高考数学一轮复习 29函数模型及其应用课时作业 理 新人教B版

合集下载

新课标高考数学理一轮复习课件:2.8 《函数模型及其应用》新人教版必修

新课标高考数学理一轮复习课件:2.8 《函数模型及其应用》新人教版必修

考点三 分段函数问题 【案例3】 某公司生产某种电子仪器的固定 成本为20 000元,每生产一台仪器需增加投入100 元.已知总收益满足函数R(x)
=400x-12x2 ,0≤x≤400; 其中 x 是仪器的 80 000, x>400,
月产量. (1)将利润表示为月产量的函数f(x); (2)当月产量为何值时,公司所获利润最大?最
(1)从药物释放开始,每立方米空气中的含药量y(毫克) 与时间t(小时)之间的函数关系式为__________________ ________________________________________________.
考点二 二次函数问题 【案例2】 某市现有从事第二产业人员100万人,平 均每人每年创造产值a万元(a为正常数),现在决定从中分 流出x万人去加强第三产业.分流后,继续从事第二产业 的人员平均每人每年创造产值可增加2x%(0<x<100),而 分流出的从事第三产业的人员,平均每人每年可创造产值 1.2a万元.在保证第二产业的产值不减少的情况下,分流 出多少人,才能使该市第二、三产业的总产值增加最多? 关键提示:“保证第二产业的产值不减少”转译为数 学语言是一个“二次不等式模型”,“该市第二、三产业 的总产值增加最多”转译为数学语言是一个“二次函数的 最值问题”.
2.函数模型的应用实例
根据收集的数据的特点,通过建立函数模型,解决实
际问题的基本过程如下:
1.某地区植被被破坏,土地沙化越来越严重,最
近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和
0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系
式较为近似的是
()
A.y=0.2x
B.y=110(x2+2x)

高三数学理人教版一轮训练函数模型及其应用

高三数学理人教版一轮训练函数模型及其应用

第9节函数模型及其应用【选题明细表】知识点、方法题号一次、二次函数模型2,3,7,8指数、对数函数模型1,4,10函数模型的综合应用5,6,9,11,12,13基础巩固(时间:30分钟)1.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( C )(A)y=100xﻩ(B)y=50x2-50x+100(C)y=50×2x(D)y=100log2x+100解析:根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.故选C.2.(2017·广元三模)某城区按以下规定收取水费:若每月用水不超过20 m3,则每立方米水费按2元收取;若超过20 m3,则超过的部分按每立方米3元收取,如果某户居民在某月所交水费的平均价为每立方米2.20元,则这户居民这月共用水( D )(A)46 m3ﻩ(B)44 m3(C)26 m3ﻩ(D)25 m3解析:设这户居民这个月共用水x立方米,20×2+(x-20)×3=2.2x,40+3x-60=2.2x,0.8x=20,x=25.他这个月共用了25立方米的水.故选D.3.有一批材料可以建成200 m的围墙,如果用此材料一边靠墙围成一个矩形场地,中间用同样材料隔成三个面积相等的矩形,如图所示,则围成矩形场地最大面积为( B )(A)2000 m2ﻩ(B)2 500 m2(C)2800 m2ﻩ(D)3 000 m2解析:设每个小矩形长为x,宽为y,则4x+3y=200,S=3xy=x(200-4x)=-4x2+200x=-4(x-25)2+2 500,所以x=25时,Smax=2 500(m2).故选B.4.某工厂2017年生产某产品2万件,计划从2018年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg 2=0.301 0,lg 3=0.4771)( D)(A)2021年(B)2022年ﻩ(C)2023年(D)2024年解析:设再过n年这家工厂生产这种产品的年产量超过6万件,根据题意,得2(1+20%)n>6,即1.2n>3,两边取对数,得nlg 1.2>lg 3,所以n>≈6.031 6.所以n=7,即2017+7=2024.所以从2024年开始这家工厂生产这种产品的年产量超过6万件.故选D.5.(2017·山西长治期中)制作一个面积为1 m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(够用,又耗材最少)是( C)(A)4.6 mﻩ(B)4.8 mﻩ(C)5 m (D)5.2 m解析:设一条直角边为x,则另一条直角边是,斜边长为,故周长C=x++≥2+2≈4.82,当且仅当x=时等号成立,故较经济的(够用,又耗材最少)是5 m.故选C.6.(2016·长春联合测试)某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这只股票的盈亏情况(不考虑其他费用)为( B )(A)略有盈利(B)略有亏损(C)没有盈利也没有亏损(D)无法判断盈亏情况解析:设该股民购这只股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这只股票略有亏损.故选B.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为m.解析:设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400(m2).答案:208.某人根据经验绘制了2017年元旦前后,从12月21日至1月7日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿千克.解析:前10天满足一次函数关系式,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得解得k=,b=,所以y=x+,则当x=6时,y=.答案:能力提升(时间:15分钟)9.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加的面积分别为198.5公顷、399.6公顷和793.7公顷,则沙漠增加面积y(公顷)关于年数x的函数关系较为近似的是( C )(A)y=200x(B)y=100x2+100x(C)y=100×2x(D)y=0.2x+log2x解析:对于A,x=1,2时,符合题意,x=3时,相差较大,不符合题意; 对于B,x=1时,符合题意,x=2,3时,相差较大,不符合题意;对于C,x=1,2,3时,y值都近似符合题意;对于D,x=1,2,3时,相差较大,不符合题意.故选C.10.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P mg/L与时间t h间的关系为P=P0e-kt.若在前5个小时消除了10%的污染物,则污染物减少50%所需要的时间约为(已知lg 2=0.301 0,lg 3=0.477 1)( B )(A)26小时(B)33小时ﻩ(C)36小时 (D)42小时解析:由题意,前5个小时消除了10%的污染物,因为P=P0e-kt,所以(1-10%)P0=P0e-5k,所以k=-ln 0.9;则P=P0,当P=50%P0时,有50%P0=P0,所以ln0.9=ln 0.5,所以t=≈33,即污染物减少50%需要花33小时.故选B.11.已知投资x万元经销甲商品所获得的利润为P=;投资x万元经销乙商品所获得的利润为Q=(a>0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a 的最小值为 .解析:设投资乙商品x万元(0≤x≤20),则投资甲商品(20-x)万元. 利润分别为Q=(a>0),P=,因为P+Q≥5,0≤x≤20时恒成立,则化简得a≥,0≤x≤20时恒成立.(1)x=0时,a为一切实数;(2)0<x≤20时,分离参数a≥,0<x≤20时恒成立,所以a≥,a的最小值为.答案:12.(2017·南昌二模)网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足x=3-函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.解析:由题知t=-1,(1<x<3),所以月利润:y=(48+)x-32x-3-t=16x--3=16x-+-3=45.5-[16(3-x)+]≤45.5-2=37.5,当且仅当x=时取等号,即月最大利润为37.5万元.答案:37.513.某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k 是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入g(8)的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.解:(1)据题意g(3)=32+3k=309,解得k=100,所以g(n)=n2+100n,(n≤5)第5个月的净收入为g(5)-g(4)=109(万元),所以,g(8)=g(5)+3×109=852万元.(2)g(n)=即g(n)=若不投资改造,则前n个月的总罚款3n+×2=n2+2n,令g(n)-500+100>70n-(n2+2n),得g(n)+n2-68n-400>0.显然当n≤5时,上式不成立;当n>5时,109n-20+n2-68n-400>0, 即n(n+41)>420,又n∈N,解得n≥9.所以,经过9个月投资开始见效.。

