《现代控制理论》习题册
现代控制理论习题集

现代控制理论习题集序为了帮助同学们更好地学习《现代控制理论》这门大学自动化专业的主干基础课程,在王整风老师的指导下,我们共同编写了这本基于刘豹版本教材的习题集,希望能让大家拥有做题不仅仅注重题目答案,更关注解题过程的意识。
本书第一章由张胜编写,第二章由何新礼编写,第三章由刘洋编写,第四章由邢雅琪编写,第五章由孙峰编写,由宋永康和王彦明统稿,在此向王老师和以上同学表示感谢。
由于时间仓促,本习题集难免有不当之处,个别题目的解法并不唯一,解题过程难免有错误、疏漏的地方,恳请大家批评指正。
编者2013年6月目录第一章控制系统的状态空间表达式 (1)第二章控制系统状态空间表达式的解 (13)第三章线性控制系统的能控性和观性 (21)第四章稳定性与李亚普诺夫方法 (33)第五章线性定常系统综合 (38)第一章控制系统的状态空间表达式张胜1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:直接对系统方块结构图转化得系统的模拟结构图如下:可得系统的状态方程:故系统的状态空间表达式为:1-2 有电路如图1-28所示。
以电压u(t)为输入量,求以电感中的电流和电容上的R上的电压作为输出量的输出方程。
电压作为状态变量的状态方程,和以电阻2解:易得系统为3维单输入单输出系统:假定流过c U 上的电流向下,对图中的两个回路由KVL 得 :解得213.11x Cx C x -=转化成矩阵形式为:1-4 两输入21,u u ,两输出21,y y 的系统。
其结构模拟图如图1.30所示,试求其状态空间表达式和传递函数阵。
解:令11y u -前向通道上积分号后的状态变量分别为12,x x ;22y u -前向通道上积分号后的状态变量分别为4,3x x 。
由于系统为四维,两输入,两输出系统,故系统阵A 为4×4阶,输入阵B 为4×2阶,输出阵C 为2×4阶。
由图得,系统的状态空间表达式如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡43212101000001x x x x y y由 可求得系统传递函数阵。
《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论课后习题答案

精心整理绪论为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。
根据老师要求,本次任务分组化,责任到个人。
我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。
2.题解详略得当,老师要求的步骤必须写上。
3.遇到一题多解,要尽量写出多种方法。
本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。
我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。
在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。
本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正!2014年6月2日第一章 控制系统的状态空间表达式1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。
现代控制理论习题集_免费下载

现代控制理论习题集序为了帮助同学们更好地学习《现代控制理论》这门大学自动化专业的主干基础课程,在王整风老师的指导下,我们共同编写了这本基于刘豹版本教材的习题集,希望能让大家拥有做题不仅仅注重题目答案,更关注解题过程的意识。
本书第一章由张胜编写,第二章由何新礼编写,第三章由刘洋编写,第四章由邢雅琪编写,第五章由孙峰编写,由宋永康和王彦明统稿,在此向王老师和以上同学表示感谢。
由于时间仓促,本习题集难免有不当之处,个别题目的解法并不唯一,解题过程难免有错误、疏漏的地方,恳请大家批评指正。
编者2013年6月目录第一章控制系统的状态空间表达式 (1)第二章控制系统状态空间表达式的解 (13)第三章线性控制系统的能控性和观性 (21)第四章稳定性与李亚普诺夫方法 (33)第五章线性定常系统综合 (38)第一章控制系统的状态空间表达式张胜1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:直接对系统方块结构图转化得系统的模拟结构图如下:可得系统的状态方程:故系统的状态空间表达式为:1-2 有电路如图1-28所示。
以电压u(t)为输入量,求以电感中的电流和电容上的R上的电压作为输出量的输出方程。
电压作为状态变量的状态方程,和以电阻2解:易得系统为3维单输入单输出系统:假定流过c U 上的电流向下,对图中的两个回路由KVL 得 :解得213.11x Cx C x -=转化成矩阵形式为:1-4 两输入21,u u ,两输出21,y y 的系统。
其结构模拟图如图1.30所示,试求其状态空间表达式和传递函数阵。
解:令11y u -前向通道上积分号后的状态变量分别为12,x x ;22y u -前向通道上积分号后的状态变量分别为4,3x x 。
由于系统为四维,两输入,两输出系统,故系统阵A 为4×4阶,输入阵B 为4×2阶,输出阵C 为2×4阶。
由图得,系统的状态空间表达式如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡43212101000001x x x x y y由 可求得系统传递函数阵。
现代控制理论试卷与答案

