.1 显式Runge-Kutta法的一般形式上节已给出与初值问题(1.2.1)等价的积分形式(3.2.1)只要对右端积分用不同的数值求积公式近似就可得到不同的求解初值问题(1.2.1)的数值方法,假设用显式单步法(3.2.2)当,即数值求积用左矩形公式,它就是Euler法(3.1.2),方法只有一阶精度,假设取(3.2.3)就是改良Euler法,这时数值求积公式是梯形公式的一种近似,计算时要用二个右端函数f的值,但方法是二阶精度的.假设要得到更高阶的公式,则求积分时必须用更多的f值,根据数值积分公式,可将(3.2.1)右端积分表示为注意,右端f中还不能直接得到,需要像改良Euler法(3.1.11)一样,用前面已算得的f值表示为(3.2.3),一般情况可将(3.2.2)的 表示为(3.2.4)其中这里均为待定常数,公式(3.2.2),(3.2.4)称为r级的显式Runge-Kutta法,简称R-K方法.它每步计算r个f值(即由前面(i-1)个已算出的表示,故公式是显式的.例),而ki如当r=2时,公式可表示为(3.2.5) 其中.改良Euler 法(3.1.11)就是一个二级显式R-K 方法.参数取不同的值,可得到不同公式.3.2.2 二、三级显式R-K 方法对r=2的显式R-K 方法(3.2.5),要求选择参数,使公式的精度阶p 尽量高,由局部截断误差定义11122211()()[(,())(,)]n n n n n n n T y x y x h c f x y x c f x a h y b hk ++=--+++ (3.2.6)令,对(3.2.6)式在处按Taylor 公式展开,由于将上述结果代入(3.2.6)得要使公式(3.2.5)具有的阶p=2,即,必须(3.2.7)即由此三式求的解不唯一.因r=2,由〔3.2.5〕式可知,于是有解(3.2.8)它说明使(3.2.5)具有二阶的方法很多,只要都可得到二阶精度R-K方法.假设取,则,则得改良Euler法(3.1.11),假设取,则得,此时(3.2.5)为(3.2.9)其中称为中点公式.改良的Euler法(3.1.11)及中点公式(3.2.9)是两个常用的二级R-K方法,注意二级R-K方法只能到达二阶,而不可能到达三阶.因为r=2只有4个参数,要到达p=3则在(3.2.6)的展开式中要增加3项,即增加三个方程,加上(3.2.7)的三个方程,共计六个方程求4个待定参数,验证得出是无解的.当然r=2,p=2的R-K方法(3.2.5)当取其他数时,也可得到其他公式,但系数较复杂,一般不再给出.对r=3的情形,要计算三个k值,即其中将按二元函数在处按Taylor公式展开,然后代入局部截断误差表达式,可得可得三阶方法,其系数共有8个,所应满足的方程为(3.2.10)这是8个未知数6个方程的方程组,解也是不唯一的,通常.一种常见的三级三阶R-K方法是下面的三级Kutta方法:(3.2.11)附:R-K 的三级Kutta 方法程序如下function y = DELGKT3_kuta(f, h,a,b,y0,varvec) format long; N = (b-a)/h;y = zeros(N+1,1); y(1) = y0; x = a:h:b;var = findsym(f); for i=2:N+1K1 = Funval(f,varvec,[x(i-1) y(i-1)]);K2 = Funval(f,varvec,[x(i-1)+h/2 y(i-1)+K1*h/2]); K3 = Funval(f,varvec,[x(i-1)+h y(i-1)-h*K1+K2*2*h]);y(i) = y(i-1)+h*(K1+4*K2+K3)/6; %满足c1+c2+c3=1,(1/6 4/6 1/6)endformat short; 3.2.3 四阶R-K 方法及步长的自动选择利用二元函数Taylor 展开式可以确定(3.2.4)中r=4,p=4的R-K 方法,其迭代公式为111223344()n n y y h c k c k c k c k +=++++其中1(,)n n k f x y =,2221(,(,))n n n n k f x a h y b hf x y =++,而33311322(,)n n k f x a h y b hk b hk =+++ 44411422433(,)n n k f x a h y b hk b hk b hk =++++共计13个参数待定,Taylor 展开分析局部截断误差,使得精度到达四阶,即误差为5()O h 。

