高中数学利用导数研究函数的性质( 极值与最值)

合集下载

函数的极值与最大(小)值 高中数学人教A版2019选择性必修第二册

函数的极值与最大(小)值 高中数学人教A版2019选择性必修第二册
极大值点与极小值点统称极值点,极大值与极小值统
称极值.
极值反映了函数在某一点附近的大小情况,刻画了函
数的局部性质.
思考? 极大值一定比极小值大吗?
如下图是函数y=f(x),x∈[a, b]的图象,找出哪些是极
小值,哪些是极大值?
图中f(x1), f(x3) , f(x5)是极小值, f(x2) , f(x4) , f(x6)
附近其他点的函数值都大,f′(b)=0 ; 而且在点x=b附近的左
侧,f′(x)>0, 右侧f′(x)< 0.
y
y = f ( x)
a
O
b
c
d
e
x
我们把 a 叫做函数 y=f(x) 的极小值点 , f(a)叫做函数
y=f(x)的极小值; b叫做函数y=f(x)的极大值点, f(b)叫做函
数y=f(x)的极大值.
当x变化时,f′(x), f(x)的变化情况如下表:
x
0
f (x)
f (x)
(0 , 2)
2
0

4 单调递减↘
-
(2 , 3)
3
+
4
单调递增↗
3
1
由上表可知,在区间[0, 3]上,当x=2时,函数f(x)有极

小值f(2)= - .
又由于 f(0)=4 , f(3)=1,

所以,函数f(x)在区间[0, 3]上的最大值4,最小值- .
解: (3) f(x)的大致图像如图所示.
方程 f(x)=a(a∈R)的解的个数为函数
y=f(x)的图像与直线y=a的交点个数.
由(1)及图可得,当x=-2时,

f(x)有最小值f(-2)=− .

