2020-2021学年最新辽宁省大连市中考数学模拟试卷及答案
2020-2021学年辽宁省大连市中考数学适应性试题及答案解析

大连市最新中考适应性测试数学注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共五大题,26小题,满分150分。
考试时间120分钟。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.分别取正整数5的绝对值、倒数、相反数、算术平方根,得到的数值仍为正整数的是 A. 绝对值 B. 倒数 C. 相反数 D. 算术平方根2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界水平,因此,珍惜水,保护水是我们每一位公民的责任.其中数据28000用科学计数法表示为A. 28×103B. 2.8×104C. 0.28×105D. 2.8×105 3. 如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是 A .AC=AB B .∠C=∠BC .∠C=21∠BOD D .∠A=∠BOD4.不等式11≤-x 的解集是A. x >2B. x <0C. 1<x <2D. 0<x <25.在平面直角坐标系中,抛物线21)1(212-+-=x y 的顶点是A. (-1,-21) B.(-1,21) C. (1,-21) D. (1,21) 6.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为A .26°B .36°C .46°D .56°7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为A. 41B. 51C. 61D. 718.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有 A. 14 B. 22斛 C. 36斛 D. 66斛 二、填空题(本题共8小题,每小题3分,满分24分)(第3题)(第6题)(第8题)9.因式分解:2a2-4a=.年龄(岁)13 14 15 16人数 2 4 3 1 则这10名队员年龄的众数是.11.若二次根式12-x有意义,则x的取值范围是.12.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A’B’C’可以看由△ABC绕点C顺时针旋转得到,其中点A’与点A是对应点,点B’与点B是对应点,联结AB’,且A、B、A’在同一条直线上,则AA’的长度是.13.如图,△ABC与△DEF位似,位似中心点为O,且△ABC与△DEF面积比为4:9,则AB:DE=.14.如图,点A是反比例函数图象上xky=一点,过点A作AB⊥y轴于点B,点C、D在x 轴上,且BC∥AD,四边形ABCD的面积为3,则k=.15.在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,-3),点B(4,1),则D点坐标为.16.如图,一艘潜艇在海面下500m深的点A处,测得正前方俯角为31°方向上的的海底有黑匣子发出信号,潜艇在同一深度保持直线航行500m,在点B处测得海底黑匣子位于正前方俯角36.9°的方向上,海底黑匣子C所在点距海绵的深度为m.(精确到1,m.参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31°≈0.51,cos31°≈0.87,tan31°≈0.60)三、解答题(本题共4小题,其中17、18、19题各9分,20题12,共39分)17.计算:20160-|-23|-(21)-1+6tan30°.18.先化简,再求值:12111122-÷⎪⎭⎫⎝⎛+--aaaa,其中a=2.(第12题)(第13题)(第14题)(第16题)19.如图,在正方形ABCD 内有一点P 满足AP=AB ,PB=PC ,连接AC 、PD.求证:△APB ≌△DPC.20.我市某校九年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图,已经知A 、B 两组发言人数直方图高度比为1∶5.请结合图中相关的数据回答下列问题:(1)A 组的人数是多少?本次调查的样本容量是多少? (2)求出C 组的人数并补全直方图; (3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.四、解答题(本题共3小题,其中21、22题各9分,23题10,共28分)21.一学校为了绿化校园环境,向某园林公司购买力一批树苗.园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?22.如图,已知一次函数的图象b kx y +=与反比例函数8xy -=的图象交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1)一次函数的解析式;(2)△AOB 的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x 的取值范围.23.如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E,F 两点. (1)证明:EF //BC ; (2)若AG 等于⊙O 的半径,且AE =MN =32,求四边形EBCF 的面积.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图1,在△ABC 中.∠C =90°,AC >BC ,正方形CDEF 的顶点D 在边AC 上,点F 在射线CB 上设CD =x ,正方形CDEF 与△ABC 重叠部分的面积为S , S 关于x 的函数图象如图2所示(其中0<x ≤m ,m <x ≤2,2<x ≤n 时,函数的解析式不同). (1)填空:m 的值为________;(2)求S 关于x 的函数解析式,并写出x 的取值范围; (3)S 的值能否为213?若能,直接写出此时x 的值,若不能,说明理由.25.如图,已知:在矩形ABCD 中,O 为AC 的中点,直线l 经过点B ,且直线l 绕着点B 旋转,AM ⊥l 于点M,CN ⊥l 于点N,连接OM ,ON.4(1)当直线l 经过点D 时,如图1,则OM 、ON 的数量关系为;(2)当直线l 与线段CD 交于点F 时,如图2,(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由;(3)当直线l 与线段DC 的延长线交于点P 时,请在图3中做出符合条件的图形,并判断(1)中的结论是否仍然成立?说明理由.26.在平面直角坐标系xOy 中,抛物线C :y =ax 2.(1)若直线l 1:y =x -1与抛物线C 有且只有1个交点,求抛物线C 的解析式.(2)如图1,在(1)的条件下,在y 轴上有一点A (0,4),过点A 作直线l 2与抛物线C 有两个交点M 、N (N 位于第一象限),过点N 作x 轴的垂线,垂足为H . 试探究:是否存在l 2,使△MON ∽△NHO ?若存在,求出l 2的解析式;若不存在,说明理由. (3)如图2,E 、F 为抛物线C (y =ax 2)上两动点,始终满足OE ⊥OF ,连接EF ,则直线EF 是否恒过一定点G ?若存在点G ,直接写出G 点坐标(用含a 的坐标表示),若不存在,给予证明.