龙格-库塔方法基本原理3

龙格-库塔方法基本原理3
a2c2h2 fx b21c2h2 ff y O(h3)
2020/4/7
15
令 y(xi1) yi1 对应项的系数相等,得到
c1 c2 1 ,
a2c2
1 2
,
b21c2
1 2
这里有 4 个未知 数,3 个方程。
存在无穷多个解。所有满足上式的格式统称为2阶 龙格 - 库塔格式。
2020/4/7
称为P阶龙格-库塔方法。
其中ai,bij,ci为待定参数,要求上式yi+1在点(xi,yi)处作 Tailor展开,通过相同项的系数确定参数。
2020/4/7
9
Runge-Kutta方法的推导思想
对于常微分方程的初值问题
y f (x, y) a x b
y(a)
y0
的解y=y(x),在区间[xi, xi+1]上使用微分中值定理,有
hf (xi 2
,
yi
1 2
K1 )
K3 hf (xi h, yi K1 2K 2 )
2020/4/7
22
四阶(经典)龙格—库塔法
如果需要再提高精度,用类似上述的处理 方法,只需在区间[xi,xi+1]上用四个点处的斜 率加权平均作为平均斜率K*的近似值,构成一 系列四阶龙格—库塔公式。具有四阶精度,即 局部截断误差是O(h5)。
f x(xi , yi ) f (xi , yi ) f y (xi , yi ) O(h3 )
类似地,若取前P+1项作为y(xi+1)的近似值,便得到
yi1
yi
hyi
h2 2!
yi
hP P!
yi(P)
P阶泰勒方法
其中 yi f , yi f (xi , yi )x f x ff y

python龙格库塔法求解二阶方程

python龙格库塔法求解二阶方程

Python是一种高级编程语言,广泛应用于科学计算和工程领域。

而在科学计算中,求解二阶常微分方程是一个常见的问题。

龙格库塔法(Runge-Kutta method)是一种常用的数值求解方法,可以用来求解常微分方程的初值问题。

在Python中,我们可以利用其强大的数值计算库来实现龙格库塔法求解二阶常微分方程。

在本文中,我们将介绍如何使用Python中的龙格库塔法来求解二阶常微分方程。

文章将从以下几个方面展开讲解:1. 二阶常微分方程的基本概念2. 龙格库塔法的原理与公式推导3. Python中如何实现龙格库塔法求解二阶常微分方程4. 一个具体的求解例子及代码实现5. 总结与展望一、二阶常微分方程的基本概念二阶常微分方程是指具有形如y''(t) = f(t, y, y')(t)的形式,其中t是自变量,y是未知函数,f是已知函数。

求解二阶常微分方程的目标是找到一个满足方程的函数y(t)。

通常情况下,需要给出该方程的初值条件,即y(0)和y'(0),以求得方程的具体解。

二、龙格库塔法的原理与公式推导龙格库塔法是一种数值求解常微分方程初值问题的方法,通过迭代计算来逼近方程的解。

它的基本思想是将微分方程的解按照一定的步长进行逼近,然后利用逼近值来计算下一个逼近值,直到达到所需的精度。

龙格库塔法的一般形式为:k1 = h * f(tn, yn)k2 = h * f(tn + 1/2 * h, yn + 1/2 * k1)k3 = h * f(tn + 1/2 * h, yn + 1/2 * k2)k4 = h * f(tn + h, yn + k3)yn+1 = yn + 1/6 * (k1 + 2*k2 + 2*k3 + k4)其中,h是步长,t是自变量,y是未知函数,f是已知函数,k1、k2、k3、k4是中间变量。

三、Python中如何实现龙格库塔法求解二阶常微分方程在Python中,可以利用其强大的数值计算库来实现龙格库塔法求解二阶常微分方程。

龙格-库塔方法

龙格-库塔方法
§6.2.2 龙格-库塔方法
一、Taylor展开法

y′ = f ( x, y)
y( x0 ) =
y0
(1)
在[a,b]上有解 y( x),将y( xn+1 )在xn处泰勒展开
y( xn+1 )
=
y( xn ) +
hy′( xn ) +
h2 2!
y′′( xn ) +
h3 3!
y′′′( xn ) +
k4 = f ( xn + h, yn + hk1 − hk2 + hk3 )
为了分析经典R-K公式的计算量和计算精度, 将四阶经典R-K公式与一阶显式Euler公式及二阶改 进的Euler公式相比较。一般说来,公式的级数越 大,计算右端项 f 的次数越多,计算量越大。在 同样步长的情况下,Euler方法每步只计算一个函 数值,而经典方法要计算4个函数值。四阶R-K法的
0.5 0.397312
改进Euler法 h=0.05
0.095123 0.181193 0.259085 0.329563 0.393337
经典R-K法 h=0.1 0.09516250 0.18126910 0.25918158 0.32967971 0.39346906
准确解
y(xn )
0.09516258 0.18126925 0.25918178 0.32967995 0.39346934
h 2 k1 )
k3
=
f (xn
+
3 4
h,
yn
+
3 4 hk2 )
四阶龙格—库塔公式有:
古典公式:
yn+1 = k1 = f k2 = f