高中数学中的函数的极值与最值分析

高中数学中的函数的极值与最值分析

高中数学中的函数的极值与最值分析在高中数学中,函数的极值与最值是一个重要的概念。

理解和分析函数的极值与最值对于解决数学问题、优化模型以及应用实例都是至关重要的。

首先,我们需要了解什么是函数的极值与最值。

函数的极值指的是函数在某一区间内的最大值和最小值,可以分为极大值和极小值。

而最值则是指函数在整个定义域内的最大值和最小值。

接下来,让我们看一下如何分析函数的极值与最值。

第一步是寻找函数的驻点。

驻点是函数图像上的拐点,对应于导数为零或不存在的点。

通过求解函数的导数等于零的方程,我们可以找到驻点的横坐标。

第二步是寻找函数的不可导点。

不可导点通常出现在函数图像的尖点、长尾等特殊点上。

对于这些点,我们需要进一步研究函数在该点的极值情况。

第三步是分析函数的极值。

通过求解导数的二阶导数等于零的方程,我们可以确定函数在驻点和不可导点处的极值情况。

通过计算得出的极值可以判断函数的相对最值。

第四步是研究函数的端点。

函数的端点是定义域的边界,可能包含函数的最值。

通过计算函数的极限,我们可以确定函数在端点处的值,进而确定函数的最大值和最小值。

最后,进行整体分析。

将以上步骤得出的极值和最值进行比较,找出函数在整个定义域上的最大值和最小值。

在这一过程中,需要注意函数的定义域和导数的存在性等前提条件。

除了以上方法,还可以利用数学软件进行函数的图像绘制和分析。

数学软件可以快速计算导数和二阶导数,帮助我们找到函数的极值点,并进一步分析最值。

函数的极值与最值分析在数学问题和实际应用中扮演着重要的角色。

例如,在优化问题中,我们可以通过分析函数的极值来确定最优解。

在经济学、物理学等领域,函数的极值和最值也都有着广泛的应用。

总结而言,函数的极值与最值分析是高中数学中的重要内容。

通过寻找驻点、不可导点以及端点,我们可以确定函数的极值和最值。

这对于解决问题、优化模型以及应用实例都有着重要的意义。

通过合理的方法和工具,我们能够更好地理解和应用函数的极值与最值。

专题13 利用导数解决函数的极值、最值-学会解题之高三数学万能解题模板(2021版)【原卷版】

专题13 利用导数解决函数的极值、最值-学会解题之高三数学万能解题模板(2021版)【原卷版】

学习界的专题13 利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值例1 已知函数f (x) =+ ln x ,求函数f (x)的极值.x【变式演练1】(极值概念)【西藏日喀则市拉孜高级中学2020 届月考】下列说法正确的是()A.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极大值B.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极小值C.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极值D.当f (x0 ) 为f (x) 的极值且f '(x0 ) 存在时,则有f '(x0 ) = 0【变式演练2】(图像与极值)【百师联盟2020 届高三考前预测诊断联考全国卷1】如图为定义在R 上的函数f (x)=ax3 +bx2 +cx +d (a ≠ 0)的图象,则关于它的导函数y =f '(x)的说法错误的是()A.f '(x)存在对称轴B.f '(x)的单调递减区间为⎛-∞,1 ⎫2 ⎪ ⎝⎭C.f '(x)在(1, +∞)上单调递增D.f '(x)存在极大值【变式演练3】(解析式中不含参的极值)【江苏省南通市2020 届高三下学期高考考前模拟卷】已知函数f (x)=(ax2 +x +1)e x ,其中e是自然对数的底数,a ∈R .(1)当a = 2 时,求f (x )的极值;(2)写出函数f (x )的单调增区间;(3)当a = 0 时,在y 轴上是否存在点P,过点P 恰能作函数f (x)图象的两条切线?若存在,求出所有这样的点;若不存在,请说明理由.【变式演练4】(解析式中含参数的极值)【四川省德阳市2020 届高三高考数学(理科)三诊】已知函数f (x )=ax - 2 ln x - 2 ,g (x )=axe x - 4x .(1)求函数f (x )的极值;(2)当a > 0 时,证明:g (x )- 2 (ln x -x +1)≥ 2 (ln a - ln 2 ).【变式演练5】(由极值求参数范围)【黑龙江省哈尔滨一中2020 届高三高考数学(理科)一模】已知函数学习界的007f ( x ) = x ln x -1 (m + 1) x2 - x 有两个极值点,则实数m 的取值范围为()2A . ⎛ - 1 , 0⎫B . ⎛-1, 1 -1⎫C . ⎛ -∞, 1 -1⎫ )D . (-1, +∞)e ⎪ e⎪ e⎪ ⎝ ⎭ ⎝⎭⎝⎭【变式演练 6】(由极值求其他)【四川省江油中学 2020-2021 学年高三上学期开学考试】已知函数f ( x ) = 1x 3 + ax 2 + bx (a , b ∈ R ) 在 x = -3 处取得极大值为 9.3(1) 求 a , b 的值;(2) 求函数 f (x ) 在区间[-4, 4] 上的最大值与最小值.类型二 求函数在闭区间上的最值万能模板内 容使用场景 一般函数类型解题模板第一步 求出函数 f (x ) 在开区间(a , b ) 内所有极值点;第二步 计算函数 f (x ) 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例 2 【河南省天一大联考 2020 届高三阶段性测试】已知函数 f ( x ) = ln x - x , g ( x ) = ax 2+ 2x (a < 0) .(1) 求函数 f( x ) 在⎡1 , e ⎤上的最值; ⎢⎣ e ⎥⎦(2) 求函数 h( x ) = f (x ) + g (x ) 的极值点.