信息率失真函数

合集下载

信息率失真函数

信息率失真函数
平均失真 :
描述某个信源在某一试验信道传输下的 失真大小,它对信源和信道进行了统计平 均,是从总体上描述整个系统的失真
8
3、L长序列编码平均失真
❖ 如X编长l…果 码 符假 后 号Xn,定 序}输,其离 列出中散y符j=L信[号长y源j1序符y输j2列号…入Y序y=符j列L{Y]号x1iY序=2[…列xi1YXxil=2……{YXxmi1L}X],,其经2…中信L源
❖ 离散无记忆信源
13
例2 已知编码器输入的概率分布为p(x)={0.5 ,0.5} 信道矩阵 求互信息
14
若编码器输入的概率分布不变仍为p(x)={0.5 ,0.5} 但信道矩阵 求互信息
• 可见当p(x)一定时,I (X,Y)随信道矩阵p(yj|xi)而变。 • 因为p(x)分布一定时,信道受干扰不同所能传递的
信道容量:
信息率失真函数:
16
信道容量和信息率失真函数的区别
2、反映的事物不同
• 信道容量:
– 假定信道固定的前提下,选择一种试验信源使信息 传输率最大。
– 它所反映的是信道传输信息的能力,是信道可靠传 送的最大信息传输率。
• 一旦找到了信道容量,它就与信源不再有关,而是信
道特性的参量,随信道特性的变化而变化
6
4.11、.2单平符号均离失散信真源的平均失真
❖ x是i和随y机j都变是量随,有机限变失量真,所时以的失信真源函(数总d(体xi,)yj)失也 真值只能用数学期望表示
❖ 将失真函数的数学期望称为平均失真:
7
2、两者的区别平均失真
失真函数d(xi,yj): 描述了某个信源符号通过传输后失真的 大小
信息量是不同的。 • 当p(x)一定时,I (X,Y)是关于p(yj|xi)的下凸函数。 • 因此当改变p(yj|xi)时,I (X,Y)有一极小值。

第4章 信息率失真函数

第4章 信息率失真函数

原始图像和限失真图像
原始图像
红色图像
绿色图像
蓝色图像
香农首先定义了信息率失真函数R(D),并论述了关于这个 函数的基本定理。 定理指出:在允许一定失真度D的情况下,信源输出的信 息传输率可压缩到R(D)值,这就从理论上给出了信息传输率与 允许失真之间的关系,奠定了信息率失真理论的基础。 信息率失真理论是进行量化、数模转换、频带压缩和数据 压缩的理论基础。 本章主要介绍信息率失真理论的基本内容,重点讨论离散 无记忆信源。 给出信源的失真度和信息率失真函数的定义与性质; 讨论离散信源和连续信源的信息率失真函数计算; 在此基础上论述保真度准则下的信源编码定理。
XY i 1 j 1
r
s
• 若平均失真度D不大于我们所允许的失真D0,即: D D0 称此为保真度准则。
信源固定(即给定了p(x)),单个符号失真度固定时(即 给定了d(ai,bj)) ,选择不同试验信道,相当于不同的编码方 法,所得的平均失真度是不同的。 有些试验信道满足D D0,而有些试验信道D>D0。 凡满足保真度准则-----平均失真度D D0的试验信通称为 ----D失真许可的试验信道。 把所有D失真许可的试验信道组成一个集合,用符号PD表 示,则: PD={p (bj / ai): D D0}

0 1 D 1 0
1 2 1 2
[例3] 对称信源(s = r) 。信源X={a1,a2,…ar} ,接收Y= {b1,b2,…bs} 。若失真度定义为:
d (ai , bj ) (bj ai )2
如果信源符号代表信源输出信号的幅度值,这就是一种平 方误差失真度。它意味着幅度差值大的要比幅度差值小的所引 起的失真更为严重,其严重的程度用平方来表示。 当 r=3时, X={0,1,2},Y={0,1,2} ,则失真矩阵为:

