2.2.2 向量的减法运算及其几何意义

合集下载

《2.2.2 向量的减法运算》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上

《2.2.2 向量的减法运算》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上

《向量的减法运算》教学设计方案(第一课时)一、教学目标1. 理解向量的减法运算概念。

2. 掌握向量的减法运算规则和方法。

3. 能够正确进行向量的减法运算。

二、教学重难点1. 教学重点:理解向量的减法运算概念,掌握规则和方法。

2. 教学难点:正确进行向量的减法运算,特别是遇到复杂情况时的处理。

三、教学准备1. 准备教学用PPT,包括图片、案例等,以帮助学生理解。

2. 准备相关数学工具,如笔、纸以及向量图。

3. 设计一些练习题,供学生实践和巩固。

4. 确定互动的教学方式,如小组讨论、个人练习等。

5. 解释清楚向量的概念和加减法运算的规则,为教学打下基础。

四、教学过程:(一)导入1. 复习向量加法的概念及几何意义。

2. 引入向量减法的概念及几何意义,说明向量的减法可以转化为减法的反向加法。

(二)新课探究探究1:用几何方式进行向量减法运算探究2:用代数方式进行向量减法运算教师举例,让学生感受两种运算方式的优劣,从而选择合适的运算方式。

(三)例题分析通过例题分析,让学生掌握向量减法的具体运算方法,并能够解决相关问题。

(四)课堂练习设计一些与本节课内容相关的练习题,让学生进行练习,以检验学生对本节课内容的掌握情况。

(五)小结对本节课的内容进行总结,强调本节课的重点和难点,并引导学生思考向量的减法在实际问题中的应用。

(六)作业布置布置一些与本节课内容相关的作业,以帮助学生进一步巩固和提高对本节课内容的掌握程度。

(七)教学反思对本节课的教学效果进行反思,总结教学中的优点和不足,为今后的教学提供参考。

教学设计方案(第二课时)一、教学目标1. 理解向量减法的定义。

2. 掌握向量减法的运算法则,能进行简单的向量减法运算。

3. 培养观察、比较、分析、归纳和解决问题的能力。

二、教学重难点教学重点:掌握向量减法的运算法则,能进行简单的向量减法运算。

教学难点:理解向量减法运算法则。

三、教学准备1. 准备教学用PPT,包含教学图片、视频等素材。

2-2-2 向量减法运算及其几何意义

2-2-2 向量减法运算及其几何意义

2.2 2.2.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
足劲,身上青筋根根暴露;无论他们怎样的拖呀,拉呀,推 呀,小车还是在老地方,一点也没有移动.倒不是小车重得 动不了,而是另有缘故:天鹅使劲往上向天空直提,虾一步 一步向后倒拖,梭子鱼又向池塘拉去.对于这个结果我们可 以用物理学知识解释,实质上,在这个寓言中还蕴含着丰富 的数学知识——向量的加法运算和减法运算等知识.本节课 我们就来研究向量的减法. 自主预习 阅读教材P85-86回答下列问题.
第二章
2.2.2 向量减法运算及其几何意义
第二章
平面向量
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
课前自主预习
课堂典例讲练
课后强化作业
第二章
2.2 2.2.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
课前自主预习
第二章
2.2 2.2.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第二章
2.2 2.2.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
非零向量m与n是相反向量,下列不正确的是( A.m=n C.|m|=|n| B.m=-n D.方向相反
)
[答案]
A
第二章
2.2 2.2.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
2.向量的减法 定义 a-b=a+(-b),即减去一个向量相当于加上这
温故知新 → → 1.在四边形ABCD中,AB=DC,则( A.ABCD一定是矩形 C.ABCD一定是正方形
[答案] D
)
B.ABCD一定是菱形 D.ABCD一定是平行四边形