【变式演练 7】(极值与最值关系)【安徽省皖江联盟 2019-2020 学年高三上学期 12 月联考】已知函数 f ( x ) 在区间(a , b ) 上可导,则“函数 f ( x ) 在区间(a , b ) 上有最小值”是“存在 x 0 ∈(a ,b ) ,满足 f '(x 0 ) = 0 ”的⎨ 1 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式演练 8】(由最值求参数范围)【湖北省武汉市 2020 届高三下学期六月模拟】若函数⎧a ln x - x 2 - 2 (x > 0 )f ( x ) = ⎪x + + a (x < 0) 的最大值为 f (-1) ,则实数a 的取值范围为( )⎩⎪ xA . ⎡⎣0, 2e 2 ⎤⎦B . ⎡⎣0, 2e 3⎤⎦C . (0, 2e 2⎤⎦D . (0, 2e 3⎤⎦【变式演练 9】(不含参数最值)【安徽省江淮十校 2020-2021 学年高三上学期第一次联考】已知函数f (x ) = cos 2 x s in 2x ,若存在实数 M ,对任意 x 1 , x 2 ∈R 都有 f ( x 1 ) - f (x 2 ) ≤ M 成立.则 M 的最小值为()A.3 38B.32C.3 3 4D.2 3 3【变式演练 10】(含参最值)【重庆市经开礼嘉中学 2020 届高三下学期期中】已知函数f (x ) = (x - a - 1)e x -1 - 1x 2 + ax , x > 02(1) 若 f (x ) 为单调增函数,求实数 a 的值;(2) 若函数 f (x ) 无最小值,求整数 a 的最小值与最大值之和.【高考再现】1.【2018 年全国普通高等学校招生统一考试数学(江苏卷)】若函数 ƒ(x ) = 䂸x 3 — t x 䂸 + 1(t C R )在(t h + œ) 内有且只有一个零点,则 ƒ(x )在[ — 1h 1]上的最大值与最小值的和为.2【. 2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)】已知函数 ƒ x = 䂸sinx + sin 䂸x ,则 ƒ x的最小值是 .3. 【2020 年高考全国Ⅱ卷理数 21】已知函数 f (x ) = sin 2x sin 2x .3 381 2 n (1) 讨论 f ( x ) 在区间(0,π) 的单调性;(2) 证明: f (x ) ≤ ;(3) 设 n ∈ N *,证明: sin 2x sin 22x sin 24x sin 22nx ≤ 3 . 4n4. 【2020 年高考天津卷 20】已知函数 f (x ) = x3+ k ln x (k ∈ R ) , f ' (x ) 为 f ( x ) 的导函数.(Ⅰ)当 k = 6 时,(i ) 求曲线 y = f ( x ) 在点(1, f (1)) 处的切线方程;(ii )求函数 g (x ) = f (x ) - f '(x ) + 9的单调区间和极值;x(Ⅱ)当 k - 3 时,求证:对任意的 x , x ∈[1, +∞) ,且 x> x , 有 f '( x ) + f ' (x ) > f (x 1 )- f (x 2 ) . 1 2 1 2 2x - x 1 25. 【2018 年全国卷Ⅲ理数】已知函数 ƒ x = 䂸+ x + tx 䂸 ln 1 + x — 䂸x .(1) 若 t = t ,证明:当— 1 ǹ x ǹ t 时,ƒ x ǹ t ;当 x Σ t 时,ƒ x Σ t ;(2) 若 x = t 是 ƒ x 的极大值点,求 t .6. 【2018 年全国普通高等学校招生统一考试文科】设函数 ƒ(x ) = [tx 䂸 — (3t + 1)x + 3t + 䂸]e x .(Ⅰ)若曲线 y = ƒ(x )在点(䂸h ƒ(䂸))处的切线斜率为 0,求 a ;(Ⅱ)若 ƒ(x)在 x = 1 处取得极小值,求 a 的取值范围.7. 【2018 年全国普通高等学校招生统一考试文科数学(天津卷)】设函数 ƒ(x )=(x — t 1)(x — t 䂸)(x — t 3),其中t 1h t 䂸h t 3 C R ,且t 1h t 䂸h t 3是公差为 d 的等差数列.(I )若t 䂸 = t h d = 1h 求曲线 y = ƒ(x )在点(t h ƒ(t ))处的切线方程;(II ) 若 d = 3,求 ƒ(x)的极值;4 4 (III ) 若曲线 y = ƒ(x) 与直线 y =— (x — t 䂸) — 6 3有三个互异的公共点,求d 的取值范围.【反馈练习】1.【2020 届高三 6 月质量检测巩固卷数学(文科)】若函数 f ( x ) = e x (-x 2 + 2x + a )在区间(a , a +1) 上存在最大值,则实数a 的取值范围为()⎛ -1 A ., -1 + 5 ⎫ B . (-1, 2)2 2 ⎪ ⎝ ⎭⎛ -1 C . 2 ⎫ , 2⎪⎛ -1 D .2⎫, -1⎪ ⎝ ⎭⎝⎭2. 【黑龙江省大庆市第四中学 2020 届高三下学期第四次检测】若函数 f (x ) = ae x- 1在其定义域上只有 3x个极值点,则实数a 的取值范围()⎛ e 2 ⎫⎛ e 2 ⎫ A . -∞, - ⎪ (1, +∞)⎝⎭ B . -∞, - ⎪⎝⎭C . ⎛-e , -1 ⎫ (1, +∞)D . ⎛-∞, - 1 ⎫4e 2 ⎪ e ⎪ ⎝ ⎭⎝ ⎭xx2 x3. 【湖北省金字三角 2020 届高三下学期高考模拟】已知函数 f ( x ) = e + - ln x 的极值点为1 ,函数 2g ( x ) = e x + x - 2 的零点为 x ,函数 h ( x ) = ln x的最大值为x ,则( ) 2 2x 3A. x 1 > x 2 > x 3B. x 2 > x 1 > x 3C. x 3 > x 1 > x 2D. x 3 > x 2 > x 14. 【湖北省宜昌一中、龙泉中学 2020 届高三下学期 6 月联考】已知函数(ff (e ) = 1,当 x >0 时,下列说法正确的是()ex )满足 x 2 f '(x ) + 2xf (x ) = 1+ ln x ,① f (x ) 只有一个零点;② f (x ) 有两个零点;- 5 + 5 - 5③ f (x) 有一个极小值点;④ f (x) 有一个极大值点A.①③B.①④C.②③D.②④5.【山东省潍坊市2020届高三6月高考模拟】已知函数f(x)的导函数f'(x)=x4(x-1)3(x-2)2(x-3),则下列结论正确的是()A.f (x)在x = 0 处有极大值B.f (x )在x = 2 处有极小值C. f (x)在[1, 3]上单调递减D.f (x )至少有3 个零点6.【云南省曲靖市2020 届高三年级第二次教学质量监测】已知实数a, b 满足0 ≤a ≤1,0 ≤b ≤ 1 ,则函数f (x)=x3 -ax2 +b2 x +1 存在极值的概率为()A.1B.3C.16 6 3D.37.