一、名词解释与简答题(共3题, 每小题5分, 共15分)
1.经典控制理论与现代控制理论的区别
2.对偶原理的内容
3.李雅普诺夫稳定
二、分析与计算题(共8小题, 其中4-10小题每题10分, 第11小题15分, 共85分)
4、电路如图所示, 设输入为, 输出为, 试自选状态变量并列写出其状态空间表达式。
u 2
R
1
R
u
C1
C2
u
12
u
5.已知系统的微分方程。
试列写出状态空间表达式。
6.试将下列状态方程化为对角标准型或者约当标准型。
11
1
22
2
33
41231
10227
11353
x x
u
x x
u
x x
-
⎡⎤⎡⎤⎡⎤⎡⎤
⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥
=+⎢⎥
⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
⎢⎥⎢⎥⎢⎥⎢⎥
-
⎣⎦⎣⎦⎣⎦⎣⎦
2
3
7、已知系统状态空间表达式为, 求系统的单位阶跃响应。
8、已知线性定常系统(A, B, C), , 试判断系统是否完全能观?若能观求其能观标准
型, 不能观则按照能观性进行分解。
9、利用李雅普诺夫方程判断系统是否为大范围渐近稳定, 并求出其一个李雅普诺夫函数。
10、将状态方程u x x ⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=11 4321 化为能控标准型。
11.已知系统为, 试确定线性状态反馈控制律, 使闭环极点都是, 并画出闭环系统的结构图。
胡寿松《现代控制理论》习题集部分解答

ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
非 卖 品
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
ROnei(李荣辉)完成,仅供参考
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
R寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
ROnei(李荣辉)完成,仅供参考
现代控制理论习题

现代控制理论习题《现代控制理论》练习题判断题1. 由⼀个状态空间模型可以确定惟⼀⼀个传递函数。
3. 对⼀个给定的状态空间模型,若它是状态能控的,则也⼀定是输出能控的。
4. 对系统Ax x= ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是⼀致的。
5. 对⼀个系统,只能选取⼀组状态变量;6. 由状态转移矩阵可以决定系统状态⽅程的系统矩阵,进⽽决定系统的动态特性;7. 状态反馈不改变系统的能控性。
8. 若传递函数B A sI C s G 1)()(--=存在零极相消,则对应状态空间模型描述的系统是不能控的;9. 若线性系统是李雅普诺夫意义下稳定的,则它是⼤范围渐近稳定的;10. 相⽐于经典控制理论,现代控制理论的⼀个显著优点是可以⽤时域法直接进⾏系统的分析和设计。
11. 传递函数的状态空间实现不唯⼀的⼀个主要原因是状态变量选取不唯⼀。
12. 状态变量是⽤于完全描述系统动态⾏为的⼀组变量,因此都是具有物理意义。
13. 等价的状态空间模型具有相同的传递函数。
14. 互为对偶的状态空间模型具有相同的能控性。
15. ⼀个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置⽆关。
16. 若⼀线性定常系统的平衡状态是渐近稳定的,则从系统的任意⼀个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。
17. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。
18. 如果⼀个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。
填空题l .系统状态完全能控是指。
2.系统状态的能观性是指。
3.系统的对偶原理:。
4.对于⼀个不能控和不能观的系统,按系统结构标准分解为、、、、的四个⼦系统。
5.对于单输⼊单输出系统,系统能控、能观的充要条是是。
7.系统平衡状态的渐近稳定性的定义为:。
10.受控系统∑),,(C B A ,采⽤状态反馈能镇定的充分必要条件是。
现代控制理论课后习题答案