2. 2. 2向量减法运算及其几何意义

2. 2. 2向量减法运算及其几何意义

2.2.2向量的减法运算及其几何意义学习目标:1.了解相反向量的概念;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.通过阐述向量的减法运算可以转化成向量的加法运算,理解事物间可以相互转化的辩证思想.教案重点:向量减法的概念和向量减法的作图法.教案难点:减法运算时方向的确定.教案思路:一、复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:例:在四边形中,.二、新课1.用“相反向量”定义向量的减法<1)“相反向量”的定义:与a长度相同、方向相反的向量.记作-a。

易知-(-a> = a.<2)规定:零向量的相反向量仍是零向量. 。

任一向量与它的相反向量的和是零向量.a + (-a> = 0如果a、b互为相反向量,则 a = -b, b = -a,a + b = 0<3)向量减法的定义:向量a加上的b相反向量,叫做a 与b的差.即:a-b = a + (-b> 求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a,则x叫做a与b的差,记作a-b3.求作差向量:已知向量a、b,求作向量a-bA作法:在平面内取一点O,作= a,= b 则= a-b即a-b可以表示为从向量b的终点指向向量a的终点的向量.注意:1︒表示a-b. 强调:差向量“箭头”指向被减向量。

b5E2RGbCAP2︒用“相反向量”定义法作差向量,a-b = a +(-b>4.探究:OABaBb-bBa+abO abBaba-b1) 如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是2)若a∥b,如何作出a -b ? 三、例题:例1、已知向量a 、b 、c 、d ,求作向量a -b 、c -d. 例2、平行四边形中,a,b , 用a、b 表示向量、.p1EanqFDPw 变式一:当a , b 满足什么条件时,a+b 与a -b 垂直? 变式二:当a , b 满足什么条件时,|a+b| = |a -b|? 变式三:a+b 与a -b 可能是相等向量吗?A OOB C5. 练习:1。

2.2.2向量减法运算及其几何意义

2.2.2向量减法运算及其几何意义
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO) (OA OB) 0 BA
例4. ABCD中,AB a, AD b,
你能用a,b表示AC, DB吗? D
C
A
B
解:由向量加法的平行四边形法则,
我们知道AC a b
同样,由向量的减法,知DB AB AD a b
即a (a) (a) a 0
2.向量减法的定义: a b a b
即减去一个向量相当于加上这个向量的
相反已向知量向.量a,b不共线,求作向量a
b.
B
b
a
b
a b
o
a
b a (b )
C
D
3. a b 的作图方法: B
b
b
a b
a
o
a
A
向量减法的三角形法则
有什么规律?
1.在平面内任取一点O, 作OA
a, OB
b(共起点)
2.连接两向量终点,方向由减向量指向被减向量。
即连接B, A,方向由点B指向点A。
B
b
ba
o
a
A
(1)如果从
a 的终点到
b
的终点作向量,
那么所得向量是什么?
(作2出)改变a
a, b
b 的方向,使
呢?
a // b ,怎样
如果a // b,那么怎样作出 a b呢?
向量是否有减法?如何理解向 量的减法? 我们知道,减去一个数等于加 上这个数的相反数.向量的减法 是否也有类似的法则?
新课
1.相反向量:与 a长度相等,方向相反的 向量,叫做 a的相反向量,记作:a
性质:
1.a与 a互为相反向量,即 (a) a