2023届高考数学一轮复习作业函数模型及其应用新人教B版

2023届高考数学一轮复习作业函数模型及其应用新人教B版

函数模型及其应用一、选择题1.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )A BC DB [函数h=f(t)是关于t的减函数,故排除C,D,半缸水前,h的变化是越来越慢,半缸水后,h的变化是越来越快,故选B.]2.(2021·湖南衡阳市八中高三模拟)“一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e ax+b(a,b为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,那么在12 ℃时,该果蔬的保鲜时间为( ) A.72小时 B.36小时C.24小时 D.16小时A [当x=6时,e6a+b=216;当x=24时,e24a+b=8,则==27,整理可得e6a=,于是e b=216×3=648,当x=12时,y=e12a+b=(e6a)2·e b=×648=72.]3.(2021·北京朝阳区高三二模)某地对生活垃圾使用填埋和环保两种方式处理.该地2020年产生的生活垃圾为20万吨,其中15万吨以填埋方式处理,5万吨以环保方式处理.预计每年生活垃圾的总量比前一年增加1万吨,同时,因垃圾处理技术越来越进步,要求从2021年起每年通过环保方式处理的生活垃圾量是前一年的q倍,若要使得2024年通过填埋方式处理的生活垃圾量不高于当年生活垃圾总量的50%,则q的值至少为( )A. B. C. D.C [因为该地2020年产生的生活垃圾为20万吨,预计每年生活垃圾的总量比前一年增加1万吨,所以2024年的生活垃圾为20+4=24(万吨);因为从2021年起每年通过环保方式处理的生活垃圾量是前一年的q倍,所以2024年通过环保方式处理的生活垃圾量为5q4(万吨),所以24-5q4≤24×0.5,解得:q≥.故q的值至少为.]4.某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A.10.5万元 B.11万元C.43万元 D.43.025万元C [设在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可获得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.]5.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t秒内的路程为s =t2米,那么,此人( )A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间离汽车的最近距离为14米D.不能追上汽车,但期间离汽车的最近距离为7米D [已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.故选D.]6.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万和8万,那么要使这两项费用之和最小,仓库应建在离车站( )A.5千米处 B.4千米处C.3千米处 D.2千米处A [设仓库建在离车站x千米处,则y1=,y2=k2x,根据给出的初始数据可得k1=20,k2=0.8,两项费用之和为y=+0.8x≥8,当且仅当x=5时,等号成立.]二、填空题7.某种动物的繁殖数量y(数量:只)与时间x(单位:年)的关系式为y=a log2(x+1),若这种动物第1年有100只,则到第7年它们发展到________只.300 [由题意知100=a log2(1+1)⇒a=100,当x=7时,可得y=100log2(7+1)=300.]8.(2021·广东深圳市高三模拟)冈珀茨模型(y=k·ab t)是由冈珀茨(Gompertz)提出,可作为动物种群数量变化的模型,并用于描述种群的消亡规律.已知某珍稀物种t年后的种群数量y近似满足冈珀茨模型:y=k0·e1.4e-0.125t(当t=0时,表示2020年初的种群数量),若m(m∈N*)年后,该物种的种群数量将不足2020年初种群数量的一半,则m 的最小值为________.(ln 2≈0.7)9.为促进全民健身运动,公司为员工购买某健身俱乐部的健身卡,每张360元,使用规定:不记名,每卡每次仅限1人,每天仅限1次.公司共90名员工,公司领导打算组织员工分批去健身,除需购买若干张健身卡外,每次去俱乐部还要包租一辆汽车,费用是每次40元,如果要使每位员工健身10次,那么公司购买________张健身卡最合算.10 [设购买x张健身卡,这项健身活动的总支出为y,则y=×40+360x,即y=360≥360×2=7 200,当且仅当=x,即x=10时取等号,所以公司购买10张健身卡最合算.]三、解答题10.如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE 上.(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.[解](1)如图,作PQ⊥AF于Q,所以PQ=8-y,EQ=x-4,在△EDF中,=,所以=,所以y=-x+10,定义域为{x|4≤x≤8}.(2)设矩形BNPM的面积为S,则S(x)=xy=x=-(x-10)2+50,所以S(x)是关于x的二次函数,且其图象开口向下,对称轴为直线x=10,所以当x∈[4,8]时,S(x)单调递增,所以当x=8时,矩形BNPM的面积取得最大值,最大值为48平方米.11.为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过调查,生产某小型电子产品需投入年固定成本5万元,每年生产x万件,需另投入流动成本C(x)万元,且C(x)=每件产品售价为10元,经分析,生产的产品当年能全部售完.(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(年利润=年销售收入-固定成本-流动成本);(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?[解](1)因为每件产品售价为10元,所以x万件产品销售收入为10x万元.依题意得,当0<x<8时,P(x)=10x--5=-x2+6x-5;当x≥8时,P(x)=10x--5=30-.所以P(x)=(2)当0<x<8时,P(x)=-(x-6)2+13,当x=6时,P(x)取得最大值P(6)=13;当x≥8时,P′(x)=-1+<0,所以P(x)为减函数,当x=8时,P(x)取得最大值P(8)=.由13<可知当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为万元.1.(2021·西安中学高三月考)良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间T(单位:年)的衰变规律满足N=N0·2 (N0表示碳14原有的质量),经过测定,良渚古城遗址文物样本中碳14的质量约是原来的,据此推测良渚古城存在的时期距今约______年(参考数据:lg 2≈0.3,lg 7≈0.84,lg 3≈0.48)6 876 [∵样本中碳14的质量N随时间T(单位:年)的衰变规律满足N=N0·2,由于良渚古城遗址文物样本中碳14的质量约是原来的,∴N0·2=N0,即2=,两边同时取以2为底的对数,得=log23-log27=-≈-=-1.2.∴T=1.2×5 730=6 876年.∴推测良渚古城存在的时期距今约6 876年.]2.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.(1)130 (2)15 [(1)顾客一次购买草莓和西瓜各1盒时,总价为60+80=140(元),总价达到120元,又x=10,即顾客少付10元,所以需要支付130元.(2)设顾客买水果的总价为a元,当0≤a<120时,顾客支付a元,李明得到0.8a元,且0.8a≥0.7a,显然符合题意,此时x=0;当a≥120时,则0.8(a-x)≥0.7a恒成立即x≤a恒成立,x≤min,又a≥120,所以min=15所以x≤15.综上可知,0≤x≤15.所以x的最大值为15.]3.某种出口产品的关税税率为t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2,其中k,b均为常数.当关税税率t=75%时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k,b的值;(2)市场需求量q(单位:万件)与市场价格x(单位:千元)近似满足关系式:q=2-x,当p=q时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.[解](1)由已知得:⇒解得b=5,k=1.(2)当p=q时,2=2-x,所以(1-t)(x-5)2=-x⇒t=1+=1+.而f(x)=x+在(0,4]上单调递减,所以当x=4时,f(x)有最小值,故当x=4时,关税税率的最大值为500%.。