【云南省红河自治州2019-2020 学年高三第二次高中毕业生复习统一检测】下列关于三次函数f ( x) =ax3 +bx2 +cx +d (a ≠ 0) ( x ∈R) 叙述正确的是()①函数f (x) 的图象一定是中心对称图形;②函数f (x) 可能只有一个极值点;③当x ≠-b时,f (x) 在x =x 处的切线与函数y = f (x) 的图象有且仅有两个交点;0 3a 0④当x ≠-b时,则过点(x, f (x))的切线可能有一条或者三条.0 3a 0 0A.①③B.②③C.①④D.②④8.【2020 届江西省分宜中学高三上学期第一次段考】已知e 为自然对数的底数,设函数f (x)=1 x2 -ax +b ln x 存在极大值点x ,且对于a 的任意可能取值,恒有极大值f (x )< 0 ,则下列结论2 0 0bb ( ) 中正确的是()A. 存在 x 0= ,使得f (x 0 ) < - 12eB. 存在 x 0= ,使得f (x 0 ) > -e 2C.b 的最大值为e 3D.b 的最大值为 2e 2ax 2⎛ 1 , 3⎫9. 【四川省内江市 2020 届高三下学期第三次模拟考试】函数f (x )= 2+(1﹣2a )x ﹣2ln x 在区间 2 ⎪⎝ ⎭内有极小值,则 a 的取值范围是()A . ⎛ -2, -1 ⎫B . ⎛-2, -1 ⎫3 ⎪2 ⎪ ⎝ ⎭⎝ ⎭C . ⎛ -2, - 1 ⎫ ⋃⎛ - 1 , +∞⎫D . ⎛ -2, - 1 ⎫ ⋃ ⎛ - 1 , +∞ ⎫ 3 ⎪ 3 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭ ⎝ ⎭10.【河北省衡水中学 2019-2020 学年高三下学期期中】已知函数 f (x ) =(x2- a )2- 3 x 2 -1 - b ,当时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一.组.即可)1 3 5 9① a ≤ - ② < a < ③ a = 1 ,-2 < b < 0 ④ a = 1 ,- < b < -2 或b = 0 ⑤4 个极小值点⑥1 个极小值点2 2 2 4⑦6 个零点⑧4 个零点1. 【福建省漳州市 2020 届高三高考数学(文科)三模】已知函数 f (x ) = ( x + 3) e x- 2m , m ∈ R .(1)若 m = 3,求 f ( x ) 的最值;2(2)若当 x ≥ 0 时, f (x - 2) + 2m ≥ 1 mx 2+ 2x +1 ,求 m 的取值范围.e 212. 【安徽省合肥七中、三十二中、五中、肥西农兴中学 2020 届高三高考数学(文科)最后一卷】已知函数 f (x ) = 1 x 2- 2x + a ln x , a > 1 . 2e(1) 讨论 f( x ) 的单调性;(2)若f (x )存在两个极值点x1 、x2 ,求f (x1 )+f (x2 )的取值范围.13.【2020 届安徽省芜湖市高三下学期教育教学质量监测】已知函数f (x)=ae x + 2e -x+(a - 2 )x .(1)若y =f (x )存在极值,求实数 a 的取值范围;(2)设1 ≤a ≤ 2 ,设g (x)= f (x)-(a + 2)cos x 是定义在⎛-∞,π ⎤上的函数.2 ⎥⎝⎦(ⅰ)证明:y =g'(x )在⎛-∞,π ⎤上为单调递增函数( g'(x)是y =g (x )的导函数);2 ⎥⎝⎦ (ⅱ)讨论y =g (x )的零点个数.14.【广东省惠州市2021 届高三上学期第一次调研】已知函数f (x) =x- ln(ax) .a(1)若a > 0 ,求f (x) 的极值;(2)若e x ln x +mx 2 +(1 -e x )x +m ≤ 0 ,求正实数m 的取值范围.15.【北京五中2020 届高三(4 月份)高考数学模拟】设函数f(x)=me x﹣x2+3,其中m∈R.(1)如果f(x)同时满足下面三个条件中的两个:①f(x)是偶函数;②m=1;③f(x)在(0,1)单调递减.指出这两个条件,并求函数h(x)=xf(x)的极值;(2)若函数f(x)在区间[﹣2,4]上有三个零点,求m 的取值范围.16.【辽宁省锦州市渤大附中、育明高中2021 届高三上学期第一次联考】已知函数f (x) =ae x - cos x -x(a ∈R).(1)若 a = 1 ,证明:f (x) ≥ 0 ;(2)若f (x) 在(0,π) 上有两个极值点,求实数 a 的取值范围.17.【西南地区名师联盟2020 届高三入学调研考试】已知函数f (x)=1x3 +bx2 +cx ,b 、c 为常数,且3学习界的007- 1< b < 1, f '(1) = 0 . 2(1)证明: -3 < c < 0 ;(2)若 x 是函数 y = f (x ) - cx 的一个极值点,试比较 f ( x - 4) 与 f (-3) 的大小. 0218.【山东省威海荣成市 2020 届高三上学期期中】某水产养殖公司在一片海域上进行海洋牧场生态养殖, 如图所示,它的边界由圆O 的一段圆弧 PMQ ( M 为此圆弧的中点)和线段 PQ 构成.已知圆O 的半径为12 千米, M 到 PQ 的距离为16 千米.现规划在此海域内修建两个生态养殖区域,养殖区域 R 1 为矩形 ABCD ,养殖区域 R 2 为 A M B ,且 A , B 均在圆弧上,C ,D 均在线段 PQ 上,设∠AOM =α.(Ⅰ)用α分别表示矩形 ABCD 和 A M B 的面积,并确定cos α的范围;(Ⅱ)根据海域环境和养殖条件,养殖公司决定在 R 1 内养殖鱼类,在 R 2 内养殖贝类,且养殖鱼类与贝类单位面积的年产值比为3 : 2 .求当α为何值时,能使年总产值最大.19.【江苏省南通市 2020 届高三下学期高考考前模拟卷】已知函数 f (x ) = ( x - a ) e x + b (a , b ∈ R ) .(1) 讨论函数 f( x ) 的单调性;(2) 对给定的 a ,函数 f( x ) 有零点,求b 的取值范围;(3)当 a = 2 , b = 0 时, F (x ) = f ( x ) - x + ln x ,记 y = F ( x ) 在区间⎛ 1 ,1⎫上的最大值为 m ,且4 ⎪ ⎝ ⎭m ∈[n, n + 1), n ∈Z ,求n 的值.20.【陕西省西安中学2020-2021 学年高三上学期第一次月考】已知函数f ( x) =x -1 -a ln x .(1)当 a = 1 时,求f(x)的最小值;(2)设m 为整数,且对于任意正整数n ,(1+1)(1+1) ⋅⋅⋅ (1+1) <m ,求m 的最小值.2 22 2n。