《信号处理原理》 第4章 信息失真率

《信号处理原理》 第4章  信息失真率

d(0,2)=d(1,2)=0.5
则得失真矩阵
d

0 1
1 0
0.5 0.5
4.1 平均失真和信息率失真函数
说明:失真函数d (xi, yj) 的数值是依据实际应 用情况,用 yj代替xi, 所导致的失真大小是人为决 定的。比如上例中,用y=2代替x=0和x=1所导致 的失真程度相同,用0.5表示;而用y=0代替x=1 所导致的失真程度要大,用1表示。失真函数d (xi, yj) 的函数形式可以根据需要任意选取,例如平方 代价函数、绝对代价函数、均匀代价函数等。
信源编码器的目的是使编码后所需的信 息传输率R尽量小,然而R越小,引起的平 均失真就越大。给出一个失真的限制值D,
在满足平均失真 D D的条件下,选择一种
编码方法使信息率R尽可能小。信息率R就 是所需输出的有关信源X的信息量。
16
4.1 平均失真和信息率失真函数
将此问题对应到信道,即为接收端Y需要 获得的有关X的信息量,也就是互信息 I(X;Y)。这样,选择信源编码方法的问题就 变成了选择假想信道的问题,符号转移概 率p(yj/xi)就对应信道转移概率。
输入符号集 X:{a1, a2, …, an}中有n种不同的符 号xi (i =1, 2, …, n) ;输出符号集Y:{b1, b2, …, bm}中有m种不同的符号yj (j =1, 2, …, m);对于 图所示的系统,对应于每一对(xi, yj)(i = 1, 2, …,n;j=1, 2, …, m),定义一个非负实值函数
平均失真D是对给定信源分布p(ai)经过某一种 转移概率分布为p(bj|ai)的有失真信源编码器后产 生失真的总体量度。
13
4.1 平均失真和信息率失真函数

第4章信息率失真函数

第4章信息率失真函数
信源编码问题的研究 信息率R就是所需输出的有关信源X的信息量。将此问 题对应到信道,即为接收端Y需要获得的有关X的信息量, 也就是互信息I(X;Y)。这样,选择信源编码方法的问题 就变成了选择假想信道的问题,符号转移概率p(yj|xi)就 对应信道转移概率。
2021/2/22
19
4.1.3 信息率失真函数R(D)
1 L
dL(xi,yj)Ll1d(xil ,yjl )
其中d(xil,yjl)是信源输出xi中的第l个符号xil,经编码后 输出yj中的第l个符号yjl时的失真函数。
2021/2/22
12
4.1.2 平均失真
平均失真的定义
由于xi和yj都是随机变量,所以失真函数d(xi , yj)也是随 机变量,要分析整个信源的失真大小,就需要用其数学
1 i j d(ai,aj) 0 i j
即不发生差错时失真为0,出错失真为1。研究在一定编 码条件下信息压缩的程度。
2021/2/22
29
4.1.3 信息率失真函数R(D)
信息率失真函数举例 由信源概率分布可求出信源熵为:
H(1, 1, , 1)log2n 2n2n 2n
如果对信源进行不失真编码,平均每个符号至少需要 log2n个二进制码元。
2021/2/22
4
4.1平均失真和信息率失真函数
失真函数 平均失真 信息率失真函数R(D) 信息率失真函数的性质
2021/2/22
5
4.1.1 失真函数
失真函数的意义 在实际问题中,信号有一定的失真是可以容忍的。但是 当失真大于某一限度后,信息质量将被严重损伤,甚至 丧失其实用价值。要规定失真限度,必须先有一个定量 的失真测度。为此可引入失真函数。