(参考结论:若直线l :y =kx +b 上有两点(x 1,y 1)、(x 2,y 2),则斜率k =1212x x y y --;当两直线l 1、l 2的斜率乘积k 1·k 2=-1时,l 1⊥l 2)(第25题)数学参考答案及评分标准说明:一、时间能力有限,本解答给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分.2016年5月15日定稿一、选择题1.A ; 2.B ; 3.C ; 4.D ; 5.A ; 6.B ; 7.C ; 8.B . 二、填空题9.2a (a -2); 10.14; 11.x ≥21; 12.6; 13.32; 14.-3; 15.(3,-4); 16. 2000. 三、解答题17.解:原式=1-23-2+6×33, (8)分=-1. (9)分18.解:原式=2222112aa a -⨯-, ………………………………………………………………6分=21a .……………………………………………………………8分当a =2时,原式=21.………………………………………………………9分 19.证明:∵四边形ABCD 是正方形,∴∠ABC =∠DCB =90°∵PB =PC ,∠PBC =∠P CB . (4)分∴∠A BC-∠PBC =∠DCB-∠PCB ,∴即∠A B P =∠D C P .…………………………………………………………………7分 又∵AB=DC ,PB=PC∴△APB ≌△DPC ...........................................................................................9分 20.解:(1)∵B 组有10人,A 组发言人数:B 发言人数=1∶5,则A 组发言人数为:2人, (3)分本次调查的样本容量为:2÷4%=50人;……………………………………………………5分 (2)c 组的人数有:50×40%=20人;…………………………………………7分 直方图如图所示;……………………………………………………………………………9分(3)全年级每天发言次数不少于15次的发言的人数有:250×(1-4%-40%-20%)=90(人); (1)2分四、解答题21.解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x 棵树苗,由题意得:x [120-0.5(x -60)]=8800,……………………………4分 解得:x1=220,x2=80.………………………………………………………………………………6分当x 2=220时,120-0.5×(220-60)=40<100, ∴x1=220(不合题意,舍去);……………………………………7分当x 2=80时,120-0.5×(80-60)=110>100,∴x =80,……………………………………………………………8分9分2分……………………………………4分 ………………………………5分 6又为☉的弦,所以在上. 连结OE ,OM ,则OE ⊥AE .由AG 等于☉O 的半径得AO =2OE ,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形.………………………4分(此步骤也可通过其他方法证明,未证明△ABC 和△AEF 是等边三角形但面积求对的最多得7分) 因为A E 所以A O =4,O E =2.………………………………………………………5分 因为OM =OE 所以OD =1.……………………………………………………7分 于是AD =5,AB 8分 所以四边形EBCF 10分(也可以设AD 、EF 交于点H ,求出HD =2,直接根据梯形面积公式求解) 五、解答题24.解:(1)23;………… ……………………………………………………………………………………1分(2)①当0<x ≤23时,S=x 2.………… …………………………………2分 由题意知BC=2,当点E 恰好在AB 上时(如图1), ∵四边形CDEF 是正方形, ∴ED ∥BC , ∴△AED ∽△ABC ,∴ACAD BC ED =,即6,23223=-=AC AC AC ; ………… ……………………………………………5分 ②当23<x ≤2时,设DE 、EF 与AB 分别相交于点G 、H (如图2), 同理AC AD BC GD =,即)6(31,662x DG x DG -=-=,同理BC BF CA FH =,即)-2(,226x FH xFH =-=, ……………………6分∴S =S △ABC -S △AGD -S △HBF)2(21)6(31)6(212621x x x ----⨯-⨯⨯=68352-+=x x -.………… …………………………………………………………………………7分 ③当2<x ≤6时,如图3,∴S =S △ABC -S △AGD=x x x x 261)6(31)6(2126212+-=-⨯--⨯⨯,…………8分即⎪⎪⎪⎩⎪⎪⎪⎨⎧⋯⋯⋯⋯⋯⋯⋯⋯≤<+-≤<-+≤<=分9).62(261)223 (6835)230(222x x x x x x -x x S(3)不能.由图2可知S 随着x 的增大而递增,当x=6时,S=6<213,所以S 不能为213..........11分 25.解:(1)OM =ON ; (2)分(2)如图2,过点O 作OH ⊥l ,垂足为H , ∵AM ⊥l 于点M ,CN ⊥l 于点N , ∴AM ∥OH ∥CN , ∵OA =OB , ∴MH =NH ,∴OM =ON ,(线段垂直平分线性质定理); (7)分(另一种证明方法:延长NO 交AM 于点E ,易证△AOE ≌△CON ,O 为EN 中点,得出OM =ON )(3)成立,画图正确.(如图3),…………………………………………10分证明:过点O 作OH ⊥l ,垂足为H,AM ∥OH ∥CN ,,∵OA =OB , ∴MH =NH ,∴O M =O N .………………………………………………………………12分 26.解(1)将l 1和抛物线C 的解析式联立,a x 2-x +1=0,令Δ=1-4a =0,……………………………………………………………1分解得a =41, ∴C 的解析式为y =41x 2.………………………………………………………………2分 (2)假设存在l 2,设l 2解析式为y =k x+b , 与抛物线C 解析式联立得04x 412=--k x ,………………………………3分 设点M (x 1,kx 1+4),N (x 2,kx 2+4), 则直线O M 、O N 的斜率分别为1114x kx k +=,2224x kx k +=,…………………………4分∴21212122116)(4x x x x x x k k k k +++=•,………………………………………………………………………5分∵x1+x2=4k ,x1·x2=-16,……………………………………………6分∴116-1616-16221-k k k k 2=++=•,……………………………………………………7分∴O M ⊥O N 恒成立,∠M O N =∠N H O =90°,……………………………………8分 要想使△MON ∽△NHO 成立,只需再令∠MNO=∠NOH 即可,即MN ⊥x 轴,………………9分 ∴存在l 2符合题意,l 2解析式为y =4.………………………………………………10分 (3)存在定点G ,点G 坐标为(0,a1).………………………………12分 【(3)证明方法参考(2)】。
2020-2021大连市九年级数学下期中一模试卷带答案

一、选择题
1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边 界与原图形对应边平行,则外框与原图不一定相似的是( )
A.
