第四章_信息率失真函数-习题答案

合集下载

ch04 信息率失真函数

ch04 信息率失真函数

P (Y X )
⎧0 xi = y j d ( xi , y j ) = ⎨ ⎩a xi ≠ y j
3
⎡ p ( y1 x1 ) p ( y2 x1 ) ... p ( ym x1 ) ⎤ ⎢ ⎥ ⎢ p ( y1 x2 ) p ( y2 x2 ) ... p ( ym x2 ) ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ p ( y1 xn ) p ( y2 xn ) ... p ( ym xn ) ⎦ ⎥ ⎣
⎡ d ( x1, y1 ) d ( x1, y2 ) ⎢d ( x , y ) d ( x , y ) 2 1 2 2 D= ⎢ ⎢ ⎢ ⎣d ( xn , y1 ) d ( xn , y2 )
d ( x1, ym ) ⎤ d ( x2 , ym )⎥ ⎥ ⎥ ⎥ d ( xn , ym )⎦
4
4.1 基本概念
i =1 j n
(
)
离散信源 连续信源
Dmin = ∑ p(xi )min d(xi , y j )
i=1 j
n
仅当失真矩阵每行均 有零元素时, Dmin= 0
R(Dmin ) = R(0) = H ( X )
R(Dmin ) = R(0) = H(x) =∞
12
4.1 基本概念
西华师范大学 物理与电子信息学院
失真函数d(αi,βj)
d(αi , β j ) = d(xi1 xi2
N k =1
xiN , yj1 yj2
= ∑d(xik , yjk )
D ≤ D ,D——允许失真的上界
7
平均失真度—— 单符号时的N倍
D( N ) = ND
8
4.1 基本概念
西华师范大学 物理与电子信息学院

第4章 信息率失真函数

第4章 信息率失真函数

原始图像和限失真图像
原始图像
红色图像
绿色图像
蓝色图像
香农首先定义了信息率失真函数R(D),并论述了关于这个 函数的基本定理。 定理指出:在允许一定失真度D的情况下,信源输出的信 息传输率可压缩到R(D)值,这就从理论上给出了信息传输率与 允许失真之间的关系,奠定了信息率失真理论的基础。 信息率失真理论是进行量化、数模转换、频带压缩和数据 压缩的理论基础。 本章主要介绍信息率失真理论的基本内容,重点讨论离散 无记忆信源。 给出信源的失真度和信息率失真函数的定义与性质; 讨论离散信源和连续信源的信息率失真函数计算; 在此基础上论述保真度准则下的信源编码定理。
XY i 1 j 1
r
s
• 若平均失真度D不大于我们所允许的失真D0,即: D D0 称此为保真度准则。
信源固定(即给定了p(x)),单个符号失真度固定时(即 给定了d(ai,bj)) ,选择不同试验信道,相当于不同的编码方 法,所得的平均失真度是不同的。 有些试验信道满足D D0,而有些试验信道D>D0。 凡满足保真度准则-----平均失真度D D0的试验信通称为 ----D失真许可的试验信道。 把所有D失真许可的试验信道组成一个集合,用符号PD表 示,则: PD={p (bj / ai): D D0}

0 1 D 1 0
1 2 1 2
[例3] 对称信源(s = r) 。信源X={a1,a2,…ar} ,接收Y= {b1,b2,…bs} 。若失真度定义为:
d (ai , bj ) (bj ai )2
如果信源符号代表信源输出信号的幅度值,这就是一种平 方误差失真度。它意味着幅度差值大的要比幅度差值小的所引 起的失真更为严重,其严重的程度用平方来表示。 当 r=3时, X={0,1,2},Y={0,1,2} ,则失真矩阵为:

《信号处理原理》 第4章 信息失真率

《信号处理原理》 第4章  信息失真率

d(0,2)=d(1,2)=0.5
则得失真矩阵
d

0 1
1 0
0.5 0.5
4.1 平均失真和信息率失真函数
说明:失真函数d (xi, yj) 的数值是依据实际应 用情况,用 yj代替xi, 所导致的失真大小是人为决 定的。比如上例中,用y=2代替x=0和x=1所导致 的失真程度相同,用0.5表示;而用y=0代替x=1 所导致的失真程度要大,用1表示。失真函数d (xi, yj) 的函数形式可以根据需要任意选取,例如平方 代价函数、绝对代价函数、均匀代价函数等。
信源编码器的目的是使编码后所需的信 息传输率R尽量小,然而R越小,引起的平 均失真就越大。给出一个失真的限制值D,
在满足平均失真 D D的条件下,选择一种
编码方法使信息率R尽可能小。信息率R就 是所需输出的有关信源X的信息量。
16
4.1 平均失真和信息率失真函数
将此问题对应到信道,即为接收端Y需要 获得的有关X的信息量,也就是互信息 I(X;Y)。这样,选择信源编码方法的问题就 变成了选择假想信道的问题,符号转移概 率p(yj/xi)就对应信道转移概率。
输入符号集 X:{a1, a2, …, an}中有n种不同的符 号xi (i =1, 2, …, n) ;输出符号集Y:{b1, b2, …, bm}中有m种不同的符号yj (j =1, 2, …, m);对于 图所示的系统,对应于每一对(xi, yj)(i = 1, 2, …,n;j=1, 2, …, m),定义一个非负实值函数
平均失真D是对给定信源分布p(ai)经过某一种 转移概率分布为p(bj|ai)的有失真信源编码器后产 生失真的总体量度。
13
4.1 平均失真和信息率失真函数

第四章信道率失真函数后续习题课

第四章信道率失真函数后续习题课
真传送要求信息率R为无穷大; •实际信道带宽是有限的,所以信道容量受限制。要 想无失真传输,所需的信息率大大超过信道容量 R>>C。
2018/10/13
Department of Communication China Ji Liang University
2
第四章 信息 率失真函数
• 实际中允许一定程度的失真
2018/10/13
Department of Communication China Ji Liang University
3
第四章 信息 率失真函数
• 问题:在允许一定程度的失真条件下,信
4.1.1 失真函数
源信息能够压缩到何种程度?至少需要多 少比特的信息率才能描述信源?
•香农信息率失真理论指出:
• 这样就将选择信源编码方法的问题转化为选择假想信道的问题,
2018/10/13
Department of Communication China Ji Liang University
13
第四章 信息 率失真函数
• 试验信道
4.1.3 信息率失真函数R(D)
平均失真 是信源统计特性p(xi) 、信道统计特性p(yj/xi ) 和失真度d(xi,yj)的函数 。当p(xi)和d(xi,yj)给定后,则可以 求出满足保真度准则 下的所有转移概率分布 pij,构 成一个信道集合PD,
i=n i=n i=n 2n 2n 2n
a1 a2 an
a n+1
an
n 1 2n
a 2n
输出熵H(Y)为: 1 1 1+n n+1 H(Y)=H( ,... , ) log 2n log(n 1) 2n 2n 2n 2n

《信息论与编码》习题解答-第四章(新)

《信息论与编码》习题解答-第四章(新)

《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。

信息率失真函数 第4章— 1

信息率失真函数 第4章— 1

② 均方失真: d(ai ,bj ) (ai bj )2
③ 绝对失真: d (ai ,bj ) | ai bj |
④ 相对失真: d (ai ,bj ) | ai bj | / | ai |