现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。
1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。
(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。
解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 控制系统的状态空间描述1-1 求图示网络的状态空间表达式,选取C u 和i 为状态变量。
RL +1-2 已知系统微分方程,试将其变换为状态空间表达式。
(1)u y y y y 2642=+++(2)u u y yy 237+=++(3)u u u y y yy 23745++=+++(4)u u u u y y y y 81786116+++=+++1-3试画出如图所示系统的状态变量图,并建立其状态空间表达式。
1-4 已知系统的传递函数,试建立其状态空间表达式,并画出状态变量图。
(1)61161)(232+++++=s s s s s s G (2)6513)(22++++=s s s s s G(3))3()1(4)(2++=s s s s G (4)13332)(232+++++=s s s s s s G1-5 已知系统233)()(2+++=s s s s U s Y ,试求其能控标准型和对角标准型。
1-6 已知系统传递函数,试用并联法求其状态空间表达式。
(1)61161)(23+++=s s s s G (2)2545)(23+++=s s s s G1-7 试求下列状态方程所定义系统的传递函数。
⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212121211001101142510x x y y u u x x x x1-8 试将下列状态方程化为对角标准型。
(1)u(t)x(t)(t)x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510(2)u(t)x(t)(t)x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=1751326712203010(3)u(t)x(t)(t)x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=01161161000101-9 试将下列状态方程化为约当标准型。
(1)u(t)x(t)(t)x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=102112(2)u(t)x(t)(t)x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=357213*********(3)u(t)x(t)(t)x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100452100010第二章 线性控制系统状态空间表达式的解2-1 试求下列系统矩阵A 对应的状态转移矩阵。
(1)⎥⎦⎤⎢⎣⎡-=2010A (2)⎥⎦⎤⎢⎣⎡-=0410A(3)⎥⎦⎤⎢⎣⎡--=2110A (4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=452100010A (5)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000010A (6)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλ000100010000A2-2 试判断下列矩阵是否满足状态转移矩阵的条件。
如果满足,试求对应的矩阵A 。
(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t t t t sin cos 0cos sin 0001)(Φ(2)⎥⎥⎦⎤⎢⎢⎣⎡-=--t t e e t 220)1(211)(Φ (3)⎥⎦⎤⎢⎣⎡+--+--=--------t t ttt t tt e e e e e e e e t 22222222)(Φ(4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-+=----)(21)(41)(21)(3333t tt t t t t t e e e e e e e e t Φ2-3 线性定常系统的齐次状态方程为Ax x= ,已知当1(0)2x ⎡⎤=⎢⎥-⎣⎦时,状态方程的解为22()2t t e x t e --⎡⎤=⎢⎥-⎣⎦,而当1(0)1x ⎡⎤=⎢⎥-⎣⎦时,状态方程的解为()t t e x t e --⎡⎤=⎢⎥-⎣⎦,试求: (1)系统的状态转移矩阵()t Φ; (2)系统的状态矩阵A 。
2-4 已知系统状态方程和初始条件x(t)(t)x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210010001 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010)x( (1)试用拉普拉斯变换法求状态转移矩阵; (2)试用化标准型法求状态转移矩阵; (3)求齐次状态方程的解。
2-5 已知线性定常系统的状态方程和初始状态为u(t)x(t)(t)x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=103210 ,⎥⎦⎤⎢⎣⎡-=110)x(试求u(t)为单位阶跃函数时系统状态方程的解。
第三章 线性控制系统的能控性和能观测性3-1 判断下列系统的状态能控性。
(1)u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=010101(2)u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111001342100010 (3)u x x⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1110000000000001λλλλ3-2 判断下列系统的能观测性。