B.
C.
D.
2.下列判断中,不正确的有( )
A.三边对应成比例的两个三角形相似
B.两边对应成比例,且有一个角相等的两个三角形相似
G,则 S DEG : SCFG =( )
A.2:3
B.3:2
C.9:4
8.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是(
D.4:9 )
A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 9.如图,△ABC 中 AB 两个顶点在 x 轴的上方,点 C 的坐标是(﹣1,0),以点 C 为位似 中心,在 x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为 2: 1.设点 B 的对应点 B′的横坐标是 a,则点 B 的横坐标是( )
3.D
解析:D 【解析】
A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数 y= 1 的图象上,故本选项错 x
误; B 选项:反比例函数的图象关于原点中心对称,故本选项错误; C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误; D 选项:∵k=1>0,∴当 x<0 时,y 随 x 的增大而减小,故是正确的. 故选 B.
∴ BE 2ห้องสมุดไป่ตู้F ,即 BE 2BF ,
3
5
∵ AF ∥ BC ,
∴ BM BC 3a 1, MF AF 3a
∴ BM MF ,即 BM BF , 2
大连市2020年中考数学模拟试题含参考答案与评分标准doc初中数学

8.图3中圆柱的主视图面积为48,那么该圆柱的侧面积为( )
A.48 B.48πC.96 D.96π
二、填空题(此题共有9小题,每题3分,共27分)
9.运算 的结果是____________.
10.化简 的结果是___________.
11.化简 的结果是_____________________.
三、解答题(此题共有3小题,18题、19题、20题各12分,共36分)
18.:如图7,AB∥CD,∠1 =∠2.
求证:△ABE≌△CDF(要求:写出证明过程中的要紧依照)
19.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行〝柑橘损坏率〞统计,并绘制成如图8所示的统计图,依照统计图提供的信息解决下面咨询题:
∴ ,
∴ ,……………………………………………………………………3分
∴ ⊙O的切线.…………………………………………………………5分
(2)连接 .
∵OB=OC,OC=2,
∴OB=2,……………………………………………………………………6分
在Rt△ABO中,
∵tan∠BOC= ,……………………………………………………………7分
19.解:〔1〕0.1,………………………………………………………………2分
0.9;………………………………………………………………………………4分
〔2〕9000;……………………………………………………………………………6分
(3)设每千克柑橘定价为 元.……………………………………………………7分
∴ ,……………………………………………………………4分
2021年大连初三模拟数学答案

⎩ ⎩一、选择题大连市 2020 年初中毕业升学模拟考试数学参考答案与评分标准1.D ; 2.A ; 3.C ; 4.B ; 5.A ; 6.D ; 7.B ; 8.C ; 9.A ; 10.D . 二、填空题11.x >-2; 12.6; 13.14; 14.26; 15. 2 3 ; 16. y =38 - 2x 0<x <4). 三、解答题17.解:原式= 2 +12+3- 2 - 3 . ……………………………………………………………………8 分= 2 3 . …………………………………………………………………………………………9 分18.解:原式=1÷a + 2 (a - 2)2 (a + 2)(a - 2) - 2 .……………………………………………………………6 分 a - 2= 1 (a + 2)(a - 2) - 2 .a + 2(a - 2)2a - 2= 1 -a - 2 2 a - 2.………………………………………………………………………………8 分= - 1 a - 2.……………………………………………………………………………………9 分 19.证明:∵四边形 ABCD 是平行四边形,∴AD ∥BC ,AB =DC .∴∠ADE =∠DEC .………………………………………5 分 ∵AF=AB ,∴AF =DC .………………………………………………6 分 ∵∠AFD =∠DCE , ∴△AFD ≌△DCE .∴AD =DE .………………………………………………9 分ADBE(第 19 题)20.解:(1)20,40;………………………………………………………………………………………4 分(2)100,10; …………………………………………………………………………………………8 分(3) 100 - 20 - 40 -10 ⨯ 360 = 108 .100答:估计最喜欢“阅读”的学生人数为 108 人.……………………………………………………12 分四、解答题21.解:设甲、乙种两种卡车一次可以分别运土 x 立方米、y 立方米.则⎧3x + 2 y = 48,⎨2x + 3y = 52. ⎧x = 8, 解得 ⎨ y = 12. …………………………………………………………………8 分所以 4x +y =4×8+12=44.答:4 辆甲种卡车与 1 辆乙种卡车一次共可运土 44 立方米.……………………………………9 分F= = 22.(1)证明:连接 OC (如图 1). ∵PB 、PC 是⊙O 的切线,AB 为直径, ∴PB ⊥AB ,PC ⊥OC .∴∠PBA =∠PCO =90°.…………………………………………2 分 ∴∠COB +∠CPB =360°-90°-90°=180° . ∵∠COB +∠AOC =180°,. ∴∠CPB =∠AOC . ∵∠AOC =2∠ABC ,∴∠CPB =2∠ABC . …………………………………………5 分 (2)解:连接 OC (如图 2). ∵PB 、PC 是⊙O 的切线,∴PB =PC . ………………………………………………………6 分 由(1)知,∠PBO =∠PCO =90°. ∵sin ∠PDB =OC, OD(第 22 题图 1)∴ OD = OC sin ∠PDB = 2 = 3. 23CD = = 5.(第 22 题图 2)∵ PB 2 + BD 2 = PD 2,即 PC 2 + 52 = (PC + 5 )2. 解得PC = 2 5.……………………………………………………………10 分23.解:(1)在甲商场购物当 0<x ≤100 时,y 甲=x ;当 x >100 时,y 甲= 100 + 0.(8 x -100)= 0.8x + 20. 在乙商场购物当 0<x ≤50 时, y = x ;乙当 x >50 时, y = 50 + 0.(9 x - 50)= 0.9x + 5.乙…………………………………………………………2 分综上,y ⎧x ,0 < x ≤ 100, ⎨ ⎧x ,0 < x ≤ 50, y ⎨……………………………………………………4 分 甲 ⎩0.8x + 20,x > 100. 乙⎩0.9x + 5,x > 50.(2)当 0<x ≤50 时,y 甲=y 乙,购物花费一样多.当 50<x ≤100 时,乙商场购物有优惠,而甲商场没有优惠,因此到乙商场购物花费少. 当 x >100 时,①若到乙商场购物花费少,即 y 甲>y 乙.则 0.8x +20>0.9x +5.解得 x <150. ②若到甲商场购物花费少,即 y 甲<y 乙.则 0.8x +20<0.9x +5.解得 x >150.③若到甲、乙商场购物花费一样多,即 y 甲=y 乙.则 0.8x +20=0.9x +5. 解得 x =150.综上所述,当 0<x ≤50 或 x =150 时,到甲、乙两商场花费一样多;当 50<x <150 时,到乙商场购物花费少;当 x >150 时,到甲商场购物花费少. …………………………………………………………10 分32 - 22OA 2 + OB 2 32 + 42 ( S = 24.解:(1)当 x =0 时,y =3.得 OA =3. 当 y =0 时, - 3x + 3 = 0 .x =4.得 OB =4.4∴ AB = = = 5 .………………………………………………………………………2 分(2)证明:∵ΔECD 是由ΔACD 翻折得到的, ∴AC =CE ,AD =DE . ∵AC =AD , ∴AC =CE =DE =AD .∴四边形 ACED 是菱形.