中考数学实数的运算复习

合集下载

中考数学复习讲义课件 第1单元 第2讲 实数的运算

中考数学复习讲义课件 第1单元 第2讲 实数的运算
为相反数; 平方根 数 x 叫做 a 的平方 记作± a
(2)0 的平方根是 0 ; 根或二次方根
(3)负数没有平方根
若正数 x 的平方等 算术平 于 a,即 x2=a,那
记作 a 方根 么正数 x 叫做 a 的
算术平方根 若 x3=a,那么 x 叫 立方根 做 a 的立方根或三 记作3 a 次方根
20170-|1- 2|+(13)-1+2cos45°.
解:原式=1-
2+1+3+2×
2 2
=5.
8.(2016·达州)计算:
8-(-2016)0+|-3|-4cos45°.
解:原大小常用 B,KB,MB,GB 等作为单位,其中 1GB=210MB,
(1)0 的算术平方根是 0 ; (2)双重非负性: ①被开方数 a ≥ 0; ②式子 a ≥ 0 (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0 的立方根是 0
1.16 的平方根是 ±4 ,算术平方根是 4 ; 16的算术平方根是 2 . 2.8 的立方根是 2 ,-8 的立方根是 -2 .
4.除法 (1)两数相除,同号得正,异号得负,并把绝对值相除. (2)除以一个不为 0 的数等于乘这个数的倒数. (3)0 除以任何一个不等于 0 的数,都得 0 .
5.乘方 (1)求 n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在 an 中,a 叫 做底数,n 叫做指数. (2)正数的任何次幂得正;负数的奇次幂得负,负数的偶次幂得正;0 的正整 数次幂得 0 .
C.3
D.±3
实数的混合运算(必考) 3.(2021·达州)计算: -12+(π-2021)0+2sin60°-|1- 3|. 解:原式=-1+1+2× 23-( 3-1) =-1+1+ 3- 3+1 =1.