2021高三数学人教B版一轮学案:函数模型及应用 Word版含解析

2021高三数学人教B版一轮学案:函数模型及应用 Word版含解析

第九节函数模型及应用最新考纲考情分析1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.利用函数图象刻画实际问题及建立函数模型解决实际问题,是高考命题的热点.2.常与函数的图象、单调性、最值以及基本不等式、导数的应用交汇命题,考查建模能力及分析问题和解决问题的能力.3.选择题、填空题、解答题三种题型都有考查,但以解答题为主.知识点一指数、对数、幂函数模型性质比较函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函f(x)=ax2+bx+c(a,b,c为常数,a≠0)数模型与指数函数相关模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)与对数函数相关模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)与幂函数相关模型f(x)=ax n+b(a,b,n为常数,a≠0)(1)“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.(2)充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.(3)易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.(×)(2)函数y=2x的函数值比y=x2的函数值大.(×)(3)不存在x0,使a x0<x<log a x0.(×)(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.(√)解析:(1)9折出售的售价为100(1+10%)×=99元.∴每件赔1元,(1)错.(2)中,当x=2时,2x=x2=4.不正确.(3)中,如a=x0=,n=,不等式成立,因此(3)错.2.小题热身(1)函数模型y1=0.25x,y2=log2x+1,y3=1.002x,随着x的增大,增长速度的大小关系是y3>y1>y2.解析:根据指数函数、一次函数、对数函数的增长速度关系可得.(2)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.把平均每件产品的生产准备费用与仓储费用之和S表示为x的函数是S=+.解析:由题意知,每件产品的生产准备费用是元,仓储费用是元,所以每件产品的生产准备费用与仓储费用之和S=+.(3)某物体一天中的温度T是关于时间t的函数,且T=t3-3t +60,时间单位是小时,温度单位是℃,当t=0时表示中午12:00,其后t值为正,则上午8时该物体的温度是8_℃.解析:由题意知,上午8时即t=-4,因此所求温度T=(-4)3-3×(-4)+60=8(℃).(4)已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x +1),设这种动物第2年有100只,到第8年它们发展到200只.解析:由题意知100=a log3(2+1),∴a=100,∴y=100log3(x+1),当x=8时,y=100log39=200.(5)在不考虑空气阻力的情况下,火箭的最大速度v(米/秒)关于燃料的质量M(千克)、火箭(除燃料外)的质量m(千克)的函数关系式是v=2 000·ln.当燃料质量是火箭质量的e6-1倍时,火箭的最大速度可达12千米/秒.解析:由题意可得12 000=2 000ln,则ln=6,解得1+=e6,所以=e6-1,故填e6-1.考点一一次函数、二次函数模型的应用【例1】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=x2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不能获利,那么国家每月至少需要补贴多少元才能使该单位不亏损?【解】(1)由题意可知,二氧化碳的每吨平均处理成本为=x+-200≥2-200=200,当且仅当x=,即x=400时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则S=100x-y=100x-=-x2+300x-80 000=-(x-300)2-35 000.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能使该单位不亏损.方法技巧在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.解决函数应用问题时,最后还要还原到实际问题.1.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价/元45678910日均销售量/件400360320280240200160此商品的定价(单位:元/件)应为(C)A.4B.5.5C.8.5D.10解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C.2.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大(B)A.8元/件B.10元/件C.12元/件D.14元/件解析:设单价为6+x,日均销售量为100-10x,则日利润y =(6+x-4)(100-10x)-20=-10x2+80x+180=-10(x-4)2+340(0<x<10).∴当x=4时,y max=340.即单价为10元/件时,利润最大,故选B.考点二分段函数模型的应用【例2】已知美国苹果公司生产某款iPhone手机的年固定成本为40万美元,每生产1万部还需另投入16万美元,设苹果公司一年内共生产该款iPhone手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式;(2)当年产量为多少万部时,苹果公司在该款iPhone手机的生产中所获得的利润最大?并求出最大利润.【解】(1)当0<x≤40时,W=xR(x)-(16x+40)=-6x2+384x -40,当x>40时,W=xR(x)-(16x+40)=--16x+7 360.所以,W=(2)①当0<x≤40时,W=-6(x-32)2+6 104,所以W max=W(32)=6 104(万美元);②当x>40时,W=--16x+7 360,由于+16x≥2=1 600,当且仅当=16x,即x=50∈(40,+∞)时,取等号,所以W 取最大值为5 760.综合①②知,当x=32时,W取最大值为6 104万美元.方法技巧(1)分段函数的特征主要是每一段自变量变化所遵循的规律不同,分段函数模型的最值问题,应先求出每一段上的最值,然后比较大小.(2)构造分段函数时,要力求准确,简洁,做到分段合理,保证不重不漏.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=且每处理1吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?解:(1)当x∈[200,300]时,设该项目获利为S元,则S=200x -x2-200x+80 000=-x2+400x-80 000=-(x-400)2,所以当x∈[200,300]时,S<0,因此该项目不会获利.当x=300时,S取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损.(2)由题意,可知二氧化碳的每吨处理成本为=当x∈[120,144)时,=x2-80x+5 040=(x-120)2+240,所以当x=120时,取得最小值240.当x∈[144,500]时,=x+-200≥2-200=200,当且仅当x=.即x=400时,取得最小值200,所以该项目每月处理量为400吨时,才能使每吨的平均处理成本最低.考点三指数函数、对数函数模型的应用【例3】已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是θ=m·2t+21-t(t≥0,并且m>0).(1)如果m=2,求经过多长时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.【解】(1)若m=2,则θ=2·2t+21-t=2,当θ=5时,2t+=,令2t=x(x≥1),则x+=,即2x2-5x+2=0,解得x=2或x=(舍去),此时t=1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立,即m·2t+≥2恒成立.亦即m≥2恒成立.令=y,则0<y≤1,∴m≥2(y-y2)恒成立,由于y-y2≤,∴m≥.因此,当物体的温度总不低于2摄氏度时,m的取值范围是.方法技巧(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决;(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型;(3)y=a(1+x)n通常利用指数运算与对数函数的性质求解.1.某公司为激励创新,计划逐年加大研发资金的投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)(D)A.2017年B.2018年C.2019年D.2020年解析:设经过x年后全年投入的研发资金开始超过200万元,由题意可得130(1+0.12)x=200,则x=log1.12,即x==≈≈4,2 016+4=2 020,故选D.2.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同的要求.音量大小的单位是分贝(dB),对一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10lg(其中I0是人耳能听到声音的最低声波强度),则70 dB的声音的声波强度I1是60 dB的声音的声波强度I2的(C)A.倍B.倍C.10倍D.ln倍解析:由η=10lg得I=I010,所以I1=I0107,I2=I0106,所以=10,所以70 dB的声音的声波强度I1是60 dB的声音的声波强度I2的10倍,故选C.。