…………………………………………………………………………………4 分 (3)在 Rt △AOB 中, sin ∠OAB = 4. sin ∠OBA = 3 , cos ∠OBA = 4 .5 5 5当 9≤ m ≤ 3 时,作 DF ⊥OA ,垂足为 F (如图 1).8∵sin ∠OAB =DF, AD∴DF =AD sin ∠OAB = 4 3 - m ).5(第 24 题图 1)∴ S = S △ACD = 1 3 - m )⋅ 4 3 - m )= 2 m 2 - 12 m + 18 .……………………………………………………7 分( ( 2 55 5 5当 0 ≤ m < 9时,设 CE 、DE 分别交 x 轴于点 G 、H (如图 2).8∵四边形 ACED 是菱形, ∴DE ∥AC ,CE ∥AD . ∴∠EHG =∠DHB =∠AOB =90°.3 4∴DH =BD sin ∠OBA = (m + 2),B H =BD co s ∠OBA = (m + 2).55∴EH =DE -DH =(3 - m )- 3m + 2)= - 8m + 9.∵CE ∥AD , (555(第 24 题图 2)∴GH = EH . ∴ GH = - 32 m + 12. HB DH 15 5∴S= S- S= 2 m 2 - 12 m + 18 - 1 ⎛ - 8 m + 9 ⎫⎛ - 32 m + 12 ⎫ = - 98 m 2 + 36 m + 36 .∆ECD∆EGH555 2 ⎝ 5⎪ 5 ⎭⎝ 15⎪ 5 ⎭7525 25⎧ 2 m 2 - 12 m + 18 , 9≤ m ≤ 3, 综上, ⎪ 5 5 5 8 …………………………………………………………………11 分 ⎨98 3636 9 ⎪- m 2 + m + , 0 ≤ m < . ⎩⎪ 75 25 25 8五、解答题a 2 + k 2a 225.(1)证明:∵AF ⊥CE ,∴∠F AC+∠ACE =90°. ∵∠BAC =90°,∴∠BAH+∠FAC =90°.∴∠ACE =∠BA H .………………………………………………………………………………………2 分 (2)与 CE 相等的线段是 AH .…………………………………………………………………………3 分 证明:在 AC 上截取 AM =AE ,连接 EM (如图 1). ∵∠BAC =90°,AM =AE , ∴∠AME =∠AEM =45°. ∴∠CME =135°. ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°. ∵DG ∥BC ,∴∠AGD =∠ABC =45°,∠ADG =∠ACB . ∴∠AGH =135°,∠AGD =∠ADG . ∴∠AGH=∠CME ,AG =AD . ∵CD =AE =AM , ∴CM =AD . ∴AG =CM . ∵∠BAH =∠ACE , ∴△AGH ≌△CME .(第25 题图1)∴AH =CE .…………………………………………………………………………………………………7 分 (3)解:连接 BH (如图 2). ∵AH =CE ,AB =AC ,∠BAH =∠ACE , ∴△ABH ≌△CAE .∴BH =AE ,∠ABH =∠CAE =∠BAC = 90°. ∴BH ∥AC . ∵HD ∥BC ,∴四边形 BCDH 是平行四边形. ∴DH =BC .∵∠BAH =∠EAF ,∠ABH =∠AFE =90°, ∴△ABH ∽△AFE . ∴AH= AB. (第25 题图2) AE AF 设 AB =AC =a .则 BC = 2a . ∴GH =kDH= 2ka . ∴BH =GH sin45°=ka .∴ AH =AB 2 + BH 2 = . AF =AB ⋅ AE AH ka 2 ∴ AH = k 2 +1.…………………………………………………………………………………………11 分AF ka 2 + k 2a 2 = .yA BOx⎪ 42 26.(1) y = -1x -1 (x >-2).………………………………………………………………………………1 分2⎧⎪ 2, x > 0, (2)解:图象 F 的解析式为 y = ⎪ x ⎨⎪- , x < 0. ⎩ x把 y =2 分别代入,得 2 = 2或2 = - 2 .解得 x =1 或 x =-1.x x∴该点的横坐标为-1 或 1.………………………………………………………………………………3 分⎧⎪-ax 2+ 4ax - 3a , (3)①解:图象 F 的解析式为 y = ⎨⎪⎩ax 2 - 4ax + 3a ,把 x = - 1 代入 y = ax 2 - 4ax + 3a 中,得 y =21a .x > 0,x ≤ 0,24把 x =0 代入 y = ax 2 - 4ax + 3a ,得 y =3a .把 x = 5 代入 y = -ax 2 + 4ax - 3a 中,得 y = 3a .(第 26 题图 1)2 4当图象 F 2 与线段 AB 只有一个公共点时(如图 1).⎧ 21a ≥ 1, ⎨ ⎪⎩3a ≤ 1.解得 4 21≤ a ≤ 1 . 3 当图象 F 1 顶点在线段 AB 上时,F 1 与线段 AB 只有一个公共点(如图 2).y = -ax 2 + 4ax - 3a = -a (x - 2)2 + a .∴a =1.当图象 F 1 对称轴左侧抛物线与线段 AB 只有一个公共点时(如图 3).3 a > 1 . 解得 a > 4.(第26 题图2)4 3综上所述,a 的取值范围是 4 ≤ a ≤ 1 21 3 或 a =1 或 a > 43.……………………9 分② 3 - 2 ≤ t ≤ 2 .………………………………………………………………12 分yABOxyA BOx。
2020-2021大连市九年级数学下期中第一次模拟试卷带答案

2020-2021大连市九年级数学下期中第一次模拟试卷带答案一、选择题1.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;2.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤3.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.4.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍5.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则xy的值为()A .512-B .512+C .2D .212+ 6.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:27.在ABC 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 8.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-9.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1211.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.12.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.43二、填空题13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.14.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.15.计算:cos245°-tan30°sin60°=______.16.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是______________.17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.18.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.19.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.20.如果点P把线段AB分割成AP和PB两段(AP PB>),其中AP是AB与PB的比例中项,那么:AP AB的值为________.三、解答题21.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.22.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)成正比例;1.5小时后(包括1.5小时)y 与x 成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y 与x 之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.24.