中考数学复习之实数的运算,基础过关练习题

中考数学复习之实数的运算,基础过关练习题

2. 实数的运算● 知识过关2. 实数的大小比较(1)直接比较法:正数____0,0___负数,正数____负数;两个负数,绝对大的___ (2)数轴比较法:对于数轴上的任意两个点,右边的点表示的实数总比左右的点表示的实数_ (3)差值比较法:对于实数a,b ,若a -b >0,则a>b ;若a -b =0,则a=b ; 若a -b <0,则a<b ;(4)商值比较法:设a 、b 是任意两个正实数,若b a >1;若b a =1,则a=b ; 若ba<1,则a<b ;(5)平方法:如果a>0,b>0,b a >,那么a>b.3.实数的运算先算________,再算_______,最后算________.如果有括号,要先算___里面的,同级运算应_______顺序进行. 4.整数指数幂(1)零次幂:)0(10≠=a a (2)负整数指数幂:),0(1是正整数p a a a pp ≠=- ● 考点分类考点1 实数的大小比较例1 在实数|2|3230---,,,中,最小的是( )A. 32- B.3- C.0 D.|-2|(2)已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A. m >0B.n <0C.mn <0D.m -n >0考点2 实数的运算(1) 2302023)21(27)0()1(|3|-+--⨯-+-π(2) 0160cos 2|22|)22()2023(--+-+-考点3 新定义运算例3(1)定义一种新运算:x y x y x 2*+=如221221*2=⨯+=,则(4*2)*(-1)=_______ (2)古希腊数学家把1,3,6,10,15.....叫做三角形数,它有一定的规律性,若把第一个三角形数记为1x ,第二个三角形数记为2x ,....,第n 个三角形数记为n x ,则1-+n n x x =_____ 真题演练1.下列式子中,为最简二次根式的是( ) A .√12B .√2C .√4D .√22.下列各式计算正确的是( ) A .3√3−2√3=1 B .(√5+√3)(√5−√3)=2 C .√3+√2=√5D .√(−3)2=−33.要使得代数式√x −2有意义,则x 的取值范围是( ) A .x >2B .x ≥2C .x <2D .x ≤24.如果y =√3−2x +√2x −3,则x +y 的值为( ) A .32B .1C .23D .05.下列计算正确的是( ) A .|√−93|=3 B .√64=±8 C .√(−7)2=−7D .√(−13)33=−136.计算式子(√3−2)2021(√3+2)2020的结果是()A.﹣1B.√3−2C.2−√3D.17.设x=4√5+3,y=√5−3,则x,y的大小关系是()A.x>y B.x≥y C.x<y D.x=y8.若|a﹣2|+b2+4b+4+√c2−c+14=0,则√b2−√a−√c的值是()A.2−32√2B.4C.1D.89.已知√a−3+√2−b=0,则√a +√6√b=.10.若2x﹣1=√3,则x2﹣x=.11.已知x,y是实数,且满足y=√x−2+√2−x+18,则√x⋅√y的值是.12.计算:(1)(√6−√32)×√2+(√3−3)2÷√3;(2)√2sin45°−2cos30°+√(1−tan60°)2.13.计算:(√5+3)(√5−3)﹣(√3−1)2.14.计算:|−√2|﹣2sin45°+(1−√3)0+√2×√8.15.计算:(√2021−π)01√2+1(12)﹣1﹣2cos45°.16.计算|−√2|+(√2−12)2﹣(√2+12)2.17.计算:(﹣3)0+√8+(﹣3)2﹣4×√22.18.计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.课后练习1.x=591×2021﹣591×2020,y=20202﹣2021×2019,z=√5882+2352+22,则x、y、z的大小关系是()A.y<x<z B.x<z<y C.y<z<x D.z<y<x2.当x=1+√20222时,多项式4x3﹣2025x﹣2022的值为()A.3B.﹣3C.1D.﹣13.设△ABC的三条边为a,b,c,且a,b,c,满足关系式:√(a−3)2+|4−b|+(c−5)2=0,则△ABC的形状为()A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形4.下列计算正确的是()A.(−√3)2=3B.√(−3)2=−3C.√12=2√2D.3√2=√3×25.下列运算中,结果正确的是()A.√2+√3=√6B.√5−√3=√2C.√12×12=√6D.√(−6)2=66.下列说法正确的是()A.√0.5是最简二次根式B.√8与√2是同类二次根式C.√a是二次根式D.√(−4)2的化简结果是﹣47.估计(2√5+5√2)×√15的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.下列运算正确的是()A.√12×√8=±2B.(m+n)2=m2+n2C.1x−1−2x=−1xD.3xy÷−2y23x=−9x22y9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x≤2B.x≤2且x≠﹣1C.x≥2D.x≥2且x≠﹣110.计算:√2−|√2−2|+(1﹣cos45°)+(−13)﹣2.11.计算:(√3−2)2+√12+6√1 312.计算:|−√2|+(12)﹣1−√6÷√3−2cos60°.13.计算:(1﹣π)0+|√2−√3|−√12+(√2)﹣1.14.计算:√(−3)2+(12)﹣3﹣(3√2)0﹣4cos30°√3.15.计算:√(13−12)2+√221√6sin60°.冲击A+已知,在等边△ABC 中,点D 、E 分别在AC 、BC 边上,AE 、BD 交于点F ,BE=CD. (1) 求证:AE=BD.(2) 如图2,过点D 作DG△AF 于点G ,试确定AE 、FG 、BF 的关系并说明理由.(3) 如图3,在(2)的条件下,连接CG ,若FG=BF ,DC=2,GC=33,请直接写出线段AB 的长度.。