2021年高考数学大一轮复习 2.9函数模型及其应用课时作业 理

2021年高考数学大一轮复习 2.9函数模型及其应用课时作业 理

2021年高考数学大一轮复习 2.9函数模型及其应用课时作业 理一、选择题1.下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是( )A.C .指数函数模型D .对数函数模型解析:由表中数据知x ,y 满足关系y =13+2(x -3).故为一次函数模型. 答案:A2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( )A .不能确定B .①②同样省钱C .②省钱D .①省钱解析:方法①用款为4×20+26×5=80+130=210(元) 方法②用款为(4×20+30×5)×92%=211.6(元) 因为210<211.6,故方法①省钱. 答案:D3.一个人以6 m/s 的速度去追停在交通灯前的汽车,当他离汽车25 m 时,交通灯由红变绿,汽车以1 m/s 2的加速度匀加速开走,那么( )A .人可在7 s 内追上汽车B .人可在10 s 内追上汽车C .人追不上汽车,其间距最少为5 mD .人追不上汽车,其间距最少为7 m解析:设汽车经过t 秒行驶的路程为s 米,则s =12t 2,车与人的间距d =(s +25)-6t=12t 2-6t +25=12(t -6)2+7,当t =6时,d 取得最小值为7. 答案:D4.(xx·湖南卷)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q2B.p +1q +1-12C.pqD.p +1q +1-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =p +1q +1-1,故选D.答案:D5.如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D 为止.在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( )解析:根据动点的移动知,P 点在AB 上移动时,△APD 的面积S 是在增加,排除选项C ,P 点在BC 上移动时,△APD 的面积S 是不变化的,排除选项A ,因为CD >AB ,点P 是匀速前进,所以在CD 上移动的时间比在AB 上移动所用的时间多,所以排除选项D ,选B.答案:B6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率...是-10ln2 (太贝克/年),则M (60)=( ) A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克D .150太贝克解析:由题意M ′(t )=M 02-t30 ⎝ ⎛⎭⎪⎫-130ln2,M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln2=-10ln2,∴M 0=600,∴M (60)=600×2-2=150.故选D.答案:D 二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元.解析:设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108. 答案:1088.已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎪⎨⎪⎧5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x,x >1,《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过________小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为5-1=0.2,要使酒精含量≤0.02毫克/毫升,则35⎝ ⎛⎭⎪⎫13x≤0.02,∴x ≥log 330=1+log 310>1+log 39=3,故至少要4个小时后才能开车. 答案:49.汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50 000元;使用中每年的保险费、养路费及汽油费合计为6 000元;前x 年的总维修费y 满足y =ax 2+bx ,已知第一年的总维修费为1 000元,前两年的总维修费为3 000元,则这种汽车的最佳使用年限为________年.解析:由题意得⎩⎪⎨⎪⎧1 000=a +b3 000=4a +2b ,解得:a =500,b =500,∴y =500x 2+500x . 设年均消耗费用为S ,则 S =50 000+500x 2+500xx+6 000=50 000x+500x +500+6 000≥2×5 000+500+6 000=16 500(元),当且仅当50 000x=500x ,即x =10时取“=”. 答案:10 三、解答题10.某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率t =75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k ,b 的值.(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x,当p =q 时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解:(1)由已知,⇒⎩⎪⎨⎪⎧1-0.75k 5-b 2=0,1-0.75k7-b2=1.解得b =5,k =1.(2)当p =q 时,2(1-t )(x -5)2=2-x,所以(1-t )(x -5)2=-x ⇒t =1+x x -52=1+1x +25x-10. 而f (x )=x +25x在(0,4]上单调递减,所以当x =4时,f (x )有最小值414,故当x =4时,关税税率的最大值为500%.11.某企业为了保护环境,发展低碳经济,在国家科研部门的支持下,进行技术攻关,新上了一个把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5 040x ,x ∈[120,144,12x 2-200x +80 000,x ∈[144,500,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果亏损,则国家每月补偿数额的范围是多少?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 解:(1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+400x -80 000=-12(x -400)2,∴当x ∈[200,300]时,S <0, 因此该项目不会获利.当x =300时,S 取得最大值-5 000,当x =200时,S 取得最小值-20 000. ∴国家每月补偿数额的范围是[5 000,20 000]. (2)由题意可知,二氧化碳的每吨处理成本为 y x =⎩⎪⎨⎪⎧13x 2-80x +5 040,x ∈[120,144,12x +80 000x -200,x ∈[144,500,①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,y x取得最小值240;②当x ∈[144,500)时,y x =12x +80 000x -200≥212x ·80 000x -200=200,当且仅当12x =80 000x,即x =400时,yx取得最小值200.∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.1.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C ,D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是( )解析:f (t )增长的速度先快后慢,故选C. 答案:C2.(xx·陕西卷)如上图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 解析:根据函数图象的特点,过点(0,0),关于原点对称, 故可设函数y =ax 3+cx ,又函数在(-5,2)处的切线平行于x 轴,∴y ′=3ax 2+c ,即3a ×25+c =0,∴c =-75a ,观察选项中的系数关系,可知选A. 答案:A3.某商场xx 年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x(q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.解析:因为①②中函数要么单调递增,要么单调递减,不满足题意,③为二次函数且开口向上,即f (x )先减后增,满足题意,所以选③.由f (1)=10,f (3)=2,得1+p +q =10,9+3p +q =2,解得p =-8,q =17. 所以f (x )=x 2-8x +17. 答案:③ x 2-8x +174.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系; (2)该地一家庭记录了过去12个月的月用水量(x ∈N *)如下表:(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:解:(1)y 关于x 的函数关系式为y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x =3时,y =6; 当x =4时,y =8;当x =5时,y =12;当x=6时,y=16;当x=7时,y=22.所以该家庭去年支付水费的月平均费用为112(6×1+8×3+12×3+16×3+22×2)≈13(元).(3)由(1)和题意知:当y≤12时,x≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.a20500 5014 倔g23179 5A8B 媋33448 82A8 芨32471 7ED7 绗22370 5762 坢21924 55A4 喤38806 9796 鞖JY%A。