高中数学如何求解三角函数的极值和最值

高中数学如何求解三角函数的极值和最值

高中数学如何求解三角函数的极值和最值一、引言三角函数是高中数学中的重要内容,求解三角函数的极值和最值是数学分析的基本技能之一。

本文将介绍如何通过分析和计算来求解三角函数的极值和最值,以及一些常见的解题技巧。

二、求解三角函数的极值1. 极值的定义在数学中,极值是指函数在某个区间内取得的最大值或最小值。

对于三角函数而言,极值点就是函数图像上的顶点或谷底。

2. 求解极值的方法(1)利用导数法求解对于一元函数,可以通过求导数来确定其极值点。

对于三角函数而言,可以先求出函数的导数,然后令导数等于零,解方程得到极值点。

例如,考虑函数f(x) = sin(x),其导数f'(x) = cos(x)。

令f'(x) = 0,解得x = π/2 + kπ,其中k为整数。

因此,函数sin(x)在x = π/2 + kπ处取得极值。

(2)利用周期性求解由于三角函数具有周期性,可以利用周期性来求解极值。

例如,考虑函数f(x)= sin(2x),它的周期为π。

因此,只需求解f(x)在一个周期内的极值即可。

在区间[0, π]上,函数f(x)在x = π/4处取得最大值1,而在x = 3π/4处取得最小值-1。

三、求解三角函数的最值1. 最值的定义在数学中,最值是指函数在某个区间内取得的最大值或最小值。

对于三角函数而言,最值点就是函数图像上的最高点或最低点。

2. 求解最值的方法(1)利用周期性求解与求解极值类似,由于三角函数具有周期性,可以利用周期性来求解最值。

例如,考虑函数f(x) = sin(x),它的周期为2π。

因此,只需求解f(x)在一个周期内的最值即可。

在区间[0, 2π]上,函数f(x)在x = π/2处取得最大值1,而在x = 3π/2处取得最小值-1。

(2)利用函数图像求解通过观察函数的图像,可以直观地确定函数的最值点。

例如,考虑函数f(x) = cos(x),它的图像是一条波浪线。

从图像上可以看出,函数f(x)在x = 0处取得最大值1,而在x = π处取得最小值-1。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

第3章 第2节 第2课时 导数与函数的极值、最值-2022届高三数学一轮复习讲义(新高考)

第3章 第2节 第2课时 导数与函数的极值、最值-2022届高三数学一轮复习讲义(新高考)