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

2023年中考数学考点讲练专题3 实数的运算

2023年中考数学考点讲练专题3 实数的运算

专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。

有括号的先算括号,先算小括号,再算中括号,最后算大括号。

2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。

3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。

乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。

③分母有理化。

即()()b a ba ba b a b a ba −=±=± 1。

④二次根式的加减法:()m b a m b m ±=±。

4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。

5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)一、单选题【答案】C【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:2023−的倒数是12023−, 故选:C .【点睛】本题考查了倒数,掌握倒数的定义是解题的关键.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8−,故选:A .【答案】C【分析】首先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】∵11−=, ∴3012−<<−<,∴最大的数是2.故选:C .【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.(2023·四川南充·统考中考真题)如果向东走10m 记作10m +,那么向西走8m 记作( )A .10m −B .10m +C .8m −D .8m + 【答案】C【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m 记作10m +,那么向西走8m 记作8m −,故选:C .【点睛】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.【答案】B【详解】2的相反数是-2.故选:B.【答案】D 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选:D .【点睛】本题考查相反数,题目简单,熟记定义是关键.【答案】A【分析】根据相反数的定义即可求解.【详解】解:5−的相反数是5,故选:A .【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.8.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是( )A .±2B .2C .﹣2D .不存在 【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C .【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义. 9.(2023·浙江金华·统考中考真题)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20−℃,10−℃,0℃,2℃,其中最低气温是( )A .20−℃B .10−℃C .0℃D .2℃ 【答案】A【分析】根据有理数的大小比较,即可作出判断.【详解】解:201002−<−<<, 故温度最低的城市是哈尔滨,故选:A .【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.【答案】A【分析】根据相反数相加为0判断即可.【详解】解:∵5(5)0+−=,∴“□”内应填入的运算符号为+, 故选:A .【点睛】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键.【答案】D【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变6−前面的符号,即可得6−的相反数.【详解】解:6−的相反数是6.故选:D.【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.【答案】B【分析】根据倒数的概念,乘积为1的两个数互为倒数,由此即可求解.【详解】解:12−的倒数是2−,故选:B.【点睛】本题主要考查求一个数的倒数,掌握倒数的概念是解题的关键.13.(2023·浙江宁波·统考中考真题)在2,1,0,π−−这四个数中,最小的数是() A.2−B.1−C.0D.π【答案】A【分析】根据负数小于0小于正数,负数的绝对值大的反而小,进行判断即可.【详解】解:∵21−>−,∴210π−<−<<,∴最小的数是2−;故选:A.【点睛】本题考查比较实数的大小.熟练掌握负数小于0小于正数,负数的绝对值大的反而小,是解题的关键.14.(2023·江西·统考中考真题)下列各数中,正整数是()A.3B.2.1C.0D.2−【答案】A【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2−不是正数,故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选:A.16.(2023·甘肃武威·统考中考真题)9的算术平方根是()A.3±B.9±C.3D.3−【答案】C=,可得9的算术平方根.【分析】由239【详解】解:9的算术平方根是3,故选:C.【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.【答案】D【分析】根据数轴及有理数的加法可进行求解.−+=;【详解】解:由数轴可知点A表示的数是1−,所以比1−大3的数是132故选:D.【点睛】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.−A.2023B.2023【答案】B【分析】根据数轴的定义求解即可.=,【详解】解;∵数轴上点A表示的数是2023,OA OBOB,∴=2023−,∴点B表示的数是2023故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.−的结果是()19.(2023·浙江绍兴·统考中考真题)计算23A.1−B.3−C.1D.3【答案】A【分析】根据有理数的减法法则进行计算即可.−=−,【详解】解:231故选:A.【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.【答案】C【分析】由2=【详解】解:∵2>>,∴a b c故选:C.【点睛】本题考查了实数的大小比较,算术平方根.解题的关键在于对知识的熟练掌握.【答案】A【分析】根据绝对值的概念,可得3−的绝对值就是数轴上表示3−的点与原点的距离.进而得到答案.【详解】解:3−的绝对值是3,故选:A.【点睛】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键.22.(2023·重庆·统考中考真题)4的相反数是()A.14B.14−C.4D.4−【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4−,故选:D.【点睛】本题考查相反数的概念,关键是掌握相反数的定义.【答案】A【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.