【步步高 学案导学设计】2014-2015学年高中数学 2.2.2向量减法运算及其几何意义课时作业 新人教A版必修4

【步步高 学案导学设计】2014-2015学年高中数学 2.2.2向量减法运算及其几何意义课时作业 新人教A版必修4

2.2.2 向量减法运算及其几何意义课时目标 1.理解向量减法的法则及其几何意义.2.能运用法则及其几何意义,正确作出两个向量的差.向量的减法(1)定义:a -b =a +(-b ),即减去一个向量相当于加上这个向量的__________.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量a -b =________.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为________,被减向量的终点为________的向量.例如:OA →-OB →=________.一、选择题1. 在如图四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c2.化简OP →-QP →+PS →+SP →的结果等于( ) A.QP → B.OQ → C.SP → D.SQ →3.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →4.在平行四边形ABCD 中,|AB →+AD →|=|AB →-AD →|,则有( ) A. AD →=0 B. AB →=0或AD →=0 C .ABCD 是矩形 D .ABCD 是菱形5.若|AB →|=5,|AC →|=8,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13] D .(3,13)6.边长为1的正三角形ABC 中,|AB →-BC →|的值为( )A .1B .2 C.3D. 3题 号 1 2 3 4 5 6 答 案7. 如图所示,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________.8.化简(AB →-CD →)-(AC →-BD →)的结果是________.9. 如图所示,已知O 到平行四边形的三个顶点A 、B 、C 的向量分别为a ,b ,c ,则OD →=____________(用a ,b ,c 表示).10.已知非零向量a ,b 满足|a |=7+1,|b |=7-1,且|a -b |=4,则 |a +b |=________.三、解答题11. 如图所示,O 是平行四边形ABCD 的对角线AC 、BD 的交点,设AB →=a ,DA →=b ,OC →=c ,求证:b +c -a =OA →.12. 如图所示,已知正方形ABCD 的边长等于1,AB →=a ,BC →=b ,AC →=c ,试作出下列向量并分别求出其长度,(1)a +b +c ; (2)a -b +c .能力提升13.在平行四边形ABCD 中,AB →=a ,AD →=b ,先用a ,b 表示向量AC →和DB →,并回答:当a ,b 分别满足什么条件时,四边形ABCD 为矩形、菱形、正方形?14.如图所示,O 为△ABC 的外心,H 为垂心,求证:OH →=OA →+OB →+OC →.1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-AB →=BA →就可以把减法转化为加法.即:减去一个向量等于加上这个向量的相反向量.如a -b =a +(-b ). 2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减数”.解题时要结合图形,准确判断,防止混淆.3.以向量AB →=a 、AD →=b 为邻边作平行四边形ABCD ,则两条对角线的向量为AC →=a +b ,BD →=b -a ,DB →=a -b ,这一结论在以后应用非常广泛,应该加强理解并记住.2.2.2 向量减法运算及其几何意义答案知识梳理(1)相反向量 (2)BA → (3)始点 终点 BA →作业设计1.A 2.B 3.B4.C [AB →+AD →与AB →-AD →分别是平行四边形ABCD 的两条对角线,且|AB →+AD →|=|AB →-AD →|, ∴ABCD 是矩形.]5.C [∵|BC →|=|AC →-AB →|且 ||AC →|-|AB →||≤|AC →-AB →|≤|A C →|+|AB →|.∴3≤|AC →-AB →|≤13.∴3≤|BC →|≤13.] 6.D [如图所示,延长CB 到点D ,使BD =1,连结AD ,则AB →-BC →=AB →+CB →=AB →+BD →=AD →.在△ABD 中,AB =BD =1,∠ABD =120°,易求AD =3, ∴|AB →-BC →|= 3.] 7.CA → 8.0解析 方法一 (AB →-CD →)-(AC →-BD →) =AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD → =(AB →+BD →)+(DC →+CA →) =AD →+DA →=0.方法二 (AB →-CD →)-(AC →-BD →) =AB →-CD →-AC →+BD → =(AB →-AC →)+(DC →-DB →) =CB →+BC →=0. 9.a -b +c解析 OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a +c -b =a -b +c . 10.4解析 如图所示.设O A →=a ,O B →=b ,则|B A →|=|a -b |. 以OA 与OB 为邻边作平行四边形OACB ,则|O C →|=|a +b |.由于(7+1)2+(7-1)2=42. 故|O A →|2+|O B →|2=|B A →|2,所以△OAB 是∠AOB 为90°的直角三角形, 从而OA ⊥OB ,所以▱OACB 是矩形,根据矩形的对角线相等有|O C →|=|B A →|=4, 即|a +b |=4.11.证明 方法一 ∵b +c =DA →+OC →=OC →+CB →=OB →, OA →+a =OA →+AB →=OB →,∴b +c =OA →+a ,即b +c -a =OA →.方法二 ∵c -a =OC →-AB →=OC →-DC →=OD →, OD →=OA →+AD →=OA →-b ,∴c -a =OA →-b ,即b +c -a =OA →.12.解 (1)由已知得a +b =AB →+BC →=AC →,又AC →=c ,∴延长AC 到E , 使|CE →|=|AC →|.则a +b +c =AE →,且|AE →|=2 2. ∴|a +b +c |=2 2.(2)作BF →=AC →,连接CF , 则DB →+BF →=DF →, 而DB →=AB →-AD →=a -BC →=a -b ,∴a -b +c =DB →+BF →=DF →且|DF →|=2. ∴|a -b +c |=2.13.解 由向量加法的平行四边形法则,得AC →=a +b , DB →=AB →-AD →=a -b .则有:当a ,b 满足|a +b |=|a -b |时,平行四边形两条对角线相等,四边形ABCD 为矩形; 当a ,b 满足|a |=|b |时,平行四边形的两条邻边相等,四边形ABCD 为菱形; 当a ,b 满足|a +b |=|a -b |且|a |=|b |时,四边形ABCD 为正方形.14.证明 作直径BD ,连接DA 、DC ,则OB →=-OD →, DA ⊥AB ,AH ⊥BC ,CH ⊥AB ,CD ⊥BC .∴CH ∥DA ,AH ∥DC ,故四边形AHCD 是平行四边形. ∴AH →=DC →,又DC →=OC →-OD →=OC →+OB →,∴OH →=OA →+AH →=OA →+DC →=OA →+OB →+OC →.。