第2课时导数与函数的极值、最值一、教材概念·结论·性质重现1.函数的极值与导数条件f ′(x0)=0x0附近的左侧f ′(x)>0,右侧f ′(x)<0x0附近的左侧f ′(x)<0,右侧f ′(x)>0图象形如山峰形如山谷极值 f (x0)为极大值 f (x0)为极小值极值点x0为极大值点x0为极小值点(1)函数的极大值和极小值都可能有多个,极大值和极小值的大小关系不确定.(2)对于可导函数f (x),“f ′(x0)=0”是“函数f (x)在x=x0处有极值”的必要不充分条件.(1)函数f (x)在[a,b]上有最值的条件一般地,如果在区间[a,b]上函数y=f (x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f (x)在区间[a,b]上的最大值与最小值的步骤①求函数y=f (x)在区间(a,b)上的极值;②将函数y=f (x)的各极值与端点处的函数值f (a),f (b)比较,其中最大的一个是最大值,最小的一个是最小值.(1)求函数的最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.(2)若函数f (x)在区间[a,b]内是单调函数,则f (x)一定在区间端点处取得最值;若函数f (x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.(3)函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.1.判断下列说法的正误,对的打“√”,错的打“×”.(1)函数的极大值不一定比极小值大.(√)(2)对可导函数f (x),f ′(x0)=0是x0点为极值点的充要条件.(×)(3)函数的极大值一定是函数的最大值.(×)(4)开区间上的单调连续函数无最值.(√)2.f (x)的导函数f ′(x)的图象如图所示,则f (x)的极小值点的个数为()A.1B.2C.3D.4A解析:由题意知在x=-1处f ′(-1)=0,且其两侧导数符号为左负右正,f (x)在x=-1左减右增.故选A.3.函数f (x)=2x-x ln x的极大值是()A.1e B.2e C.e D.e2C解析:f ′(x)=2-(ln x+1)=1-ln x.令f ′(x)=0,得x=e.当0<x<e时,f ′(x)>0;当x>e时,f ′(x)<0.所以x=e时,f (x)取到极大值,f (x)极大值=f (e)=e.4.若函数f (x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4 B.2或6 C.2 D.6C解析:函数f (x)=x(x-c)2的导数为f ′(x)=3x2-4cx+c2.由题意知,f (x)在x=2处的导数值为12-8c+c2=0,解得c=2或6.又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正.当c =2时,f (x )=x (x -2)2的导数在x =2处左侧为负,右侧为正,即在x =2处有极小值.而当c =6时,f (x )=x (x -6)2在x =2处有极大值.故c =2.5.函数f (x )=2x 3-2x 2在区间[-1,2]上的最大值是________. 8 解析:f ′(x )=6x 2-4x =2x (3x -2). 由f ′(x )=0,得x =0或x =23.因为f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,所以最大值为8.考点1 利用导数求函数的极值——综合性考向1 根据函数的图象判断函数的极值(多选题)已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则( )A .函数f (x )有极大值f (2)B .函数f (x )有极大值f (-2)C .函数f (x )有极小值f (-2)D .函数f (x )有极小值f (2)BD 解析:由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.根据函数的图象判断极值的方法根据已知条件,分情况确定导数为0的点,及导数为0点处左右两侧导数的正负,从而确定极值类型.考向2 已知函数解析式求极值已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,定义域为(0,+∞),且f ′(x )=1x -12=2-x2x . 令f ′(x )=0,解得x =2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表. x (0,2) 2 (2,+∞)f ′(x ) + 0 - f (x )↗ln 2-1↘(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x . 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点,且为x =1a .求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数; (2)求f ′(x )=0的根;(3)判断在f ′(x )=0的根的左、右两侧f ′(x )的符号,确定极值点;(4)求出函数f (x )的极值. 考向3 已知函数的极值求参数设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)·x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x , f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.已知函数极值点或极值求参数的两个关键(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证该点左右两侧的正负.1.(多选题)定义在区间⎣⎢⎡⎦⎥⎤-12,4上的函数f (x )的导函数f ′(x )图象如图所示,则下列结论正确的是( )A .函数f (x )在区间(0,4)单调递增B .函数f (x )在区间⎝ ⎛⎭⎪⎫-12,0单调递减 C .函数f (x )在x =1处取得极大值 D .函数f (x )在x =0处取得极小值ABD 解析:根据导函数图象可知,f (x )在区间⎝ ⎛⎭⎪⎫-12,0上,f ′(x )<0,f (x )单调递减,在区间(0,4)上,f ′(x )>0,f (x )单调递增.所以f (x )在x =0处取得极小值,没有极大值.所以A ,B ,D 选项正确,C 选项错误.故选ABD .2.(2020·青岛一模)已知函数f (x )=⎩⎨⎧3x -9,x ≥0,x e x ,x <0(e =2.718…为自然对数的底数).若f (x )的零点为α,极值点为β,则α+β=( )A .-1B .0C .1D .2C 解析:当x ≥0时,f (x )=3x -9为增函数,无极值.令f (x )=0,即3x -9=0,解得x =2,即函数f (x )的一个零点为2;当x <0时,f (x )=x e x <0,无零点,f ′(x )=e x +x e x =(1+x )e x ,则当-1<x <0时,f ′(x )>0.当x <-1时,f ′(x )<0,所以当x =-1时,函数f (x )取得极小值.综上可知,α+β=2+(-1)=1.故选C .3.函数f (x )=2x +1x 2+2的极小值为________.-12 解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2. 令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增, 所以f (x )极小值=f (-2)=-12.4.设函数f (x )=ax 3-2x 2+x +c (a ≥0).(1)当a =1,且函数图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x+1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1=(3x -1)(x -1).令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增;在⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a >0时,f ′(x )≥0或 f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点2 利用导数求函数的最值——应用性(2020·北京卷)已知函数f (x )=12-x 2. (1)求曲线y =f (x )的斜率等于-2的切线方程;(2)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.解:(1)因为f (x )=12-x 2, 所以f ′(x )=-2x .设切点为(x 0,12-x 20),则-2x 0=-2,即x 0=1,所以切点为(1,11). 由点斜式可得切线方程为y -11=-2(x -1),即2x +y -13=0. (2)显然t ≠0,因为y =f (x )在点(t,12-t 2)处的切线方程为y -(12-t 2)=-2t (x -t ), 即y =-2tx +t 2+12.令x =0,得y =t 2+12;令y =0,得x =t 2+122t .所以S (t )=12×(t 2+12)·t 2+122|t |=(t 2+12)24|t |,t ≠0,显然为偶函数. 只需考察t >0即可(t <0时,结果一样), 则S (t )=t 4+24t 2+1444t =14⎝ ⎛⎭⎪⎫t 3+24t +144t , S ′(t )=14⎝ ⎛⎭⎪⎫3t 2+24-144t 2 =3(t 4+8t 2-48)4t 2 =3(t 2-4)(t 2+12)4t 2 =3(t -2)(t +2)(t 2+12)4t 2. 由S ′(t )>0,得t >2;由S ′(t )<0,得0<t <2.所以S (t )在(0,2)上单调递减,在(2,+∞)上单调递增,所以t =2时,S (t )取得极小值,也是最小值为S (2)=16×168=32. 综上所述,当t =±2时,S (t )min =32.求函数f (x )在区间[a ,b ]上的最大值与最小值的步骤(1)求函数在区间(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.已知k ∈⎝ ⎛⎦⎥⎤12,1,函数f (x )=(x -1)e x -kx 2. (1)求函数f (x )的单调区间; (2)求函数f (x )在[0,k ]上的最大值.解:(1)由题意得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以1<2k ≤2.令f ′(x )>0,所以⎩⎨⎧ x >0,e x -2k >0或⎩⎨⎧ x <0,e x-2k <0,解得x >ln 2k 或x <0. 所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0). 令f ′(x )<0,所以⎩⎨⎧x >0,e x -2k <0或⎩⎨⎧x <0,e x-2k >0,解得0<x <ln 2k . 所以函数f (x )的单调递减区间为(0,ln 2k ).所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0),单调递减区间为(0,ln 2k ).(2)令φ(k )=k -ln (2k ),k ∈⎝ ⎛⎦⎥⎤12,1,φ′(k )=1-1k =k -1k ≤0. 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上是减函数. 所以φ(1)≤φ(k )<φ⎝ ⎛⎭⎪⎫12.所以1-ln 2≤φ(k )<12<k ,即0<ln (2k )<k . 所以f ′(x ),f (x )随x 的变化情况如下表:f (k )-f (0)=(k -1)e k -k 3-f (0) =(k -1)e k -k 3+1 =(k -1)e k -(k 3-1)=(k -1)e k -(k -1)(k 2+k +1) =(k -1)[e k -(k 2+k +1)]. 因为k ∈⎝ ⎛⎦⎥⎤12,1,所以k -1≥0.对任意的k ∈⎝ ⎛⎦⎥⎤12,1,y =e k 的图象恒在直线y =k 2+k +1的下方, 所以e k -(k 2+k +1)≤0.所以f (k )-f (0)≥0,即f (k )≥f (0).所以函数f (x )在[0,k ]上的最大值f (k )=(k -1)e k -k 3.考点3 极值与最值的综合应用——综合性(2020·山东师范大学附中高三质评)已知函数f (x )=x 2·e ax +1-b ln x -ax (a ,b ∈R ).(1)若b =0,曲线f (x )在点(1,f (1))处的切线与直线y =2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,+∞),求a 的最小值. 解:(1)当b =0时,f (x )=x 2e ax +1-ax ,x >0, f ′(x )=x e ax +1(2+ax )-a . 由f ′(1)=e a +1(2+a )-a =2,得e a +1(2+a )-(a +2)=0,即(e a +1-1)(2+a )=0,解得a =-1或a =-2. 当a =-1时,f (1)=e 0+1=2,此时直线y =2x 恰为切线,舍去.所以a =-2.(2)当b =2时,f (x )=x 2e ax +1-2ln x -ax ,x >0. 设t =x 2e ax +1(t >0),则ln t =2ln x +ax +1, 故函数f (x )可化为g (t )=t -ln t +1(t >0).由g ′(t )=1-1t =t -1t ,可得g (t )的单调递减区间为(0,1),单调递增区间为(1,+∞),所以g (t )的最小值为g (1)=1-ln 1+1=2. 此时,t =1,函数f (x )的值域为[2,+∞). 问题转化为:当t =1时,ln t =2ln x +ax +1有解, 即ln 1=2ln x +ax +1=0,得a =-1+2ln xx . 设h (x )=-1+2ln x x,x >0,则h ′(x )=2ln x -1x 2, 故h (x )的单调递减区间为(0,e),单调递增区间为(e ,+∞), 所以h (x )的最小值为h (e)=-2e ,故a 的最小值为-2e .求解函数极值与最值综合问题的策略(1)求极值、最值时,要求步骤规范,函数的解析式含参数时,要讨论参数的大小.(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.1.(2021·福建三校联考)若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( )A .(-∞,7)B .(15-6ln 3,+∞)C .(12-61n 3,+∞)D .(-∞,7)∪(15-6ln 3,+∞)D 解析:方程8x =x 2+6ln x +m 仅有一个解等价于函数m (x )=x 2-8x +6ln x +m (x >0)的图象与x 轴有且只有一个交点.对函数m (x )求导得m ′(x )=2x -8+6x =2x 2-8x +6x =2(x -1)(x -3)x. 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增; 当x ∈(1,3)时,m ′(x )<0,m (x )单调递减; 当x ∈(3,+∞)时,m ′(x )>0,m (x )单调递增,所以m (x )极大值=m (1)=m -7,m (x )极小值=m (3)=m +6ln 3-15.所以当x 趋近于0时,m (x )趋近于负无穷,当x 趋近于正无穷时,m (x )趋近于正无穷,所以要使m (x )的图象与x 轴有一个交点,必须有m (x )极大值=m -7<0或m (x )极小值=m +6ln 3-15>0,即m <7或m >15-6ln 3.故选D . 2.已知函数f (x )=⎩⎨⎧-x 3+x 2(x <1),a ln x (x ≥1).(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =23. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0, 所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在 [1,e ]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2.。