误码失真:
d
(ai
,bj
)
(ai
bj
)
0, 1,
ai bj 其他
9
4.1.2 平均失真
• xi和yj都是随机变量,所以失真函数d(xi,yj)也是随 机变量,限失真时的失真值只能用数学期望表示
11
4.1.3 信息率失真函数R(D)
• 若平均失真度 D 不大于我们所允许的失真,即
DD
• 则称此为保真度准则
• 当信源p(xi)给定,单个符号失真度d(xi,yj) 给定时, 选择不同的试验信道p(yj|xi),相当于不同的编码 方法,其所得的平均失真度不同。
• 试验信道
D D 满足保真度准则
D
>D
12
4.1.3 信息率失真函数R(D)
• 满足 D D 条件的所有转移概率分布pij ,构成 了一个信道集合
PD {p(bj | a)i :D D} • D失真允许的试验信道:
– 满足保真度准则的试验信道。
• PD:
– 所有D失真允许的试验信道组成的一个集合。
13
4.1.3 信息率失真函数R(D)
信道容量
• 信道容量:
– 假定信道固定的前提下,选择一种试验信源 使信息传输率最大。
– 它所反映的是信道传输信息的能力,是信道 可靠传送的最大信息传输率。
• 一旦找到了信道容量,它就与信源不再有关, 而是信道特性的参量,随信道特性的变化而变 化。

《信息论与编码》习题解答第四章(新)new

《信息论与编码》习题解答第四章(新)new

《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。

第四章信息率失真函数-习题答案

第四章信息率失真函数-习题答案

4.1 一个四元对称信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4/14/1324/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。

解: 0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑ij i j i i j i i j j y x d x p D y x d x p D D 因为n 元等概信源率失真函数:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+-+=a D a D n a Da D n D R 1ln 11ln ln )( 其中a = 1, n = 4, 所以率失真函数为:()()D D D D D R --++=1ln 13ln4ln )( 函数曲线:D 其中:sym bol nat D R D sym bol nat D R D sym bol nat D R D sym bolnat R D /0)(,43/12ln 214ln )(,21/316ln 214ln )(,41/4ln )0(,0==-==-==== 4.2 若某无记忆信源⎭⎬⎫⎩⎨⎧-=⎥⎦⎤⎢⎣⎡3/113/13/101)(X P X ,接收符号⎭⎬⎫⎩⎨⎧-=21,21Y ,其失真矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112211D 求信源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。

4.3 某二元信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡2/12/110)(X P X 其失真矩阵为⎥⎦⎤⎢⎣⎡=a a D 00求这信源的D max 和D min 和R(D)函数。