2.2.2向量减法运算及其几何意义

2.2.2向量减法运算及其几何意义
2014年7月5日星期六
首页
引入 进行 小结 作业
教学过程
EXIT
茅盾中学 沈晓强
茅盾中学

新课
首页 练2、非零向量a, b成何位置关系时, | a b || a b | . 教学过程
引入 进行 小结 作业
EXIT
2014年7月5日星期六
茅盾中学 沈晓强
茅盾中学
进行 小结 作业
(1) 0 0; (2) (a) a;
EXI (b).
2014年7月5日星期六
茅盾中学 沈晓强
茅盾中学

新课
首页 向量减法的推导 :
C
教学过程
引入 进行 小结 作业
a b b
茅盾中学 沈晓强
茅盾中学

首页
首页
引入 进行 小结 作业
教学过程
§ 2.2.2 向量减法运算 及其几何意义
EXIT
2014年7月5日星期六
茅盾中学 沈晓强
茅盾中学

引入
首页 相反向量 : 与a长度相等, 方向相反的向量, 称之.记作 教学过程 a . 引入
引入 进行 小结 作业
D C
b
A
EXIT
a
B
2014年7月5日星期六
茅盾中学 沈晓强
茅盾中学

新课
练1、化简 :
(1) AB BC CA; (2)( AB MB) BO OM ; (3)OA OC BO CO; (4) AB AC BD CD; (5)OA OD AD; (6) AB AD DC. (7) NQ QP MN MP.

小结
首页

第二章 2.2 2.2.2 向量减法运算及其几何意义

第二章 2.2 2.2.2 向量减法运算及其几何意义

解析:① AB + BC + CA = AC + CA =0; ② OA+ OC + BO + CO =( CO + OA)+( BO + OC ) = CA+ BC = BA ; ③ AB - AC + BD - CD = CB + BC =0; ④ NO + QP + MN - MP = NP + PN =0.
法三:( AB - CD )-( AC - BD ) = AB - CD - AC + BD =( OB - OA)-( OD - OC )-( OC - OA )+(OD - OB ) = OB - OA- OD + OC - OC + OA + OD - OB =0.
先根据向量加、减法的运算法则将易求的向量表 示出来,再表示 BD . [提示]
[解] ∵四边形 ACDE 为平行四边形, ∴ CD = AE =c. BC = AC - AB =b-a. BE = AE - AB =c-a, CE = AE - AC =c-b, ∴ BD = BC + CD =b-a+c.
1.下面给出了四个式子: ① AB + BC + CA ;② OA + OC + BO + CO ; ③ AB - AC + BD - CD ;④ NQ + QP + MN - MP . 其中值为 0 的有 A.①② C.①③④ B.①③ D.①②③ ( )
如图 1 所示.
法二:a+b-c=(a+b)+(-c)在平面内任取一点 O,作 OA =a, AB =b, BC =-c,则 OC =a+b-c,如图 2 所示.