信息率失真函数的定

信息率失真函数的定

信息率失真函数的定

所谓信息率失真,是指在数据传输过程中造成的原本可以正常识别的信息被破坏而无法被正确识别的现象。

它通常由某种外部的影响,如噪声、干扰或错误编码等因素造成。

具体来说,信息率失真函数是一种度量从输入到输出信号中信息率“差异”的函数。

它定义为信号输出中比原始信号(输入)中丢失的信息的分数。

可以用以下公式来表示信息率失真:
I_R=1-D_R
其中,I_R是信息率失真,D_R是失真率,它定义为输出信号(受失真影响的信号)比输入信号(未受失真影响信号)失真的部分所占的比例,单位是%。

[信息与通信]第10讲 信息率失真函数

[信息与通信]第10讲 信息率失真函数

1 log 2e 2
2
D
1 2
R(D) log 2D
N
X
Y
反向加性高斯实验信道
1 2 D
2 2 D
R(D) 1 log 2
2D
R(D) 0
R(D)
2
D
2 D
S(D)
高斯信源的率失真函数
C
R(D)
I (X ;Y ) 的上凸函数 I (X ;Y ) 的下凸函数
I (X ;Y ) 的极大值
p(b 2
/
a) 1
(1
p)(1
e2S
)
p(b 1
/
a 2
)
(1 p) peS p(1 e2S )
p(b2
/
a2
)
(1 p) peS (1 p)(1 e2S
)
n
D(S)
m i p(ai ) p(bj )d (ai , bj )eSd (ai ,b j )
i1 j1
e S
1 eS
n
R(S) SD(S) p(ai ) ln i i 1
0
...
a
... ... ... ...
a
a
...
a
a 1
汉明失真
0 1 1
1
0
1
1
1
0
2 d(ai ,bj ) (bj ai )2 平方误差失真函数
平均失真度
失真函数d(ai,bj)是随机变量,失真函数的数 学期望称为平均失真度,记为
nm
D E[d(ai ,bj )]
作业:4.1 4.3 4.10 4.11
4.1 信息率失真函数
4.1.1 失真函数和平均失真度

ch4信息率失真函数

ch4信息率失真函数

j
/
ai
)
p 1
(b
j
/
ai
)
(1
)
p
2
(b
j
/
ai
)
nm
D
p(ai ) p(bj / ai )d (ai ,bj )
i1 j1
D1 (1 )D2
满足保真 度准则
D' (1 )D'' D
I ( X ;Y ) R ( D ) R[D ' (1 ) D '' ]
由 I ( X ;Y ) 对 p(b j ai )的下凸性: I ( X ;Y ) I ( X ;Y1 ) (1 ) I ( X ;Y2 )
nm
D(S )
p(a ) p(b )eSd(ai ,bj )d (a , b )
ii
j
ij
4
i1 j 1
(4.2.5)
n
R(S)
m
p(a
)
p(b
)eSd (ai ,bj )
ln
i
p(b )eSd(ai ,bj ) j
ii
j
i1 j1
p(b ) j
n
SD(S ) p(a ) ln
n
1
Dm a x
min j
Dj
min j
i 1
p(ai )d (ai , bj )
n
2
i p (ai )e Sd (ai ,b j ) 1
i
i 1
3
1
i
m j 1
p(b j )eSd (ai ,bj )
p(bj )
4 p(bj ai ) p(bj )ieSd(ai ,bj )

信息率失真函数r(d)

信息率失真函数r(d)