解:0021021),(min )(202121),()(min min min max =⨯+⨯===⨯+⨯===∑∑ij i j i i j i i j j y x d x p D a a y x d x p D D 因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中n = 2, 所以率失真函数为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+-=a D a D a D a D D R 1ln 1ln 2ln )( 4.4 已知信源X = {0, 1},信宿Y = {0, 1, 2}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为二元等概信源率失真函数:
D R ( D) ln n H a
其中 n = 2, 所以率失真函数为:
D D D D R ( D) ln 2 ln 1 ln1 a a a a
4.4 已知信源 X = {0, 1}, 信宿 Y = {0, 1, 2}。 设信源输入符号为等概率分布, 而且失真函数 D
其中:
D 0, R (0) ln 4 nat / symbol 1 1 16 D , R( D) ln 4 ln nat / symbol 4 2 3 1 1 D , R( D) ln 4 ln12 nat / symbolቤተ መጻሕፍቲ ባይዱ2 2 3 D , R( D) 0 nat / symbol 4
证明率失真函数 R(D)如图所示。
4.6 设信源 X = {0, 1, 2},相应的概率分布 p(0) = p(1) = 0.4,p(2) = 0.2。且失真函数为
0 d ( xi , y j ) 1
i j (i, j 0,1,2) i j
(1) 求此信源的 R(D); (2) 若此信源用容量为 C 的信道传递,请画出信道容量 C 和其最小误码率 Pk 之间的曲线关系。 4.7 设 0 < α, β < 1, α + β = 1。试证明:αR(D’) +βR(D”) ≥ R(αD’ +βD”) 4.8 试证明对于离散无记忆 N 次扩展信源,有 RN(D) = NR(D)。其中 N 为任意正整数,D ≥ Dmin。 4.9 设某地区的“晴天”概率 p(晴) = 5/6, “雨天”概率 p(雨) = 1/6,把“晴天”预报为“雨天” ,把“雨天” 预报为“晴天”造成的损失为 a 元。又设该地区的天气预报系统把“晴天”预报为“晴天” , “雨天”预报 为“雨天”的概率均为 0.9;把把“晴天”预报为“雨天” ,把“雨天”预报为“晴天”的概率均为 0.1。 试计算这种预报系统的信息价值率 v(元/比特) 。
1 1 1 1 3 Dmax min D j min p ( xi )d ( xi , y j ) 1 1 1 0 j 4 4 4 4 4 i 1 1 1 1 Dmin p ( xi ) min d ( xi , y j ) 0 0 0 0 0 j 4 4 4 4 i
1 2 X 1 0 1 1 1 4.2 若某无记忆信源 ,接收符号 Y , ,其失真矩阵 D 1 1 求信 2 2 P( X ) 1 / 3 1 / 3 1 / 3 2 1
源的最大失真度和最小失真度,并求选择何种信道可达到该 Dmax 和 Dmin 的失真度。
1 X 0 a 0 4.3 某二元信源 其失真矩阵为 D 求这信源的 Dmax 和 Dmin 和 R(D) P( X ) 1 / 2 1 / 2 0 a
函数。
解:
1 1 a Dmax min D j min p ( xi )d ( xi , y j ) a 0 j 2 2 2 i 1 1 Dmin p ( xi ) min d ( xi , y j ) 0 0 0 j 2 2 i
度 D = 0.5p 时,每一信源符号平均最少需要几个二进制符号表示?
解: 因为二元信源率失真函数:
D R( D) H ( p) H a
其中 a = 1(汉明失真), 所以二元信源率失真函数为:
R( D) H ( p) H ( D)
当D
p 时 2
p p p p p p R H ( p ) H p ln p (1 p ) ln(1 p ) ln 1 ln1 nat / symbol 2 2 2 2 2 2
0 1 , 0 1
求信源的率失真函数 R(D)。 4.5 设信源 X = {0, 1, 2, 3},信宿 Y = {0, 1, 2, 3, 4, 5, 6}。且信源为无记忆、等概率分布。失真函数定义为
0 1 d ( xi , y j ) 1
i j i 0,1且j 4 i 2,3且j 5 其他
1 2 3 X 0 4.1 一个四元对称信源 ,接收符号 Y = {0, 1, 2, 3},其失真 P( X ) 1 / 4 1 / 4 1 / 4 1 / 4 0 1 矩阵为 1 1
解:
1 0 1 1
1 1 0 1
1 1 ,求 Dmax 和 Dmin 及信源的 R(D)函数,并画出其曲线(取 4 至 5 个点) 。 1 0
X x1 x2 x3 4.10 设离散无记忆信源 其失真度为汉明失真度。 P( X ) 1 / 3 1 / 3 1 / 3
(1) 求 Dmin 和 R(Dmin),并写出相应试验信道的信道矩阵; (2) 求 Dmax 和 R(Dmax),并写出相应试验信道的信道矩阵; (3) 若允许平均失真度 D = 1/3,试问信源的每一个信源符号平均最少有几个二进制符号表 示?
解:
1 1 1 Dmin p ( xi ) min d ( xi , y j ) 0 0 0 0 j 3 3 3 i 1 1 (n 1)e sa , i j p ( y j / xi ) e sa ,i j sa 1 (n 1)e x2 X x1 4.11 设信源 ,其失真度为汉明失真度,试问当允许平均失真 (p < 0.5) P( X ) p 1 p
因为 n 元等概信源率失真函数:
D D D D R ( D) ln n ln a 1 ln1 a n 1 a a
其中 a = 1, n = 4, 所以率失真函数为:
R( D) ln 4 D ln
函数曲线:
D 1 D ln 1 D 3
相关文档
最新文档