龙格库塔求解二阶常微分方程

龙格库塔求解二阶常微分方程

龙格库塔求解二阶常微分方程一、前言在数学领域中,常微分方程是一种非常重要的数学工具。

它可以用来描述许多自然现象,如物理学、化学、生物学等。

而龙格库塔法是一种求解常微分方程的方法之一。

本文将介绍如何使用龙格库塔法求解二阶常微分方程。

二、什么是二阶常微分方程二阶常微分方程是指形如y''+p(t)y'+q(t)y=f(t)的方程,其中y表示未知函数,p(t)、q(t)和f(t)都是已知函数。

通常情况下,我们需要找到一个特定的y函数来满足这个方程。

三、什么是龙格库塔法龙格库塔法是一种数值求解常微分方程的方法。

它基于欧拉方法,但更准确和稳定。

欧拉方法使用线性逼近来估计未知函数值,而龙格库塔法使用高阶多项式逼近来更准确地估计未知函数值。

四、龙格库塔法的基本思想1. 将时间区间[0,T]平均分成N个小区间;2. 在每个小区间内进行递推计算,直到得到所有时间点上的y值;3. 每次递推计算都使用龙格库塔公式来估算y的值。

五、龙格库塔法的公式对于二阶常微分方程y''+p(t)y'+q(t)y=f(t),我们可以使用以下公式来递推计算:1. k1=h*y'(t)l1=h*f(t)-p(t)*k1/2-q(t)*y(t);2. k2=h*(y'(t)+l1/2)l2=h*f(t+h/2)-p(t+h/2)*k2/2-q(t+h/2)*(y(t)+k1/2);3. k3=h*(y'(t)+l2/2)l3=h*f(t+h/2)-p(t+h/2)*k3/2-q(t+h/2)*(y(t)+k2/2);4. k4=h*(y'(t)+l3)l4=h*f(t+h)-p(t+h)*k4-q(t+h)*(y(t)+k3);其中,h表示时间步长,t表示当前时间点,f表示已知函数,p和q都是已知常数。

通过这些公式,我们可以得到下一个时间点上的y值。

六、龙格库塔法的实现为了更好地理解龙格库塔法,我们可以看一下具体的实现过程。

龙格-库塔(Runge-Kutta)法

龙格-库塔(Runge-Kutta)法
数值计算方法
龙格-库塔(Runge-Kutta)法 1.1 龙格-库塔(Runge-Kutta)法的基本思想
Euler公式可改写成
yi1 yi hK1 K1 f ( xi , yi )
则yi+1的表达式y(xi+1)与的Taylor展开式的前两项 完全相同,即局部截断误差为 O(h 2 ) 。
为了进一步提高精度,设除 xi p 外再增加一点
xiq xi qh ( p q 1)
并用三个点 xi ,xi p , xiq 的斜率k1,k2,k3加权平均
得出平均斜率k*的近似值,这时计算格式具有形式:
yi1 yi h(1 )k1 k2 k3
k1 f (xi , yi ) k2 f (xi ph, yi phk1 )
格式。
若取 1 0 ,则 2 法的计算公式为
1,
p
1 2
,此时二阶龙格-库塔
ky1i
1
f
yi hk2 ( xi , yi )
k
2
h
f
(
x
i
1
,
yi
2
2 k1 )
i 0,1,2, n 1
此计算公式称为变形的二阶龙格—库塔法。式中
x 1 i 2
为区间
xi , xi1
的中点。
1.3 三阶龙格-库塔法
拉法,将 xi p 视为 xi1,即可得
k2 f (xi ph, yi phk1 ) 对常微分方程初值问题(7.1)式的解 y=y(x),根据微 分中值定理,存在点 (xi , xi1 ) ,使得
也即
y(xi1 ) y(xi ) y( )( xi1 xi )
y( xi1 ) y( xi ) hK

龙格库塔法

龙格库塔法
§9-3
一、高阶泰勒法
假设初值问题
龙格—库塔法 龙格 库塔法
dy = f (t , y ) dt y (a) = α 的解y (t)及f (t , y )足够光滑.
将y (ti +1 )在ti处作n阶泰勒展开, 得
a≤t ≤b
(1)
y′′(ti ) 2 y ( n ) (ti ) n y ( n +1) (ξ i ) n +1 y (ti +1 ) = y (ti ) + y′(ti )h + h +L+ h + h n! 2! (n + 1)! 其中, ti < ξ i < ti +1.
2
i
i
1
3
i
i
2
4
i
i
3
i +1
i
6123 Nhomakorabea4
作业 教材P198 习题3
(2)
(3)
首先将y (ti +1 )在ti处展成幂级数 h2 y (ti +1 ) = y (ti ) + hy′(ti ) + y′′(ti ) + O(h 3 ) 2 将 y′(t ) = f (t , y (t )) y′′(t ) = f t′(t , y (t )) + f y (t , y (t )) f (t , y (t )) 代入上式, 得 h2 y (ti +1 ) = y (ti ) + hf + ( f t + ff y ) + O(h 3 ) (3) 2 其中f , f t , f y′分别表示相应函数在点(ti , y (ti ))处的函数值.