2021版新高考数学一轮复习第二章2.9函数模型及其应用课件新人教B版

2021版新高考数学一轮复习第二章2.9函数模型及其应用课件新人教B版

第九节ꢀ函数模型及其应用内容索引【教材·知识梳理】1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=blogx+c(a,b,c为常数,b≠0,a>0且a≠1)a幂函数模型f(x)=ax n+b (a,b为常数,a≠0)2.三种函数模型的性质ꢀꢀ函数性质ꢀꢀy=a x (a>1)y=log a x(a>1)y=x n (n>0)在(0,+∞)上的增减性递增递增单调_____单调_____单调递增相对平稳增长速度越来越快越来越慢随x 的增大,逐渐表随x 的增大,逐渐表y 轴x 轴现为与____平行现为与____平行图象的变化随n 值变化而各有不同值的比较存在一个x ,当x>x 时,有log x<x n <a x 00a【常用结论】“对勾”函数:形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.(2)当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.【知识点辨析】(正确的打“√”,错误的打“×”)(1)函数y=2x的函数值比y=x2的函数值大.(ꢀꢀ)(2)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(ꢀꢀ)(3)幂函数增长比直线增长更快.(ꢀꢀ),使(ꢀꢀ)(4)不存在x提示:(1)×.当x=-1时,2-1<(-1)2.(2)×.“指数爆炸”是针对b>1,a>0的指数型函数y=a·b x+c.(3)×.幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)×.当a∈(0,1)时存在x,使【易错点索引】序号易错警示典题索引1 2 3 4 5忽略图象的横纵坐标的意义忽略图象的变化趋势考点一、T1考点一、T2、4考点二、T3忽略函数的表示方法(列表)忽略自变量的取值考点三、角度1考点三、角度2忽略基本不等式成立的条件【教材·基础自测】1.(必修1P67例4改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是(ꢀꢀ)A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元【解析】选D.由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为×(40+60+30+30+50+60)=45(万元),故D错误.2.(必修1P69习题2-3AT7改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.ꢀ【解析】利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.答案:183.(必修1P120巩固与提高T9改编)某动物繁殖量y(只)与时间x(年)的关系为(x+1),设这种动物第2年有100只,则到第8年繁殖到________只.ꢀy=alog3【解析】依题设知alog3=100,a=100.当x=8时,y=100log9=200.33答案:200考点一ꢀ利用图象刻画实际问题ꢀ【题组练透】1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是(ꢀꢀ)A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,故选A.2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图【解析】选C.设BC=x m,则DC=(16-x)m,由得a≤x≤12.矩形面积S=x(16-x)≤=64.当x=8时取等号.当0<a≤8时,u=f(a)=64;当a>8时,由于函数在[a,12]上为减函数,=f(a)=a(16-a).所以当x=a时,矩形面积取最大值Smax3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是(ꢀꢀ)【解析】选A.若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.4.(2020·广州模拟)某罐头加工厂库存芒果m(kg),今年又购进n(kg)新芒果后,欲将芒果总量的三分之一用于加工芒果罐头.被加工为罐头的新芒果最多为f(kg),最少为f(kg),则下列选项中最能准确描述f,f分别与n的关系的是1212世纪金榜导学号(ꢀꢀ)【解析】选A.要使得被加工为罐头的新芒果最少,尽量使用库存芒果,即当≤m,n≤2m时,f=0,当n>2m时,f=-m=>0,对照图象舍去C,D;要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当≤n,n≥时f 1=>n,n<时f1=n,因为<2m,所以A符合题意.,当22【规律方法】ꢀ判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二ꢀ已知函数模型求解实际问题ꢀ【典例】1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+ 20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是(ꢀꢀ)ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀA.100台C.150台B.120台D.180台2.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)=已知某家庭2016年前三个月的煤气费如表:月份用气量4 m3煤气费4元一月份二月份三月份25 m335 m314元19元若四月份该家庭使用了20 m3的煤气,则其煤气费为A.11.5元B.11元C.10.5元D.10元(ꢀꢀ)3.某农场种植一种农作物,为了解该农作物的产量情况,现将近四年的年产量f(x)(单位:万斤)与年份x(记2015年为第1年)之间的关系统计如下:x1234f(x) 4.00 5.627.008.86则f(x)近似符合以下三种函数模型之一:①f(x)=ax+b;②f(x)=2x+a;③f(x)=x2+b.则你认为最适合的函数模型的序号是________.ꢀ【解题导思】序号联想解题1 2 3由销售收入不小于总成本,想到销售收入≥总成本由f(x)的解析式考虑用待定系数法求A,B,C的值由三个模拟函数选择,想到逐个验证求解【解析】1.选C.设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+ 5x-3 000(0<x<240,x∈N*).令f(x)≥0,得x≥150,所以生产者不亏本时的最低产量是150台.2.