信息率失真函数r(d)
信息率失真函数是信息论中对信源的提取率和失真之间关系的描述函数,用于量化信息传输过程中的信源失真。

信息传输中存在两个基本要素,即提取率和失真。

提取率指的是通过传输信道提取出的有效信息的比例,
而失真则是指提取出的信息与原始信息之间的差异。

信息率失真函数通常被用来评估压缩编码的性能。

在压缩编码中,为
了减小数据的传输量,我们会对数据进行压缩,并通过编码算法将其表示
为较短的二进制代码。

压缩过程中的失真表示为编码后恢复的数据与原始
数据之间的差异。

在设计压缩编码算法时,我们希望能够在提取率和失真之间达到一个
平衡。

提取率越高,我们能够从信道中提取出更多的有效信息;而失真越小,恢复的信息与原始信息的差距越小。

信息率失真函数可以帮助我们在
这两个方面之间进行权衡。

在信息论中,常用的信息率失真函数有均方误差函数和最大误差概率
函数。

均方误差函数衡量的是编码恢复的数据与原始数据之间的平方差的
期望,可以通过最小化均方误差来实现较低的失真。

而最大误差概率函数
则衡量的是编码恢复的数据与原始数据之间的最大差异的概率,可以通过
最小化最大误差概率来实现较低的失真。

总结来说,信息率失真函数是信息论中用于量化信源提取率和失真之
间关系的函数。

它可以帮助我们在设计压缩编码算法时找到提取率和失真
之间的平衡点,以达到较高的提取率和较低的失真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xi 和yj 都是随机变量,失真函数d(xi ,yj)也是随
机变量
限失真时的失真值,只能用它的数学期望或统
计平均值,因此将失真函数的数学期望称为平
均失真,记为
D p(ai b j )d (ai , b j )
i 1 j 1 m
n
m
p(ai ) p(b j / ai )d (ai , b j )
17
Dmax是这样来计算的。R(D)=0就是I(X;Y)=0,
这时试验信道输入与输出是互相独立的,所以条 件概率p(yj/xi)与xi无关。即
pij p( y j / xi ) p( y j ) p j
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
18
此时平均失真为
j 1, 2 i 1
2
2 1 2 1 min 0 1, 1 0 j 1, 2 3 3 3 3 2 1 1 min , j 1, 2 3 3 3
此时输出符号概率p(b1)=0,p(b2)=1,
a1 b2 , a2 b2
前三种失真函数适用于连续信源,后一种适
用于离散信源。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
6
序列失真函数
推广到序列编码
如果假定离散信源输出符号序列X=(X1X2…Xl…XL),其
中L长符号序列样值xi =(xi1xi2…xil…xiL),经信源编码后, 输出符号序列Y=(Y 1Y 2…Y l…Y L),其中L长符号序列样 值yj=(yj1yj2…yjl…yjL),则失真函数定义为:
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
5
最常用的失真函数
均方失真: 绝对失真:
d ( xi , y j ) xi y j
d ( xi , y j ) xi y j
2
相对失真: d ( xi , y j ) xi y j / xi
0, 误码失真: d ( xi , y j ) ( xi , y j ) 1, xi y j 其它
4.1 平均失真和信息率失真函数

4.1.1 4.1.2 4.1.3 4.1.4
失真函数 平均失真 信息率失真函数R(D) 信息率失真函数的性质
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
2
4.1.1 失真函数

假如某一信源X,输出样值为xi,xi{a1,…an}, 经过有失真的信源编码器,输出Y,样值为yj,yj {b1,…bm}。如果xi=yj,则认为没有失真;如果 xi yj,那么就产生了失真。失真的大小,用一 个量来表示,即失真函数d(xi,yj),以衡量用yj代
所以这时的编码器的转移概率为 P 0 1
0 1
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
23
2、R(D)函数的下凸性和连续性 3、R(D)函数的单调递减性
容许的失真度越大,所要求的信息率越小。 反之亦然。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
=0.91比特/符号,这时信源编码器无失真,
所以该编码器的转移概率为
1 0 P 0 1
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
22
当R(Dmax)=0时
j 1, 2
Dmax min pi d ij minp1 d11 p 2 d 21 , p1 d12 p 2 d 22
i 1 j 1
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
8
n
平均失真