第二章__2[1].2.2__向量的减法运算及其几何意义

第二章__2[1].2.2__向量的减法运算及其几何意义

第二章 2.2.2 向量的减法运算及其几何意义教学目的:⑴了解相反向量的概念;⑵掌握向量的减法,会作两个向量的减向量 教学重点:向量减法的概念和向量减法的作图. 教学难点:对向量减法定义的理解 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)熟记:=+及封闭图形的加法。

2.特殊情况:共线向量的加法用三角形法则:abba +ba +AABC C )2()3(对于零向量与任一向量a ,有 a a a =+=+003.≤|a +b |≤|a |+|b |当向量a 与b 不共线时,a +b 的方向不同向,且|+|<||+||;当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.4.“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加如:封闭图形的向量和为零向量。

注意:非0 5.熟记:=+6.向量加法的交换律:可以证明:+=+ 7.向量加法的结合律:(a +b ) +c =a + (b +c )8.回答速度、位移、力等向量的量须讲清大小和方向。

回顾讨论:用向量加法证明:两条对角线互相平分的四边形是平行四边形证明:如图所示,设O 是四边形ABCD 两条对角线的交点,且OA=OC ,OB=OC ,即AO =OC ,BO =OD .因为AD =AO +OD =OC +BO =BO +OC =BC且A 、D 、B 、C 不在同一直线上,故四边形ABCD 是平等四边形。