选A. 根据题意可知f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5.3.若模型为②,则f(1)=2+a=4,解得a=2,于是f(x)=2x+2,此时f(2)=6,f(3)=10, f(4)=18,与表格中的数据相差太大,不符合;若模型为③,则f(1)=1+b=4,解得b =3,于是f(x)=x2+3,f(2)=7,f(3)=12,f(4)=19,此时,与表格中的数据相差太大,不符合;若模型为①,则根据表中数据得解得a=,经检验是最适合的函数模型.答案:①【规律方法】ꢀ求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.【变式训练】1.(2020·中山模拟)据统计,一名工人组装第x件某产品所用的时间(单位:min)为f(x)=(A,c为常数).已知某工人组装第4件产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是(ꢀꢀ)A.75,25B.75,16C.60,25D.60,16【解析】选D.由题意可知4<A,则2.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P=lg n来记录A菌个数的资料,其中n为A菌的个数,现A A A有以下几种说法:≥1;①PA②若今天的P值比昨天的P值增加1,则今天的A菌个数比昨天的A菌个数多10;A A③假设科学家将B菌的个数控制为5万,则此时5<P<5.5(注:lg 2≈0.3).A则正确的说法为________.(写出所有正确说法的序号)【解析】当n=1时,P=0,故①错误;若P=1,则n=10,若P=2,则n=100,故②错误;A A A A A AB菌的个数为n=5×104,所以n==2×105,所以P=lg n=lg 2+5.又因为B A A Alg 2≈0.3,所以5<P<5.5,故③正确.A答案:③考点三建立数学模型解决实际问题考什么:(1)阅读语言文字的能力,实际问题与数学问题之间的转化能力,命常见的初等函数,对勾函数,分段函数的性质等问题.题(2)考查数学运算、数学抽象、数学建模等核心素养.精怎么考:三种题型都有可能考查,考查学生的数学素养、数学建模思想、解转化与化归思想等.读新趋势:以现实问题为载体,函数与实际问题、数与形、函数性质与最值交汇考查.形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型,“对勾”函学数模型的单调区间及最值如下霸(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]好上单调递减.(2)当x>0时,x=当x<0时,x=-方法时取最小值2,时取最大值-2.命题角度1初等函数模型及其应用【典例】(2019·马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年C.2022年B.2021年D.2023年【解析】选C.若2019年是第1年,则第n年全年投入的科研经费为1 300×1.12n万元,由1 300×1.12n>2 000,可得lg 1.3+nlg 1.12>lg 2,所以n×0.05>0.19,得n>3.8,即n≥4,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C.【解后反思】每年投入的科研经费比上一年增长12%,说明每年经费是上一年的多少倍?提示:说明每年经费是上一年的1.12倍.命题角度2 对勾函数模型及其应用【典例】为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.【解析】(1)当x=0时,C=8,所以k=40,所以C(x)=(0≤x≤10),所以f(x)=6x+(0≤x≤10).(2)由(1)得f(x)=2(3x+5)+-10.令3x+5=t,t∈[5,35],则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),此时x=5,因此f(x)的最小值为70.所以隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.【解后反思】对勾函数求最值应注意什么?提示:对勾函数求最值一定要注意该函数的单调性,然后再求最值.命题角度3分段函数模型及其应用【典例】(2020·潍坊模拟)大气温度y(℃)随着距离地面的高度x(km)的增加而降低,当在高度不低于11 km的高空时气温几乎不变.设地面气温为22℃,大约每上升1 km大气温度降低6℃,则y关于x的函数关系式为________.世纪金榜导学号【解析】由题意知,y是关于x的分段函数,x=11为分界点,易得其解析式为y=答案:y=【解后反思】实际问题中分段函数的适用条件是什么?提示:实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.【题组通关】【变式巩固·练】1.要制作一个容积为16 m3,高为1 m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.【解析】设长方体容器底面矩形的长、宽分别为x m,y m,则y=,所以容器的总造价为z=2(x+y)×1×10+20xy=20+20×16,由基本不等式得, z=20+20×16≥40+320=480,当且仅当x=y=4,即底面是边长为4 m的正方形时,总造价最低.答案:4802.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.【解析】①价格为60+80=140元,达到120元,少付10元,所以需支付130元.②设促销前总价为a元,a≥120,李明得到金额l(x)=(a-x)×80%≥0.7a,0≤x≤120,即x≤恒成立,又最小值为=15,所以x最大值为15.答案:①130②15【综合创新·练】1.(2019·深圳模拟)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份()A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高【解析】选A.设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可得,m+8a=m×(1+x)8,则5月份甲食堂的营业额y=m+4a,乙食堂的营业额y=m×(1+x)4=,12因为=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故本年5月份甲食堂的营业额较高.2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y与x的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).。