如图,AB 与CD 相交于点O ,△OBD ∽△OAC ,OD OC =35,OB =6,S △AOC =50,求:(1)AO的长;(2)求S△BOD25.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m的图象的两个交点.x(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.2.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC=,但AED 比一定与B 相等,故ADE 与ACD 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A . 点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.3.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k >0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A 错误;B 根据反比例函数的图象可知,k >0,,因此一次函数的图象应该递减,和图象吻合,所以B 正确;C 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C 错误;D 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D 错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 5.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy=5+12,故选B.本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.6.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.7.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.8.A解析:A【解析】根据黄金比的定义得:51APAB-=,得514252AP-== .故选A.9.C解析:C 【解析】【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.10.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9,∴k=245, 故选:C 【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.11.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C . 12.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、“蝶型”,如下图:二、填空题13.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈解析:四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.或6【解析】【分析】当△PQB为等腰三角形时有两种情况需要分类讨论:①当点P在线段AB上时如图1所示由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时如图2所示利用角解析:53或6.【解析】当△PQB 为等腰三角形时,有两种情况,需要分类讨论:①当点P 在线段AB 上时,如图1所示.由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时,如图2所示.利用角之间的关系,证明点B 为线段AP 的中点,从而可以求出AP .【详解】解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6. 综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 故答案为53或6.本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=223311()023222-⨯=-= . 故答案为0.【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.5或(答对一个得1分)【解析】根据△B′FC 与△ABC 相似时的对应情况有两种情况:①B′FC∽△ABC 时B′FAB=CF/BC 又因为AB=AC=8BC=10BF=BF 所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分) 【解析】根据△B ′FC 与△ABC 相似时的对应情况,有两种情况:① B′FC ∽△ABC 时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF ,所以10810BF BF -=, 解得BF=; ②△B ′CF ∽△BCA 时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF ,BF=B′F ,又BF+FC=10,即2BF=10,解得BF=5.故BF 的长度是5或.17.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b 图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.18.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似解析:4或9.【解析】当△ADP∽△ACB时,需有AP ADAB AC=,∴6128AP=,解得AP=9.当△ADP∽△ABC时,需有AP ADAC AB=,∴6812AP=,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.19.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l ∥2l ∥3l , ∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.20.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB =12,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB . 三、解答题21.(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y =12x +2,可得:3=12m +2,解得:m =2,∴A (2,3).∵A 点也在双曲线上,∴k =2×3=6,∴双曲线解析式为y =6x ; (2)在y =12x +2中,令y =0可求得:x =﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴CP =|t +4|,且A (2,3),∴S △ACP =12×3|t +4|.∵△ACP 的面积为3,∴12×3|t +4|=3,解得:t =﹣6或t =﹣2,∴P 点坐标为(﹣6,0)或(﹣2,0). 点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.22.(1)100(0 1.5)225( 1.5)x x y x x⎧⎪=⎨⎪⎩;(2)第二天早上7:00不能驾车去上班,见解析. 【解析】【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案; (2)根据题意得出x =10时y 的值进而得出答案.【详解】(1)由题意可得:当0≤x ≤1.5时,设函数关系式为:y =kx ,则150=1.5k ,解得:k =100,故y =100x ,当1.5≤x 时,设函数关系式为:y a x =,则a =150×1.5=225,解得:a =225,故y 225x=(x ≥1.5). 综上所述:y 与x 之间的两个函数关系式为:y ()()1000 1.5225 1.5x x x x ⎧≤≤⎪=⎨≥⎪⎩; (2)第二天早上7:00不能驾车去上班.理由如下:∵晚上21:00到第二天早上7:00,有10小时,∴x =10时,y 22510==22.5>20,∴第二天早上7:00不能驾车去上班.【点睛】本题考查了反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.23.