二、讲解新课: 向量的减法:1.用“相反向量”定义向量的减法:1︒“相反向量”的定义:与a 长度相同、方向相反的向量记作 -a 2︒规定:零向量的相反向量仍是零向量-(-a ) = a任一向量与它的相反向量的和是零向量a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 03︒向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法 2.为加法的逆运算 3.求作差向量:用“相反向量”定义法作差向量,a - b = a + (-b )可简化为:减法的三角形法则作法:在平面内取一点O ,作= a , = b , 则= a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量注意:1︒表示a - b 强调:差向量“箭头”指向被减向量,熟记:CB AC AB =-2︒ a ∥b ∥c a - b = a + (-b ) a - b三、讲解范例:例1.(P86例3)已知向量a 、b 、c 、d ,求作向量a -b 、c -d .a -bABB’ a -ba ab bO A OBa -bBA O-b解:在平面上取一点O ,作OA = a , OB = b , OC = c , OD = d , 作, , 则= a -b , = c -d例2.(P86例4)平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量AC 、DB . 解:由平行四边形法则得:= a + b , = - = a -b记忆:AB AD DB -=箭头指向被减向量实际上a - b 是平行四边形的另一条对角线练习:P87 1、2(教师讲解)并(1):0(2):()()()0AB AC BD CDCB BD CD CD CD OA OC BO COOA BO OC CO OA OB BA-+-=+-=-=+++=+++=-+=化简解原式化简解原式 回顾例2并探究1:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |) 探究2:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直) 探究3:a +b 与a -b 可能是相等向量吗?当且仅当0b =时成立.探究4:证明:b a b a b a +≤±≤-,并说明什么时候取等号?当a 、b不共线时,由三角形两边之和大于第三边,而两边之差小于第三边得b a +=<=+b a -=->=+ ABCbad cDOA BD C即b a b a b a +<+<-探究5:)2+=例3,,120||||3||||o AB a AD b DAB a b a b a b如图已知向量,,且,求和==∠===+-||||3||||||||12060||3|O OAB AD ABCD AD AB AC a b DB a bAC a b DB a b DAB DAC ADC AC AOD OD ===+=-=+=-∠=∠=∆=∆解:以、为邻边作平行四边形,由于,故此四边形为菱形由向量的加减法知 ,故,因为,所以所以是正三角形,则由于菱形对角线互相垂直平分,所以是直角三角形,|||sin 603||3o AD a b ===+=所以,由)2++=+,得||a b -=备用1:例4 如右图所示,P 、Q 是三角形ABC 的边BC 上两点,且BP=QC ,求证:+=+AQ证明:)()()(=+=-+-=+-+∴-=∴=QC BP所以+=+AQ备用2:如图三角形ABC 外接圆的圆心为O ,三条高线的交点为H ,连结BO 并延长交外接圆于D ,求证:(1)=+(2)=++证明:1)因为=-所以=-=+ 2)因为BD 是直径,所以︒=∠=∠90BCD BAD ,所以AE //CD ,AD//CH所以四边形AHCD 为平等四边形,所以=AH DC ,所以=+=+=++方法二:OH OA AH =+四.小结:向量减法的定义、作图法|五.作业:P91 A组第4⑷⑸⑹⑺、6、7、8、11、题;作业本:P34 2.2.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中真命题的个数为( B )
A0 1 C2 D3
4. 已知一点O到平行四边形ABCD 的3个顶点A、B、 B C的向量分别是a,b,c,则向量 OD等于( ) A a+b+c
C a+b-c
A
B a-b+c
D a-b-c
D
a
B C
b
O
c
向量减法
b+x=a 记作 x=a – b, 则向量 x 叫做a与b的差 求两个向量差的运算,叫做向量的减法。
或:a – b = a +( - b)
O a -b O a A A b B
OP a+( -b)
P
x =a - b
BA
即:OA OB
BA
向量减法特点: 起点相同的两个向量的差, 就是从减向量的终点指向被减向量的终点的向量。 箭头指向被减向量
向量减法运算
及其几何意义
复习
1.向量定义 具有大小和方向的量 2.向量加法的三角形法则
C
A
B
AB BC AC
3.向量加法的平行四边形法则
D
C
AB AD AC
B
A
注:两个向量的和仍是向量
练习:化简
a ⑴ ( a) ____ 0 ⑵a ( a ) ____ 0 ⑶若a b,则a ( b) ____
解:由向量加法的平行四边形法则,得:
AC AB AD
由作向量的方法,得:
ab
C
DB AB AD a b D
a b
b
A
ab
a
B
练习: 在 ABCD中, AB a , DA b, OC c, 试证明:b+c-a = 分析:即证b+c=a+ OA
证明:b+c= OC DA OC CB OB
D
b C
C OA AB OA a
o
a
b c a OA
B 思路3:
c a OC AB
OC DC OD OA AD OA b
A
思路2: OA OC CA
OC CB CD cba
课堂练习 1.化简以下各式:结果为零向量的个数是( D )
A. 1 ;B .2 ;C .3 ;D .4
(1) AB BC CA; (2) AB AC BD CD; (3)OA OD AD ; (4) NQ QP MN MP
2.下列命题 (1)如果非零向量a与b方向相同或相反,那么a+b与a-b的 方向相同 (2)△ABC中,必有 AB BC CA 0 (3)若a,b均为非零向量,则|a+b|与|a|+|b|一定相等。 (4)若 AB BC CA 0 形的顶点. 则必有A,B,C为一个三角
练 习:
1、已知向量a、b,求作a-b。 作图: 1、任取一点O 2、作 OA a, OB b 3、 则BA a b 考虑: 1、向量AB 表示什么?
b B O a b A a
2、若a//b, 怎样作a-b?
例1. d.
如图,已知向量a、b、c、d,求作向量a-b,c-
a
b d c
AB a , AD b, 用a、b 例2、在 ABCD中, 表示 AC , DB
相关文档
最新文档