对于连续随机变量同样可以定义平均失 真
D





p xy ( x, y)d ( x, y)dxdy
对于L长序列编码情况,平均失真为
DL 1 L E[d ( xil , y jl )] L l 1 1 L Dl L l 1
14
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
例4-1-3
设信源的符号表为A={a1 ,a2 ,…,a2n},概率分布为 p(ai)=1/2n,i=1,2,…,2n,失真函数规定为
1 i j d ( ai , a j ) 0 i j
即符号不发生差错时失真为0,一旦出错,失真为1,试 研究在一定编码条件下信息压缩的程度。
替xi所引起的失真程度。一般失真函数定义为
xi y j 0 d(xi ,y j ) α α 0 xi y j
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
3
失真矩阵
单个符号的失真度的全体构成的矩 阵 d ( xi , y j ) ,称为失真矩阵
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
11
1、D允许试验信道
平均失真由信源分布p(xi)、假想信道的转移概 率p(yj/xi)和失真函数d(xi,yj)决定,若p(xi)和d(xi, yj)已定,则可给出满足x下式条件的所有转移概 率分布pij,它们构成了一个信道集合PD
分布p(x)={1/3,2/3},失真矩阵为
d (a1 , b1 ) d (a1 , b2 ) 0 1 d 1 0 d (a2 , b1 ) d (a2 , b2 )
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
21
解:
当Dmin=0时,R(Dmin)=H(X)=H(1/3,2/3)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
9
4.1.3 信息率失真函数R(D)
X
信源编码器 Y
x a1, a2 , an
y b1, b2 ,bn
假想信道
将信源编码器看作信道
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
10
4.1.3 信息率失真函数R(D)
D pi p j d ij
i 1 j 1
n
m
求出满足条件
p
j 1
m
j
1 的D中的最小值
n
,即
Dmax min p j pi d ij
j 1 i 1
m
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
19
从上式观察可得:在j=1,…,m中,可找 到
信源编码器的目的
– 使编码后所需的信息传输率R尽量小 – R越小,引起的平均失真就越大 – 给出一个失真的限制值D,在满足平均失真 D的条件下,选 择一种编码方法使信息率R尽可能小。 – 信息率R就是所需输出的有关信源X的信息量。
将此问题对应到信道,
– 接收端Y需要获得的有关X的信息量,也就是互信息I(X;Y)。 – 这样,选择信源编码方法的问题就变成了选择假想信道的问 题,符号转移概率p(yj/xi)就对应信道转移概率。
的U型凸函数,存
在极小值。
在上述允许信道PD中,可以寻找一种信道pij,使给定的
信源p(xi)经过此信道传输后,互信息I(X;Y)达到最小。
该最小的互信息就称为信息率失真函数R(D),即
R( D ) min I ( X ; Y )
PD
13
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
15
4.1.4 信息率失真函数的性质
1.
R(D)函数的定义域 ⑴ Dmin和R(Dmin) Dmin=0
R( Dmin ) R(0) H ( X )
对于连续信源
R( Dmin ) R(0) H c ( x)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
1
x2 2 e 2
R( D) log

2
时,
D
27
PD p(b j / ai ) : D D

i 1,2,, n; j 1,2,, m

12
称为D允许试验信道。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
2、信息率失真函数R(D)
互信息取决于信源分布和信道转移概率分布
当p(xi)一定时,互信息I是关于p(yj/xi)
16
(2) Dmax和R(Dmax)
选择所有满足R(D)=0中D的最小值,定义为R(D)定义 域的上限Dmax,即
Dmax min D
R ( D ) 0
因此可以得到R(D)的定义域为
n
D 0, Dmax
Dmax
j 1,2,, m
min
p d
i 1
i ij
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
4
普通高等教育“十五”国家级规划教材《信息
设信源符号序列为X=[0,1],接收端受到 符号序列为Y=[0,1,2],如前面介绍的二 元删除信道,规定失真函数为:
d (0,0) d (1,1) 0, d (0,1) d (1,0) 1, d (0,2) d (1,2) 0.5
1 L d L (x i , y j ) d ( xil , y jl ) L l 1
其中d(xil,yjl)是信源输出L长符号样值xi中的第l个符号xil时, 编码输出L长符号样值yj中的第l个符号yjl的失真函数。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
7
平均失真
相关文档
最新文档