(1)12y x =;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.24.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10;(2)∵△OBD ∽△OAC ,DO CO =35 ∴BOD AOC S S =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.25.(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB =6,,(3)﹣4<x <0或x >2.【解析】【分析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式; (2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x, 得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx +b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积=12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。
2021年辽宁省大连市中考数学模拟试卷解析版

2021年辽宁省大连市中考数学模拟试卷解析版一.选择题(共10小题,每小题3分,满分30分)1.﹣2020的绝对值是()A.﹣2020B.2020C.−12020D.12020解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.如图所示的几何体,它的左视图是()A.B.C.D.解:如图所示的几何体的左视图为:.故选:D.3.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.44×1010解:4 400 000 000用科学记数法表示为:4.4×109,故选:C.4.在平面直角坐标系中,线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),则线段A1B1的中点的坐标为()A.(7,6)B.(6,7)C.(6,8)D.(8,6)解:∵线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),∴B1的坐标为:(6,8),则线段A1B1的中点的坐标为:(7,6).故选:A .5.把不等式2﹣x <1的解集在数轴上表示正确的是( ) A .B .C .D .解:不等式移项合并得:﹣x <﹣1, 解得:x >1,表示在数轴上,如图所示故选:A .6.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .7.化简(﹣x 3)2的结果是( ) A .﹣x 6 B .﹣x 5 C .x 6 D .x 5解:原式=x 6, 故选:C .8.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为( ) A .14B .13C .12D .1解:设两双只有颜色不同的手套的颜色为红和绿, 列表得:(红,绿)(红,绿) (绿,绿) ﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率412=13.故选:B.9.如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.2√10−2B.2√10−1C.2√13D.2√10解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=12AB=2.在Rt△BCE中,BE=12AB=2,BC=6,∠B=90°,∴CE=√BE2+BC2=2√10,∴GC的最小值=CE﹣GE=2√10−2.故选:A.10.如图一段抛物线:y=﹣x2+3x(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.1B.﹣1C.2D.﹣2解:当y=0时,﹣x2+3x=0,解得:x1=0,x2=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A2的坐标为(6,0).∵2020=336×6+4,∴当x=4时,y=m.∵2×3﹣4=2,∴当x=2时的y值与当x=4时的y值互为相反数,∴m=﹣(﹣22+3×2)=﹣2.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.如图,l1∥l2,则α+β﹣γ=180°.解:∵l1∥l2,∴∠1=α,∵∠1=180°﹣β﹣γ,∴α=180°﹣β﹣γ,即α+β﹣γ=180°.故答案为:180°.12.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为45.解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.13.在四边形ABCD中,∠A=∠ABC=90°,△BCD为等边三角形,且AD=2,则四边形ABCD的周长为2√3+10.解:∵△BCD为等边三角形,∴∠DBC=60°,DB=BC=CD,∵∠ABC=90°,∴∠ABD=30°,∵在Rt△ABC中,∠ABD=30°,AD=2∴DB=4,∴CD=BC=4,在Rt△ABC中,由勾股定理,得AB=√BD2−AD2=√42−22=2√3,∴四边形ABCD的周长=AB+BC+CD+DA=2√3+4+4+2=2√3+10,故答案为:2√3+10.14.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题:九百九十九文钱甜果苦果买一千甜果九个十一文苦果七个四文钱试问甜苦果几个又问各该几个钱若设买甜果、苦果的个数分别是x个和y个,根据题意,可列方程组为{x +y =1000119x +47y =999. 解:设买甜果、苦果的个数分别是x 个和y 个, 由题意可得,{x +y =1000119x +47y =999, 故答案为{x +y =1000119x +47y =999. 15.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B 点垂直起飞到高度为50米的A 处,测得1号楼顶部E 的俯角为60°,测得2号楼顶部F 的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为 (50﹣10√3) 米(结果保留根号).解:过点E 作EG ⊥AB 于G ,过点F 作FH ⊥AB 于H , 则四边形ECBG ,HBDF 是矩形, ∴EC =GB =20,HB =FD , ∵B 为CD 的中点, ∴EG =CB =BD =HF ,由已知得:∠EAG =90°﹣60°=30°,∠AFH =45°. 在Rt △AEG 中,AG =AB ﹣GB =50﹣20=30米, ∴EG =AG •tan30°=30×√33=10√3米,在Rt △AHP 中,AH =HF •tan45°=10√3米, ∴FD =HB =AB ﹣AH =50﹣10√3(米). 答:2号楼的高度为(50﹣10√3)米. 故答案为:(50﹣10√3).16.疫情之下,中华儿女共抗时艰,重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从A地沿相同路线出发徒步前往B地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在A地,于是原路原速返回A地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距y(米)与甲出发的时间x(分钟)之间的函数关系如图所示,则当乙到达B地时,甲距A地的路程是160米.解:由函数图象知,当x=1min时,y=80m,∵甲出发1分钟后乙再出发,∴甲的速度为80m/min,由图象知,当x=5min时,y=16m,∴乙的速度为:80+(80﹣16)÷(5﹣1)=96(m/min),两人第一次相遇的时间为:1+80÷(96﹣80)=6(min),当甲返回A地时,返回路程为:80×6=480(m),由函数图象知,当甲返回A地前,乙已到达B地,当甲返回A地时,两人相距864m,即A、B两地距离为864m,∴乙从两人相遇时至乙到达B地时所行时间为:(864﹣480)÷96=4(min),此时,甲距A地还有6﹣4(min)的路程,∴当乙到达B 地时,甲距A 地的路程是:80×2=160(m ). 故答案为:160.三.解答题(共4小题,满分39分) 17.(9分)计算题:(1)(4√3−6√13+3√12)÷2√3; (2)(√13−1)2+(2+√3)(2−√3).