利用导数研究函数的极值与最值(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)

 利用导数研究函数的极值与最值(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)

考向16 利用导数研究函数的极值与最值【2022·全国·高考真题(理)】当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12-C .12D .1【2022·全国·高考真题(文)】函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+,1.由图象判断函数()y f x =的极值,要抓住两点:(1)由()y f x '=的图象与x 轴的交点,可得函数()y f x =的可能极值点;(2)由导函数()y f x '=的图象可以看出()y f x '=的值的正负,从而可得函数()y f x =的单调性.两者结合可得极值点.2.已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.3.求函数()f x 在闭区间[],a b 内的最值的思路(1)若所给的闭区间[],a b 不含有参数,则只需对函数()f x 求导,并求()0f x '=在区间[],a b 内的根,再计算使导数等于零的根的函数值,把该函数值与()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.(2)若所给的闭区间[],a b 含有参数,则需对函数()f x 求导,通过对参数分类讨论,判断函数的单调性,从而得到函数()f x 的最值.(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔< 不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;(6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;(7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;(8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;(9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者.(2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行: (1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.(2022·山西太原·三模(文))已知函数()e e xf x =⋅(1)若()()()g x f x kx k k =--∈R 在1x =-时取得极小值,求实数k 的值; (2)若过点(,)a b 可以作出函数()y f x =的两条切线,求证:()0b f a <<2.(2022·湖北·模拟预测)已知函数()21ln 2f x x x mx =++,(m R ∈). (1)若()f x 存在两个极值点,求实数m 的取值范围; (2)若1x ,2x 为()f x 的两个极值点,证明:()()()212122228f x f x m x x f +++⎛⎫-> ⎪⎝⎭.3.(2022·河南郑州·高三阶段练习(文))已知函数()21xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间及其最大值与最小值.4.(2022·全国·高三专题练习(理))已知函数()ln f x x mx =+,其中m ∈R . (1)讨论()f x 的单调性;(2)若(0,)∀∈+∞x ,2()2f x x x ≤-,求m 的最大值.5.(2022·山东菏泽·高三期末)设函数()22cos f x x x =+.(1)求曲线()y f x =在点(,())22f ππ处的切线与两坐标轴围成的三角形的面积;(2)求函数()f x 在区间[]0,π上的最大值和最小值.6.(2022·北京市第九中学模拟预测)已知()sin 2f x k x x =+. (1)当2k =时,判断函数()f x 零点的个数; (2)求证:()sin 2ln 1,(0,)2x x x x π-+>+∈.1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知函数()()ln 2,ln xxe f x xe x x g x x x x=---=+-的最小值分别为,m n ,则( )A .m n <B .m n >C .m n =D .,m n 的大小关系不确定2.(2022·北京·北大附中三模)如图矩形,6ABCD AB =,沿PQ 对折使得点B 与AD 边上的点1B 重合,则PQ 的长度可以用含α的式子表示,那么PQ 长度的最小值为( )A .4B .8C .62D 933.(2022·安徽·合肥一六八中学模拟预测(文))已知函数()f x 为定义在R 上的增函数,且对,()()1x R f x f x ∀∈+-=,若不等式()(ln )1f ax f x +-≥对(0,)∀∈+∞x 恒成立,则实数a 的取值范围是( ) A .(0,e]B .(,e]-∞C .10,e ⎛⎤⎥⎝⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭4.(2022·江西省丰城中学模拟预测(文))已知函数()2e 2xf x ax ax =++在()0,x ∈+∞上有最小值,则实数a 的取值范围为( ) A .1,2⎛⎫+∞ ⎪⎝⎭B .e 1,22⎛⎫-- ⎪⎝⎭C .()1,0-D .1,2⎛⎫-∞- ⎪⎝⎭5.(2022·广东深圳·高三阶段练习)已知函数()32f x x ax x a =+-+有两个极值点12,x x ,且1223x x -=,则()f x 的极大值为( ) A 3B 23C 3D 36.(2022·广东广州·三模)设()f x '为函数()f x 的导函数,已知()()()21ln ,12x f x xf x x f '==-'+,则( )A .()xf x 在()0,∞+单调递增B .()xf x 在()0,∞+单调递减C .()xf x 在()0,∞+上有极大值12D .()xf x 在()0,∞+上有极小值127.(2022·全国·模拟预测(文))下列结论正确的是( )A .设函数()3f x x ax b =++,其中a ,b ∈R ,当a =-3,2b >时,函数有两个零点B .函数()()e 0xa f x a x=>没有极值点C .关于x 的方程32230x x a -+=在区间[]22-,上仅有一个实根,则实数a 的取值范围为[)(]4,01,28-D .函数()()e 0e xxx a f x a -=<有两个零点8.(2022·全国·高三专题练习)已知函数()321132f x x ax x =-+在区间1,32⎛⎫⎪⎝⎭上既有极大值又有极小值,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .52,2⎛⎫ ⎪⎝⎭D .102,3⎛⎫ ⎪⎝⎭9.(2022·安徽·蒙城第一中学高三阶段练习(文))已知m 为常数,函数()2ln 2f x x x mx=-有两个极值点,其中一个极值点0x 满足01x >,则()0f x 的取值范围是( ) A .(),0∞-B .()0,∞+C .1,2⎛⎫-∞- ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.(多选题)(2022·湖南·湘潭一中高三阶段练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 11.(多选题)(2022·重庆八中模拟预测)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极小值点,以下结论一定正确的是( ) A .0x 是()f x 的最小值点 B .0x 是()f x -的极大值点 C .0x -是()f x -的极大值点 D .0x -是()f x --的极大值点12.(多选题)(2022·全国·高三专题练习)(多选)已知函数32()247f x x x x =---,其导函数为()'f x ,给出以下命题正确的是( ) A .()f x 的单调递减区间是2,23⎛⎫- ⎪⎝⎭B .()f x 的极小值是15-C .当2a >时,对任意的2x >且x a ≠,恒有()()()()f x f a f a x a '>+-D .函数()f x 有且只有一个零点13.(多选题)(2022·全国·模拟预测)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6eB .(27eC .(23eD .2e14.(多选题)(2022·全国·模拟预测)已知()()323ln 21f x x x x =--,则( ) A .()f x 的定义域是1,2⎡⎫+∞⎪⎢⎣⎭B .若直线y m =和()f x 的图像有交点,则3,ln 22m ⎛⎤∈-∞- ⎥⎝⎦C .723ln 16< D .()32ln22129> 15.(2022·福建·福州三中高三阶段练习)如果两个函数存在零点,分别为,αβ,若满足n αβ-<,则称两个函数互为“n 度零点函数”.若()()ln 2f x x =-与()2ln g x ax x =-互为“2度零点函数”,则实数a 的最大值为___________.16.(2022·浙江湖州·模拟预测)设(){}(){}0,0P f Q g ααββ====,若存在,R αβ∈∈R ,使得||n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若2()log 1f x x =-与()2x g x x a =-⋅互为“1度零点函数”,则实数a 的取值范围为_____________.17.(2022·河南省杞县高中模拟预测(理))实数x ,y 满足()23e 31e x y x y -≤--,则3xy -的值为______.18.(2022·河南新乡·高三期末(文))已知函数()322161f x x m x mx m =+-+-在x =2处取得极小值,则m =______.19.(2022·全国·高三专题练习(理))若函数()e (sin )x f x x a =-在区间()0,π上存在极值,则实数a 的取值范围是________.20.(2022·全国·高三专题练习(理))已知x =1e是函数()ln()1f x x ax =+的极值点,则a =________.21.(2022·江苏无锡·模拟预测)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.22.(2022·青海·海东市第一中学模拟预测(理))已知函数())1(ln f x x x ax x=+-,0a >.(1)若2a =,求函数()f x 的极值; (2)设()()21e 2=-+axg x ax ax ,当0x >时,()()f x g x '≤(()g x '是函数()g x 的导数),求a 的取值范围.23.(2022·广东·大埔县虎山中学高三阶段练习)已知函数()(0)bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)若3c =,求a ,b ;(2)若()ln ≥f x x 在[)1,+∞上恒成立,求a 的取值范围.24.(2022·河南·开封市东信学校模拟预测(文))已知函数()ln (0)f x x ax a a =-+>. (1)当2a =时,求()f x 的单调区间; (2)设函数()f x 的最大值为m ,证明:0m ≥.25.(2022·全国·郑州一中模拟预测(理))已知函数()()ln 0f x ax x a =≠. (1)讨论函数()f x 的单调性;(2)当1a =时,证明:()e sin 1xf x x <+-.26.(2022·广东深圳·高三阶段练习)已知函数()(0).e xaxf x a =≠ (1)若对任意的x ∈R ,都有1()ef x ≤恒成立,求实数a 的取值范围;(2)设,m n 是两个不相等的实数,且e m n m n -=.求证: 2.m n +>27.(2022·山东师范大学附中高三期中)设函数()1ln f x x a x x=-+ (1)当3a =时,求()f x 的单调区间;(2)任意正实数12,x x ,当122x x +=时,试判断()()12f x f x +与()2122a --的大小关系并证明28.(2022·山东·德州市教育科学研究院三模)已知函数ln ()1a xf x x =+,曲线()y f x =在(1,(1))f处的切线与直线20x y +=垂直.(1)设()(1)()x g x x f x =+,求()g x 的单调区间; (2)当0x >,且1x ≠时,ln 1()1x k f x x x->+-,求实数k 的取值范围.29.(2022·北京市大兴区兴华中学三模)设函数()e 1x f x a x =--,a R ∈.(1)当1a =时,求()f x 在点()()0,0f 处的切线方程;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围; (3)求证:当()0,x ∈+∞时,2e 1e x x x->.1.(2022·全国·高考真题(理))当1x =时,函数()ln b f x a x x =+取得最大值2-,则(2)f '=( )A .1-B .12-C .12 D .12.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+, 3.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A .a b <B .a b >C .2ab a <D .2ab a > 4.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.5.(2021·全国·高考真题)函数()212ln f x x x =--的最小值为______.6.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.7.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.8.(2021·北京·高考真题)已知函数()232x f x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值.9.(2021·天津·高考真题)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.10.(2021·全国·高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点.(1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.。

高中数学导数典型例题

高中数学导数典型例题

高中数学导数典型例题题型一:利用导数研究函数的单一性、极值、最值1. 已知函数 f (x) x3 ax2 bx c 过曲线 y f ( x) 上的点 P(1, f (1)) 的切线方程为y=3x+1 。