【答案】A【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得17039−<<<,∴最大的数是:3;故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【答案】A【分析】根据正数0>>负数,即可进行解答.【详解】解:∵469<<∴23<<∴1133π<<∴比1小的正无理数是.故选:A .【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数0>>负数.【答案】B【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B .【答案】A【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502−<<<∴最小的数是:5−故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.【答案】C【分析】根据无理数的估算可得答案.【详解】解:∵3=4==91316<<,∴大小在3与4故选:C.【点睛】本题考查了无理数的估算,熟练掌握基础知识是解题的关键.29.(2023·浙江台州·统考中考真题)下列各数中,最小的是().A.2B.1C.1−D.2−【答案】D【分析】根据正数大于零,零大于负数,两个负数,绝对值大的反而小判断即可.【详解】解:∵2,1是正数,1−,2−是负数,∴最小数的是在1−,2−里,又11−=,22−=,且12<,∴21−<−,∴最小数的是2−.故选:D.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.二、填空题【答案】4(答案不唯一)【分析】根据算术平方根的意义求解.【详解】解:∴由1623<即4<故答案为:4(答案不唯一).【点睛】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.31.(2023·四川泸州·统考中考真题)8的立方根为______.【答案】2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2.【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.【答案】2023 【分析】负数的绝对值是它的相反数,由此可解.【详解】解:2023−的相反数是2023,故20232023−=,故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.【答案】±2【详解】解:±2.故答案为:±2.34.(2023·重庆·统考中考真题)计算1023−+=_____.【答案】1.5 【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023−+=11=1.52+. 故答案为:1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()3.14π−11=【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.【答案】31=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.38.(2023·江苏连云港·统考中考真题)如图,数轴上的点A B 、分别对应实数a b 、,则a b +__________0.(用“>”“<”或“=”填空)【答案】<【分析】根据数轴可得0,a b a b<<>,进而即可求解. 【详解】解:由数轴可得0,a b a b<<>∴a b +0<故答案为:<.【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.【答案】5【分析】根据二次根式的性质即可求解.【详解】解:2=5故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.三、解答题【答案】7【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式112252=+−⨯+1215=+−+7=.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是【答案】2−【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:02|3|1)2−−−314=−−2=−.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:)012312sin303−⎛⎫++︒−− ⎪⎝⎭11212323=++⨯+121133=+++3=.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.【答案】2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的意义分别化简,再利用有理数的加减运算法则计算得出答案. 【详解】原式111222=++=.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,绝对值的意义,掌握这些知识并正确计算是解题关键.【答案】2【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式111232−+−⨯+=13=−+2= 【点睛】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.【答案】3【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解. 【详解】解:原式4123=+−=.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键.【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式)1134=−++114=6=. 【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:121|1|(2)(1)tan 453π−⎛⎫−+−−−+− ⎪⎝⎭︒14131=+−+−6=. 【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.【答案】18−【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()101121sin 451(1)3−⎛⎫−+︒−−− ⎪⎝⎭1213311=−+−++18=− 【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.【答案】【分析】利用二次根式的混合运算法则计算即可.===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.【答案】2【分析】根据绝对值的性质和算术平方根分别进行化简,再按照有理数加减混合运算即可求出答案.【详解】解: 223+−435=+−2=.【点睛】本题考查了实数的运算,解题的关键在于熟练掌握绝对值的性质、算术平方根,乘方的相关运算.【答案】1【分析】先化简绝对值及算术平方根,计算零次幂的运算,然后进行加减法即可.【详解】解:|2|2023−+212=+− =1. 【点睛】题目注意考查实数的混合运算,熟练掌握运算法则是解题关键.【答案】6−【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=−+6=−.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.【答案】1−【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】()()20232sin 3021π︒−+−()122112=⨯−++−12=−1=−.是解题的关键.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