高考人教B版数学一轮复习方案课时作业函数模型及其应用Word版含答案

高考人教B版数学一轮复习方案课时作业函数模型及其应用Word版含答案

课时作业(十二) [第12讲函数模型及其应用](时间:45分钟分值:100分)基础热身图K12-11.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.y=t2B.y=log2tC.y=2tD.y=2t22.等边三角形的边长为x,面积为y,则y与x之间的函数关系式为( )A.y=x2B.y=错误!x2C.y=错误!x2 D.y=错误!x23.某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是()A.x>22% B.x<22%C.x=22% D.x的大小由第一年的产量确定4.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.错误!5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是( )图K12-27.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606万元B.45.6万元C.45.56万元D.45.51万元8.[2013·荆州中学一检] 下列所给4个图象中,与所给3件事吻合最好的顺序为( )(a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(c)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.图K12-3A.(1)(2)(4) B.(4)(2)(3)C.(4)(1)(3) D.(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为\f(x,8)天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A.60件B.80件 C.100件 D.120件图K12-410.一位设计师在边长为3的正方形ABCD中设计图案,他分别以A,B,C,D为圆心,以b错误!为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.图K12-511.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x(x∈N)为二次函数关系(如图K12-5所示),若每辆客车营运的年平均利润最大,则营运的年数为________年.12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价收费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________千米.图K12-613.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系式为y=错误!错误!(a为常数),如图K12-6所示,据测定,当空气中每立方米的含药量降低到0.25 mg以下时,学生方可进教室,那从药物释放开始,至少需要经过________h后,学生才能回到教室.14.(10分)某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x-0.4)元成反比例.又当x=0.65时,y=0.8.(1)求y与x之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价-成本价)]15.(13分)[2013·重庆北江中学月考] 围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出口,如图K12-7所示.已知旧墙的维修费为45元/m,新墙的造价为180元/m.设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.图K12-7错误!16.(12分)江苏省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=错误!+2a+错误!,x∈[0,24],其中a 是与气象有关的参数,且a ∈错误!.若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M(a ).(1)令t =\f (x,x2+1),x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?ﻬ课时作业(十二)【基础热身】1.A [解析] 由函数的图象知B显然不符,将t =6代入发现C不符,将t =2代入发现D 不符,故选A .本题也可取几个特殊点代入验证.2.D [解析] y=12·x ·x ·sin 60°=错误!x 2.故选D. 3.B [解析] (1+x)2=1+44%,解得x =0.2<0.22.故选B.4.y =a (1+r )x(x∈N *) [解析] 按复利的计算方法得y =a (1+r )x(x ∈N *),注意不要忘记定义域.【能力提升】5.C [解析] 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型.6.C [解析] 开始交易时,即时价格和平均价格应该相等,A 错误;开始交易后,平均价格应该跟随即时价格变动,在任何时刻其变化幅度应该小于即时价格变化幅度,B,D 均错误,故选C.7.B [解析] 依题意可设甲地销售x辆,则乙地销售(15-x )辆,所以总利润S=5.06x -0.15x 2+2(15-x)=-0.15x 2+3.06x+30(0≤x ≤15,x ∈N ).所以当x =10时,S m ax =45.6(万元).8.D [解析] 图(4)中有一段时间显示离开家的距离为零,与(a )吻合;图(1)中有一段时间显示离开家的距离没有变化,与(b)吻合;图(2)显示离开家的距离在不断加快,图(3)显示离开家的距离在增加,但是增加的速度越来越慢.故选D .9.B [解析] 仓储费用\f(x,8)×x×1=\f (x 2,8),每件产品的生产准备费用与仓储费用之和 y =错误!=错误!+错误!≥2错误!=20,当且仅当错误!=错误!,即x =80时等号成立,所以每批应生产产品80件,故选B. 10.3π [解析] 由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b为单调减函数,因此,当b 取最大值时,l取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×错误!+12=3π. 11.5 [解析] 依题意设二次函数的解析式为y=a (x -6)2+11,将点(4,7)代入,解得a =-1,所以y =-(x-6)2+11=-x 2+12x -25,则年平均利润为错误!=错误!=12-x+25x≤12-2错误!=2,当且仅当x =5时,年平均利润达到最大值. 12.9 [解析] 设乘客每次乘坐出租车需付费用为f (x )元,由题意得,f(x )=错误!令f(x )=22.6,解得x =9.13.0.6 [解析] 由图可知,当t =0.1时,y =1,代入y =错误!错误!得a =0.1,所以y =错误!错误!.依题意得错误!错误!<0.25,即错误!错误!<错误!,解得t >0.6.14.解:(1)因为y 与(x -0.4)成反比例,所以设y =错误!(k ≠0).把x =0. 65,y=0.8代入上式,得0.8=k 0.65-0.4,k=0.2. 所以y=错误!=错误!,即y 与x 之间的函数关系式为y =错误!(0.55≤x ≤0.75).(2)根据题意,得错误!·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x1=0.5,x 2=0.6.经检验x1=0.5,x2=0.6都是所列方程的根.因为x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去.所以x=0.6.所以当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.15.解:(1)设矩形的另一边长为a m,则y =45x +180(x-2)+180·2a =225x+360a -360,由已知xa =360,得a=360x. 所以y =225x +错误!-360(x >0).(2)∵x >0,∴225x +错误!≥2错误!=10 800.∴y=225x +3602x-360≥10 440.当且仅当225x=错误!时,等号成立. 即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.【难点突破】16.解:(1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号), 所以t =错误!=错误!∈0,错误!,即t的取值范围是0,错误!.(2)当a∈0,\f (1,2)时,记g (t )=|t-a |+2a +23, 则g (t )=错误!因为g (t )在[0,a]上单调递减,在a ,\f (1,2)上单调递增, 且g (0)=3a +错误!,g 错误!=a+错误!,g (0)-g \f(1,2)=2a -错误!.故M (a)=错误!即M (a )=错误!所以当且仅当a ≤49时,M(a )≤2. 故当0≤a ≤错误!时不超标,当错误!<a ≤错误!时超标.。