解:(1)原式=4√3÷2√3−6√13÷2√3+3√12÷2√3=2﹣1+3=4; (2)原式=13−2√33+1+4﹣3=73−2√33. 18.(9分)计算: (1)a a+2−4a 2+2a(2)x 2−8x+16x−2÷(x +2−4x−4x−2) 解:(1)原式=a 2−4a(a+2) =(a−2)(a+2)a(a+2) =a−2a .(2)原式=(x−4)2x−2÷x 2−4xx−2=(x−4)2x−2•x−2x(x−4)=x−4x19.(9分)如图,点A 、E 、F 、C 在一直线上,DE ∥BF ,DE =BF ,AE =CF .求证:AB ∥CD .证明:∵DE ∥BF ∴∠DEF =∠BFE ∵AE =CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD20.(12分)某校决定加强羽毛球,篮球,乒乓球,排球,足球五项球类运动,每位同学必须且只能选择一项球类运动.对该校学生随机抽取5%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=18;(2)在扇形统计图中,“排球”所在的扇形的圆心角为54度;(3)估计全校有多少名学生选择参加羽毛球运动?解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=18.故答案是:24,18;(2)“排球”所在的扇形的圆心角为360°×18120=54°,故答案是:54;(3)全校总人数是120÷5%=2400(人),∴选择参加羽毛球运动的人数为2400×30120=600(人).四.解答题(共3小题,满分28分)21.(9分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低x元,则每天销售量是多少千克?(结果用含x的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?解:(1)每天的销售量是100+x0.1×20=100+200x(千克).故每天销售量是(100+200x)千克;(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=0.5,x2=1,当x=0.5时,销售量是100+200×0.5=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每千克的售价降低1元.22.(9分)如图,点A(5,2),B(m,n)(m<5)在反比例函数y=kx的图象上,作AC⊥y轴于点C.(1)求反比例函数的表达式;(2)若△ABC的面积为10,求点B的坐标.解:(1)∵点A(5,2)在反比例函数y=kx图象上,∴k =10,∴反比例函数的解析式为y =10x .(2)由题意:12×5×(n ﹣2)=10, ∴n =6,∴B (53,6). 23.(10分)已知四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠BCD =148°.(1)如图①,若E 为AB 上一点,延长DE 交⊙O 于点P ,连接AP ,求∠APD 的大小;(2)如图②,过点A 作⊙O 的切线,与DO 的延长线交于点P ,求∠APD 的大小.解:(1)连接BD ,∵四边形ABCD 内接于⊙O ,∴∠BCD +∠BAD =180°,∵∠BCD =148°,∴∠BAD =32°,∵AB 为⊙O 的直径,∴∠BDA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =58°,∴∠APD =∠ABD =58°;(2)连接AD ,由(1)知∠BAD =32°,∵OA =OD ,∴∠ADO =∠OAD =32°,∵DP切⊙O于A,∴OA⊥P A,∴∠P AO=90°,∴∠P AD=∠P AO+∠OAD=122°,∵∠P AD+∠ADO+∠APD=180°,∴∠APD=26°.五.解答题(共3小题,满分35分)24.(11分)在平面直角坐标系内,平行四边形ABCD的边AB∥x轴,点B、D均在y轴上,点A、D在直线y=2x﹣1上,且点B的坐标为(0,1),求点A、C、D的坐标及S▱ABCD.解:∵点A、D在直线y=2x﹣1上,且点B的坐标为(0,1),点B、D均在y轴上,平行四边形ABCD的边AB∥x轴,∴当x=0时,y=﹣1,当y=1时,1=2x﹣1,得x=1,∴点D(0,﹣1),点A(1,1),∴AB=1,∵AB=CD,∴点C的坐标为(﹣1,﹣1),∵AB=1﹣0=1,BD=1﹣(﹣1)=2,∴S▱ABCD=1×2=2,即点A(1,1),点C(﹣1,﹣1),点D(0,﹣1),S▱ABCD的值是2.25.(12分)问题发现:(1)如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为BD=k•EC.类比探究(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD ,请问(1)中BD ,EC 的数量关系还成立吗?说明理由拓展延伸:(3)如图3,在(2)的条件下,将△AED 绕点A 继续旋转,旋转角为a (a >90°).直线BD ,CE 交于F 点,若AC =1,AB =√3,则当∠ACE =15°时,BF •CF 的值为 1或2 .解:问题发现:(1)∵DE ∥BC ,∴BD AB =CE AC ,AD AB =AE AC∵AB =k •AC ,∴BD =k •EC ,故答案为:BD =k •EC ;类比探究:(2)成立,理由如下:连接BD由旋转的性质可知,∠BAD =∠CAE∵AD AE =AB AC ,∴△ABD ∽△ACE ,∴BD CE =AB AC =k ,故BD =k •EC ;拓展延伸:(3)BF •CF 的值为2或1;由旋转的性质可知∠BAD =∠CAE∵AD AE =AB AC ,∴△ABD ∽△ACE∴∠ACE =15°=∠ABD∵∠ABC +∠ACB =90°∴∠FBC +∠FCB =90°∴∠BFC =90°∵∠BAC =90°,AC =1,AB =√3,∴tan ∠ABC =√33,∴∠ABC =30°∴∠ACB =60°分两种情况分析:①如图2,∴在Rt △BAC 中,∠ABC =30°,AC =1,∴BC =2AC =2,∵在Rt △BFC 中,∠CBF =30°+15°=45°,BC =2∴BF =CF =√2∴BF •CF =(√2)2=2②如图3,设CF=a,在BF上取点G,使∠BCG=15°∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,∴∠CFB=90°∴∠GCF=60°∴CG=BG=2a,GF=√3a.∵CF2+BF2=BC2∴a2+(2a+√3a2=22,解得a2=2−√3,∴BF•CF=(2+√3)a•a=(2+√3)•a2=1,即:BF•CF=1或2.故答案为:1或2.26.(12分)如图,直线y=34x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=34x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=12∠ABC的点M的坐标.解:(1)将点B 坐标代入y =34x +c 并解得:c =﹣3,故抛物线的表达式为:y =34x 2+bx ﹣3,将点B 坐标代入上式并解得:b =−94,故抛物线的表达式为:y =34x 2−94x ﹣3;(2)过点P 作PH ∥y 轴交BC 于点H ,设点P (x ,34x 2−94x ﹣3),则点H (x ,34x ﹣3),S 四边形ACPB =S △AOC +S △PCB ,∵S △AOC 是常数,故四边形面积最大,只需要S △PCB 最大即可,S △PCB =12×OB ×PH =12×2(34x ﹣3−34x 2+94x +3)=−34x 2+3x , ∵−34<0,∴S △PCB 有最大值,此时,点P (2,−92);(3)过点B 作∠ABC 的角平分线交y 轴于点G ,交抛物线于M ′,设∠MBC =12∠ABC =2α,过点B 在BC 之下作角度数为α的角,交抛物线于点M ,过点G 作GK ⊥BC 交BC 于点K ,延长GK 交BM 于点H ,则GH =GN ,BC 是GH 的中垂线,OB =4,OC =3,则BC =5,设:OG =GK =m ,则CK =CB ﹣HB =5﹣4=1, 由勾股定理得:(3﹣m )2=m 2+1,解得:m =43,则OG =ON =43,GH =GN =2OG =83,点G (0,−43), 在Rt △GCK 中,GK =OG =43,GC =OC ﹣OG =3−43=53, 则cos ∠CGK =GK GC =45,sin ∠CGK =35,则点K (45,−3615),点K 是点GH 的中点,则点H (85,−5215), 则直线BH 的表达式为:y =139x −529⋯②, 同理直线BG 的表达式为:y =13x −43⋯③联立①②并整理得:27x 2﹣135x +100=0,解得:x =2527或4(舍去4),则点M (2527,−1079233); 联立①③并解得:x =−59,故点M ′(−59,−21754); 故点M (2527,−1079233)或(−59,−21754).。