初中数学中考总复习--实数的有关概念及计算考点训练

初中数学中考总复习--实数的有关概念及计算考点训练

实数的有关概念及计算考点训练【考点一 实数的有关概念】1.(2022•玉环市一模)如果向东走5米记作+5米,那么﹣3米表示( )A .向东走5米B .向西走5米C .向东走3米D .向西走3米2.(2022•海曙区校级一模)在﹣6,3,0,4这四个数中,负数有( )A .1个B .2个C .3个D .4个3.(2022•鹿城区校级三模)下列实数中,为无理数的是( ) A .﹣5 B .0 C .23D .√7 4.(2022•丽水二模)实数π,0,﹣1,√2中,有理数的个数为( )A .3B .2C .1D .05.(2022•上虞区模拟)实数2,0,﹣2,√2中,为负数的是( )A .2B .0C .﹣2D .√2 6.(2020•杭州模拟)下列对实数π−12说法正确的是( )A .它是一个有理数B .它是一个单项式C .它是一个分数D .它的值等于1.07【考点二 科学记数法与近似数】【例2】(2022•宁海县模拟)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示,我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为( )A .2.12×107B .2.12×108C .0.212×109D .2.12×1091.(2022•拱墅区校级二模)中国信息通信研究院测算.2020﹣2025年,中国5G 商用带动的息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元,其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×1082.(2022•瑞安市校级三模)截至北京时间5月24日6时30分左右,全球累计确诊新冠肺炎病例约为167000000例,累计死亡348万例.数字“167000000”用科学记数法可表示为( )A .1.67×109B .0.167×109C .1.67×108D .16.7×1083.(2022•长兴县模拟)新型冠状病毒有包膜,颗粒呈圆形或者椭圆形,常为多形性.某种新冠病毒的直径大约为0.00000012米,这个数用科学记数法表示为( )A .1.2×10﹣7B .12×10﹣8C .120×106D .0.12×10﹣94.(2022•萧山区二模)2019年11月,联合国教科文组织正式宜布,将每年的3月14日定为“国际数学日”.国际数学日之所以定在3月14日,是因为“3.14”是圆周率数值最接近的数字.将圆周率“π”用四舍五入法取近似值3.14,是精确到( )A .个位B .十分位C .百分位D .千分位5.(2020•西湖区校级模拟)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为 .6.(2020•温岭市一模)疫情无情人有情,截至2月18日17时,仅我市慈善总会就接收到防控新冠肺炎疫情捐赠12525390元,用科学记数法表示这个捐赠款数,并精确到万元,可记作 元.【考点三 相反数、倒数、绝对值】【例3】(2022•江汉区校级模拟)实数−√2的相反数是( )A .−√2B .√2C .√2D .√2 1.(2020•江岸区模拟)−√3的相反数为( )A .√3B .−√33 C .3 D .﹣3 2.(2021•兰溪市模拟)实数﹣3的绝对值是( ) A .﹣3 B .13 C .3 D .−13 3.(2022•下城区校级二模)2的相反数是 ,﹣3的绝对值是 . 4.(2022秋•拱墅区月考)−12的倒数是 ;绝对值等于2的数是 .5.(2022秋•义乌市校级月考)已知|ab ﹣2|+|a ﹣1|=0,则b = .6.(2022秋•临平区月考)式子4+|x ﹣1|能取得的最小值是 ,这时x = ;式子3﹣|2x ﹣1|能取得的最大值是 ,这时x = .【考点四 平方根、立方根及实数的估算】【例4】(2022春•嵊州市期末)计算√(−3)2的结果是( )A .9B .﹣3C .3或﹣3D .3 1.