(1)若函数 f (x)在x 2 处有极值,求 f (x ) 的表达式;(2)在( 1)的条件下,求函数y f (x ) 在[-3,1] 上的最大值;(3)若函数y f (x )在区间 [ - 2, 1] 上单一递加,务实数 b 的取值范围2. 已知f (x ) 2 x3 2ax 2 3x ( a R ).31(1) 当| a |时,求证:f (x )在(1, 1) 内是减函数;4(2) 若y f (x ) 在 ( 1, 1) 内有且只有一个极值点,求a的取值范围.题型二:利用导数解决恒建立的问题例 1 :已知f ( x)x36ax29a2 x (a R ).(Ⅰ)求函数 f ( x) 的单一递减区间;(Ⅱ)当 a 0 时,若对x 0,3 有f ( x) 4 恒建立,务实数 a 的取值范围.例 2 :已知函数f ( x) e2x 2t(e x x) x2 2t 2 1,g ( x) 1 f ( x) .2(1)证明:当t 2 2 时, g(x) 在R上是增函数;(2)关于给定的闭区间[ a, b] ,试说明存在实数k ,当 t k 时,g( x)在闭区间[a,b]上是减函数;(3)证明:f ( x)≥3.2例 3:已知( ) ln , ( ) 2 3f x x axx x g x(1)求函数 f (x) 在 [t,t 2](t 0) 上的最小值(2)对x (0, ),2 f (x) g(x)恒建立,务实数 a 的取值范围(3)证明:对全部x∈( 0,+∞),都有 lnx >建立。

题型三:利用导数研究方程的根例 4 :已知函数 f ( x ) ax3 3x 2 1 3 .f ( x) 的单一性;a(I)议论函数(Ⅱ)若曲线 f (x) 上两点A、B处的切线都与y 轴垂直,且线段AB 与x轴有公共点,务实数 a 的取值范围.例 5 :已知函数 f ( x) ax3 bx 2 3x( a, b R) ,在点 (1, f (1)) 处的切线方程为y 2 0. (1)若关于区间[2,2] 上随意两个自变量的值x1 , x2,都有 | f ( x1 ) f (x2 ) | c ,务实数c 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2利用导数研究函数的性质第2课时导数与函数的极值、最值一、基础知识1.函数的单调性(复习)在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.知识拓展(1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.(2)函数的极大值不一定比极小值大.(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型1.根据函数图象判断极值【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】 C【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点【例2-1】设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 【答案】 D【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,∴x =2为f (x )的极小值点.【练习2-1】函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1 B .x =-1 C .x =1或-1或0 D .x =0答案 C解析 ∵f (x )=x 4-2x 2+3,∴由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,∴x =0,1,-1都是f (x )的极值点. 3 根据极值或极值点求参数【例题3-1】若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为________________. 答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞解析 f ′(x )=3x 2-4cx +1,由f ′(x )=0有两个不同的根,可得Δ=(-4c )2-12>0, ∴c >32或c <-32. 【例题3-2】若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫2,52 B.⎣⎡⎭⎫2,52 C.⎝⎛⎭⎫2,103 D.⎣⎡⎭⎫2,103 答案 C解析 函数f (x )在区间⎝⎛⎭⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝⎛⎭⎫12,3内有根,由f ′(x )=0有2个不相等的实根,得a <-2或a >2.由f ′(x )=0在⎝⎛⎭⎫12,3内有根,得a =x +1x 在⎝⎛⎭⎫12,3内有解,又x +1x ∈⎣⎡⎭⎫2,103,所以2≤a <103,综上,a 的取值范围是⎝⎛⎭⎫2,103. 【练习3-1】设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________. 【答案】 (-∞,-1)【解析】 ∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,∴方程y ′=e x +a =0有大于零的解, ∵当x >0时,-e x <-1,∴a =-e x <-1.【练习3-2】若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( )A.⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞)答案 C解析 f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x(a >0,x >0),若f (x )在区间⎝⎛⎭⎫12,1内有极大值,即f ′(x )=0在⎝⎛⎭⎫12,1内有解.则f ′(x )在区间⎝⎛⎭⎫12,1内先大于0,再小于0, 则⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧14a -12(2a +1)+212>0,a -(2a +1)+2<0,解得1<a <2,故选C.【方法总结】函数极值的两类问题解决方法 (1)求函数f (x )极值的一般解题步骤①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号. (2)根据函数极值情况求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求解后验证根的合理性. 4. 用导数求函数的最值【例题4-1】函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是__________. 【答案】 π6+ 3【解析】 ∵y ′=1-2sin x ,∴当x ∈⎣⎡⎭⎫0,π6时,y ′>0; 当x ∈⎝⎛⎦⎤π6,π2时,y ′<0.1∴当x =π6时,y max =π6+ 3. 【例题4-2】设函数f (x )=x 3-x 22-2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是________________. 答案 ⎝⎛⎭⎫-∞,72 解析 由题意知,f ′(x )=3x 2-x -2,令f ′(x )=0,得3x 2-x -2=0,解得x =1或x =-23,又f (1)=72,f ⎝⎛⎭⎫-23=15727,f (-1)=112,f (2)=7,故f (x )min =72,∴a <72. 【变式4-2】若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)答案 C解析 由题意,得f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0]. 【例题4-3】已知函数f (x )=1-x x +k ln x ,k <1e,求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值和最小值. 解 f ′(x )=-x -(1-x )x 2+k x =kx -1x2. ①若k =0,则f ′(x )=-1x 2在⎣⎡⎦⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减. ②若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(ⅰ)若k <0,则在⎣⎡⎦⎤1e ,e 上恒有k ⎝⎛⎭⎫x -1k x2<0.所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减, (ⅱ)若k >0,由k <1e ,得1k >e ,则x -1k<0在⎣⎡⎦⎤1e ,e 上恒成立,所以k ⎝⎛⎭⎫x -1k x 2<0,所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减.综上,当k <1e 时,f (x )在⎣⎡⎦⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1e+k -1,f (x )max =f ⎝⎛⎭⎫1e =e -k -1. 【变式】本例中若函数为“f (x )=ln x -12x 2”,则函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值如何? 解 由f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,因为当1e ≤x ≤e 时,令f ′(x )>0,得1e ≤x <1;令f ′(x )<0,得1<x ≤e ,所以f (x )在⎣⎡⎭⎫1e ,1上单调递增,在(1,e)上单调递减, 所以f (x )max =f (1)=-12.【方法总结】求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值.(2)求函数在区间端点的函数值f (a ),f (b ).(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 5. 函数极值和最值的综合问题【例题5-1】已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x.因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞),所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞]上的最大值是5e 5.。

相关文档
最新文档