2020-2021大连市初三数学下期中模拟试卷及答案

22.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在它的北偏东60°方向上,在A的正东200米的B处,测得海中灯塔P在它的北偏东30°方向上.问:灯塔P到环海路的距离PC约等于多少米?( 取1.732,结果精确到1米)
23.计算:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.
【详解】
正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.
A.9B.8C.15D.14.5
9.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是( )
A. B. C. D.
10.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
11.如图,在矩形 中, 于 ,设 ,且 , ,则 的长为()
B.由图可知,AB=2-1=1,BC=2-1=1,AC= ,所以△ABC的周长为2+ ,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+ ,故B正确;
4.在函数y= (a为常数)的图象上有三个点(﹣1,y1),(﹣ ,y2),( ,y3),则函数值y1、y2、y3的大小关系是( )
2021年大连市中考数学模拟试卷(有答案)(Word版)

2021年辽宁省大连市中考数学模拟试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是( )A .﹣1B .0C .3D .2.一个几何体的三视图如图所示,则这个几何体是( )A .圆锥B .长方体C .圆柱D .球3.计算﹣的结果是( )A .B .C .D .4.计算(﹣2a 3)2的结果是( ) A .﹣4a 5B .4a 5C .﹣4a 6D .4a 65.如图,直线a ,b 被直线c 所截,若直线a ∥b ,∠1=108°,则∠2的度数为( )A .108°B .82°C .72°D .62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( )A .B .C .D .7.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A (﹣1,﹣1),B (1,2),平移线段AB ,得到线段A ′B ′,已知A ′的坐标为(3,﹣1),则点B ′的坐标为( ) A .(4,2) B .(5,2) C .(6,2) D .(5,3)8.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为( )A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= .10.下表是某校女子排球队队员的年龄分布:岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,=5.1),点A在y轴上,且AD∥x轴,S▱ABCD(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.2021年辽宁省大连市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A.B.C.D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= ﹣4 .【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:15 岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为 5 cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1 .【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102 n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4 (用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.(1)被调查学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m的值为45 ,统计图中n的值为36 .(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得: =,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S=5.▱ABCD(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,=5,∵S▱ABCD∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣ =,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN 是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得==,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= ﹣2a﹣1 (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b的方程,可求得b 的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+=﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1 B.2 C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE =CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB 折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q 处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1 B.2 C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5 .【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10 .【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E 点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是<a<或﹣4<a<﹣3 .【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且3<m<4,∴当a>0时,3<<4,解得<a<;当a<0时,3<﹣a<4,解得﹣4<a<﹣3.故答案为:<a<或﹣4<a<﹣3.【点评】本题考查的是抛物线与x轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=2km.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0 .【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE =CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB 折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a 表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y 分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q 处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF 中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.。