(2022•婺城区一模)正数2的平方根可以表示为( )A .22B .±√2C .√2D .−√22.(2022秋•温州校级期中)下列计算结果正确的是( )A .±√4=2B .√4=±2C .√4=2D .√(−4)2=−43.(2022秋•拱墅区月考)若x 2=3,则x 的值是( )A .−√3B .√3C .±9D .±√34.(2022秋•萧山区校级期中)若m <0,则|2m |= ;√81的平方根是 .5.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .6.(2022秋•海曙区校级期中)大于−√3且小于π的所有整数和是 .7.(2022秋•温州校级期中)小于√5+1的正整数有 个.【考点五 实数的大小比较】【例5】(2022•瓯海区一模)下列四个数最大的是( )A .﹣1B .−12C .√2D .2 1.(2022秋•杭州期中)在数2,0,﹣2,−√3中,最大的数是( )A .−√3B .0C .﹣2D .22.(2022秋•杭州期中)下列大小关系判断正确的是( ) A .0>|﹣10| B .−19>−(−110) C .﹣3>−√10 D .﹣32>﹣π3.(2022秋•拱墅区校级月考)若X 为实数,记[X ]表示不超过X 的最大整数,则[﹣3.5]=( )A .﹣4B .﹣3C .3D .44.(2022秋•义乌市校级期中)比较大小:√7 2.5(填“>”、“<”或“=”).5.(2022秋•萧山区期中)比较大小:(1)﹣2 ﹣3; (2)|﹣5| √−83.【考点六 实数的运算】【例6】(2022春•富阳区期中)计算:(﹣3)2﹣30+3﹣1= .1.(2022秋•临平区期中)计算:(1)√52−33+√(35)2+(45)2; (2)√−273+√(−3)2−√−13. 2.(2022秋•萧山区期中)计算:(1)√−643+√16; (2)√(−2)2+|3.14−π|+3.14.3.(2022秋•海曙区校级期中)计算: (1)(34+712−76)÷(−160); (2)√(−5)2−|2−√2|−√−273+(−√3)2. 4.(2022秋•杭州期中)(1)若a 是最小的正整数,b 是绝对值最小的数,c =|√7−√11|,|x +2|+√y −3=0. 则a = ;b = ;c = ;x = ;y = .(2)若a 与b 互为相反数,c 与d 互为倒数,|e|=√2,求代数式4(a +b )+(﹣cd )2﹣e 2的值.5.(2022秋•苍南县期中)观察下列一组算式的特征及运算结果,探索规律:(1)√1×5+4=√9=3,(2)√2×6+4=√16=4,(3)√3×7+4=√25=5,(4)√4×8+4=√36=6.(1)观察算式规律,计算√5×9+4= ;√19×23+4= .(2)用含正整n 的式子表示上述算式的规律: .(3)计算:√1×5+4−√2×6+4+√3×7+4−√4×8+4+⋯+√2021×2025+4.【考点七 非负数的性质】【例7】(2021秋•奉化区期中)若(x ﹣2017)2+|2018+y |+√2019−m =0,则(x +y )m = .1.(2022秋•温州期中)已知|x −3|+(y +2)2+√z =0,则(z +y )x =( )A .6B .﹣6C .8D .﹣82.(2022春•仙居县期中)√a 2+2a +1−2的最小值是( )A .﹣2B .﹣1C .0D .23.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .4.(2013春•余姚市校级月考)若√a +3+(b −1)2=0,则a−b 4= .5.(2022秋•萧山区校级期中)(1)已知某正数的平方根为a +3和2a ﹣15,求这个数是多少?(2)已知m ,n 是实数,且√2m +1+|3n −2|=0,求m 2+n 2的平方根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学实数的运算复习
节章课题
课型复习课教法讲练结合
教学目标1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