(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=xy x x 121100342100010 (2)[]⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=x y x x 4111000400043-3 设系统的状态方程为u x xB A += ,若1x 和2x 是系统的能控状态,试证状态21x x βα+也是能控的,其中α,β为任意非零常数。
3-4 设系统和系统的状态表达式:[]⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=∑1111112104310:xy u x x ;⎩⎨⎧=+-=∑2222222:x y u x x(1)试分析系统1∑和2∑的能控性和能观测性,并写出传递函数;(2)试分析由1∑和2∑所组成的串联系统的能控性和能观测性,并写出传递函数; (3)试分析由1∑和2∑所组成的并联系统的能控性和能观测性,并写出传递函数。
3-5 已知系统的传递函数为182710)(23++++=s s s as s G (1)试确定a 的取值,使系统成为不能控,或为不能观测; (2)在上述a 的取值下,求使系统为能控的状态空间表达式; (3)在上述a 的取值下,求使系统为能观测的状态空间表达式。
3-6 已知系统的状态空间表达式为[]⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y u x x c b a c b a λλλ000001 试问能否选择常数a ,b ,c 使系统具有能控性和能观测性。
3-7 系统结构图如图所示,图中a ,b ,c ,d 均为实常数。
试建立系统的状态空间表达式,并分别确定当系统状态既能控又能观测时a ,b ,c ,d 应满足的条件。
3-8 设n 阶单输入单输出系统的状态空间表达式为⎩⎨⎧=+=cx y bu x xA 试证明:(1)若0=cb ,0=b c A ,02=b c A , ,01=-b c n A ,则系统不能同时满足能控性和能观测性的条件。
(2)若0=cb ,0=b c A ,02=b c A , ,02=-b c n A ,01≠-b c n A ,则系统总是既能控性又能观测性的。
3-9 已知系统的微分方程为u y y yy 66116=+++ 试写出其对偶系统的状态空间表达式及其传递函数。
3-10 已知系统的状态方程为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=112101试求出它的能控标准型。
3-11 已知系统的状态空间表达式为[]⎪⎩⎪⎨⎧-=⎥⎦⎤⎢⎣⎡-=x y x x 114201 试求出它的能观测标准型。
3-12 已知系统的传递函数为3486)(22++++=s s s s s G试求其能控标准型和能观测标准型。
3-13 若系统的状态空间表达式为[]⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 111112122211220 系统是否能控?若系统是能控的,将其变成能控标准型。
3-14 若系统的状态空间表达式为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=x y x x 5.012011 系统是否能观测?若系统是能观测的,将其变成能观测标准型。
3-15 若系统的状态空间表达式为[]⎪⎪⎩⎪⎪⎨⎧-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=xy u x x 210011********* 试判断系统是否为状态完全能控?否则将系统按能控性进行分解。
3-16 已知系统的微分方程为u u u y y y8634++=++ 试分别求出满足下述要求的状态空间表达式(1)系统为能控能观测的对角标准型; (2)系统为能控不能观测的; (3)系统为不能控但能观测的; (4)系统为不能控也不能观测的。
第四章 控制系统的稳定性分析4-1 试确定下列二次型是否正定。
(1)3132212322212624)(x x x x x x x x x x V --+++= (2)322123222126410)(x x x x x x x x V ++---= (3)313221232221422410)(x x x x x x x x x x V --+++=4-2 试确定下述二次型为正定时,待定常数的取值范围。
313221232221242)(x x x x x x cx bx ax x V --+++=4-3 试用李雅普诺夫第二法判断下列线性系统的稳定性。
(1)x x⎥⎦⎤⎢⎣⎡--=1110 (2)x x ⎥⎦⎤⎢⎣⎡--=3211 (3)x x ⎥⎦⎤⎢⎣⎡---=1111 (4)x x ⎥⎦⎤⎢⎣⎡-=10014-4 试确定下列非线性系统在0=e x 处稳定时,参数a 和b 的取值范围。
⎩⎨⎧---==1322221x bx ax x x x其中,0≥a ,0≥b ,但两者不同时为零。
4-5 设系统的状态方程为x x ⎥⎦⎤⎢⎣⎡--=1110 其平衡状态在坐标原点处,试用李雅普诺夫方程来判断该系统的稳定性。
4-6 已知非线性系统的状态方程为⎩⎨⎧-+-==1222221)1(x x x a x x x若选李雅普诺夫函数为2221)(x x x V +=,试分析系统在平衡点的稳定性。
4-7 已知线性定常系统Ax x= 的状态转移矩阵为 ⎥⎦⎤⎢⎣⎡+-+---=--------t t t t t t t t e e ee e e e e t 2222221222)(Φ 试分别用李雅普诺夫第一法和第二法来分析系统的稳定性。
第五章 状态反馈和状态观测器5-1 已知系统结构图如图所示。
(1)写出系统状态空间表达式。
(2)试设计一个状态反馈阵,将闭环系统特征值配置在53j ±-上。
5-2 已知系统的传递函数为)2)(1(10)()(++=s s s s U s Y 试设计一个状态反馈阵,将闭环系统的极点为2-,j ±-1。
5-3 已知系统的传递函数为)3)(2)(1()2)(1()(+-++-=s s s s s s G试问能否利用状态反馈,将传递函数变为)3)(2()1()(++-=s s s s G K若有可能,试分别求出状态反馈阵K ,并画出其状态变量图。