二阶微分方程龙格库塔法

二阶微分方程龙格库塔法

二阶微分方程龙格库塔法
1.什么是二阶微分方程?
二阶微分方程是指二阶导数出现的方程,其通用形式为
y''+P(x)y'+Q(x)y=F(x),其中P(x)、Q(x)、F(x)均为已知函数,y是所求函数。

2.为什么要用龙格库塔法?
求解二阶微分方程是数学、物理等领域中常见的问题,然而大多数情况下无法直接解题,所以需要使用数值方法。

龙格库塔法是一种数值方法,被广泛应用于求解微分方程,其优点是精度高、计算速度快。

3.龙格库塔法的原理
龙格库塔法是一种迭代方法,将微分方程看作初值问题,从初始点出发,采用一定的步长h,在每个点上用插值公式逼近y(x+h),以此求得y(x+h)的近似值,一步步逼近所要求的精度。

4.龙格库塔法的步骤
(1)确定步长h和积分区间[a,b]。

(2)用初值y(x0)=y0,y'(x0)=y'0求出y(x0+h)的近似值。

(3)根据龙格库塔公式求得y(x0+2h)的近似值。

(4)对于连续求解的情况,重复以上步骤,直到求得所需的精度或者达到指定的终点。

5.龙格库塔公式
龙格库塔法的精度与所采用的公式有关,一般采用二阶或四阶的龙格库塔公式。

二阶龙格库塔公式为:
y0=y(x0)
k1=h*f(x0,y0)
k2=h*f(x0+h,y0+k1)
y(x0+2h)=y0+1/2(k1+k2)
其中,f(x,y)是待求函数。

6.总结
龙格库塔法是求解微分方程的一种常用数值方法,可以高精度、高效地解决二阶微分方程的问题。

该方法所需的计算量较小,易于编写程序实现,在实际应用中具有广泛的用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include<stdlib.h>
#include<stdio.h>
/*n表示几等分,n+1表示他输出的个数*/ int RungeKutta(double y0,double a,double b,int n,double *x,double *y,double
(*function)(double,double))
{
double h=(b-a)/n,k1,k2;
int i;
x[0]=a;
y[0]=y0;
for(i=0;i<n;i++)
{
x[i+1]=x[i]+h;
k1=function(x[i],y[i]);
k2=function(x[i]+h/2,y[i]+h*k1/2);
y[i+1]=y[i]+h*k2;
}
return 1;
}
double function(double x,double y)
{
return y-2*x/y;
}
int main()
{ int i;
double x[6],y[6];
printf("用二阶龙格-库塔方法\n"); RungeKutta(1,0,1,5,x,y,function);
for( i=0;i<6;i++)
printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]); return 1;
}
另一个
#include<stdio.h>
#include<math.h>
double fxy(double xi,double yi) /*定义函数fxy*/
{
double y;
y=yi-2*xi/yi;
return(y);
}
void main()
{
double
x0,y0,h,xi,yi,yi_1,xk2,yk2,xk3,yk3,xk4,yk4,k1 ,k2,k3,k4;
int i;
x0=0;
/*赋初始值*/
y0=1;
h=0.1;
xi=x0;
yi=y0;
for(i=1;i<=10;i++)
/*循环开始*/
{
k1=h*fxy(xi,yi);
/*求解k1值*/
xk2=xi+0.5*h;
/*求解k2的值*/
yk2=yi+0.5*k1;
k2=h*fxy(xk2,yk2);
xk3=xi+0.5*h;
/*求解k3的值*/
yk3=yi+0.5*k2;
k3=h*fxy(xk3,yk3);
xk4=xi+h;
/*求解k4的值*/
yk4=yi+k3;
k4=h*fxy(xk4,yk4);
yi_1=yi+(k1+2*k2+2*k3+k4)/6;
/*求解yi+1的值*/
yi=yi_1;
if(i==1)
{
printf("输出函数yi的近似值:\n"); /*输出所有的yi值*/
printf("y0 =%.10f",y0);
}
printf("y%d =%.10f",i,yi);
if((i+1)%1==0)
/*每行显示三个数值*/
printf("\n"); }
printf("\n"); }。

相关文档
最新文档