会用电子计算器进行四则运算。

教学重点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。

教学难点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。

教学媒体学案
教学过程
一:【课前预习】
【知识梳理】
有理数加、减、乘、除、幂及其混合运算的运算法则
有理数加法法则:
①同号两数相加,取________的符号,并把__________
②绝对值不相等的异号两数相加,取________________
的符号,并用
____________________。

互为相反数的两个数相加得____。

③一个数同0相加,__________________。

有理数减法法则:减去一个数,等于加上____________。

有理数乘法法则:
①两数相乘,同号_____,异号_____,并把_________。

任何数同0相乘,
都得________。

②几个不等于0的数相乘,积的符号由____________决定。

当______________,
积为负,当_____________,积为正。

③几个数相乘,有一个因数为0,积就为__________.
有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。

②两数相除,同号_____,异号_____,并把_________。

0除以任何一个
____________________的数,都得0
幂的运算法则:正数的任何次幂都是___________;负数的__________是负数,
负数的__________是正数
有理数混合运算法则:
先算________,再算__________,最后算___________。

如果有括号,就_______________________________。

实数的运算顺序:在同一个算式里,先、,然后,最后.有括号时,先算里面,再算括号外。

同级运算从左到右,按顺序进行。

运算律
加法交换律:_____________。

加法结合律:____________。

乘法交换律:_____________。

乘法结合律:____________。

乘法分配律:_________________________。

实数的大小比较
差值比较法:
>0>,=0,<0<
商值比较法:
若为两正数,则>>;<<
绝对值比较法:
若为两负数,则><<>
两数平方法:如
三个重要的非负数:
【课前练习】
下列说法中,正确的是
A.||与—互为相反数B.互为倒数
c.1998.8用科学计数法表示为1.9988×102
D.0.4949用四舍五入法保留两个有效数字的近似值为0.50
在函数中,自变量x的取值范围是
A.x>1B.x<1c.x≤1D.x≥1
按鍵顺序-1•2÷4=,结果是。

的平方根是______
计算
÷2+|-|×+;
二:【经典考题剖析】
已知x、y是实数,
请在下列6个实数中,计算有理数的和与无理数的积的差:
比较大小:
探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是;320的个位数字是;
计算:

三:【课后训练】
某公司员工分别住在A、B、c三个住宅区,A区有30人,B区有15人,c区有10人,
三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,
那么停靠站的位置应设在
A.A区;B.B区;c.c区;D.A、B两区之间
根据国家税务总局发布的信息,XX年全国税收收入完成25718亿元,比上年增长
7%,占XX年国内生产总值的19%。

根据以上信息,下列说法:①XX年全国税收收入约为25718×亿元;②XX年全国税收收入约为亿元;③若按相同的增长率计算,预计XX年全国税收收入约为25718×亿元;④XX年国内生产总值约为亿元。

其中正确的有
A.①④;B.①③④;c.②③;D.②③④
当<<时,的大小顺序是
A.<<;B.<<;c.<<;D.<<
设是大于1的实数,若在数轴上对应的点分别记作A、B、c,则A、B、c三点在数轴上自左至右的顺序是
A.c、B、A;B.B、c、A;c.A、B、c;D.c、A、B
现规定一种新的运算“※”:a※b=ab,如3※2=32=9,则※
A.;B.8;c.;D.
火车票上的车次号有两种意义。

一是数字越小表示车速越快:1~98次为特快列车;101~198次为直快列车;301~398次为普快列车;401~498次为普客列车。

二是单、双数表示不同的行驶方向,比如单数表示从北京开出,则双数表示开往北京。

根据以上规定,杭州开往北京的某一趟直快列车的车次号可能是
A.20;B.119;c.120;D.319
计算:
;⑵;⑶

已知:,求
观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n的等式表示出
0.小王上周五买进某公司股票1000股,每股25元,在接下来的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:
星期一二三四五
每股涨跌+2-0.5+1.5-1.8+0.8
根据表格回答问题
星期二收盘时,该股票每股多少元?
本周内该股票收盘时的最高价、最低价分别是多少?
已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。

若小王在本周五以收盘价将传全部股票卖出,他的收益情况如何?
四:【课后小结】。

相关文档
最新文档