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。

考情分析 1
(fēnxī)

基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破

梳理

4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲函数模型及其应用基础巩固题组(建议用时:40分钟)一、选择题1.下表是函数值)A.一次函数模型B.幂函数模型C.指数函数模型D.对数函数模型解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 A2.(2015·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A. 答案 A 3.(2014·湖南卷)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( ) A.p +q 2B .p +1q +1-12C.pq D .p +1q +1-1解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x ,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x >0,因此x =1+p 1+q -1,故选D. 答案 D 4.(2014·北京东城期末)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为 ( ) A .10 B .11 C .13 D .21解析 设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x(x +1),所以x 年的平均费用为y =100+0.5x +x x +1x =x +100x+1.5,由均值不等式得y =x +100x+1.5≥2 x·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号,所以选A.答案 A5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元D .403元解析 设A 种方式对应的函数解析式为s =k1t +20, B 种方式对应的函数解析式为s =k2t ,当t =100时,100k1+20=100k2,∴k2-k1=15,t =150时,150k2-150k1-20=150×15-20=10.答案 A 二、填空题 6.(2014·辽宁六校联考)A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 km h ,经过________小时,AB 间的距离最短.解析 设经过x h ,A ,B 相距为y km ,则y =145-40x 2+16x 2(0≤x≤298),求得函数的最小值时x 的值为258.答案2587.(2015·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =ae -bt(cm3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 解析 当t =0时,y =a ,当t =8时,y =ae -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =ae -bt =18a ,e -bt =18=(e -8b)3=e -24b ,则t =24,所以再经过16 min.答案 168.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x(40-x)=-x2+40x =-(x -20)2+400(0<x <40),当x =20时,Smax =400.答案 20 三、解答题9.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额; (2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L 元, 则由题设得L =Q(P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 14≤P≤20,-32P +40 20<P≤26,代入①式得L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600 14≤P≤20,⎝⎛⎭⎫-32P +40P -14×100-5 60020<P≤26, (1)当14≤P≤20时,Lmax =450元,此时P =19.5元; 当20<P≤26时,Lmax =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫, 依题意有12n×450-50 000-58 000≥0,解得n≥20. 即最早可望在20年后脱贫. 10.(2014·郑州模拟)已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t +21-t(t≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x≥1,则x +1x =52,即2x2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立. 亦m·2t +22t ≥2恒成立,亦即m≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t=x ,则0<x≤1,∴m≥2(x -x2), 由于x -x2≤14,∴m≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 能力提升题组(建议用时:25分钟)11.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种为加密密钥密码系统(Private Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx3,如“4”通过加密后得到密文“2”,若接受方接到密文“1256”,则解密后得到的明文是( )A.12 B .14 C .2D .18解析 由题目可知加密密钥y =kx3是一个幂函数型,由已知可得,当x =4时,y =2,即2=k×43,解得k =243=132.故y =132x3,显然令y =1256,则1256=132x3,即x3=18,解得x =12.答案 A12.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为 ( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析 由三角形相似得24-y 24-8=x 20.得x =54(24-y),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15. 答案 A 13.(2014·岳阳模拟)一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x ∈N +)件.当x≤ 20时,年销售总收入为(33x -x2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资). 解析 当0<x≤20时,y =(33x -x2)-x -100=-x2+32x -100;当x >20时,y =260-100-x =160-x.故y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N +).当0<x≤20时,y =-x2+32x -100=-(x -16)2+156,x =16时,ymax =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N +) 1614.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h,4),h≥1,设抛物线方程为y =a[x -(2+h)]2+4,当h =1时,最高点为(3,4),方程为y =a(x -3)2+4, 将A(2,3)代入,得3=a(2-3)2+4,解得a =-1. ∴当h =1时,跳水曲线所在的抛物线方程为 y =-(x -3)2+4.(2)将点A(2,3)代入y =a[x -(2+h)]2+4 得ah2=-1,所以a =-1h2.由题意,得方程a[x -(2+h)]2+4=0在区间[5,6]内有一解. 令f(x)=a[x -(2+h)]2+4=-1h2[x -(2+h)]2+4,则f(5)=-1h2(3-h)2+4≥0,且f(6)=-1h2(4-h)2+4≤0.解得1≤h≤43.达到压水花的训练要求时h 的取值范围为[1,43].。

相关文档
最新文档