信息论第四章失真率函数
合集下载
信息论第四章失真率函数

D
q( x ) p( y
i i j
j
xi ) d i j D
(4-11)
式中D是预先给定的失真度,上式称为保真度准则。
根据[定理2.2],当信源q (x)一定时,平均互信息量I (X ; Y) 是信道转移概率函数 p(y∣x) 的∪型凸函数,这意味着可以 关于p(y∣x)对平均互信息量I (X ; Y)求得极小值,定义这个 极小值为率失真函数R(D),即:
d ii 0
d ij 1
i, j 1,2, , K
上述约定可以用矩阵表示为
0 1 1 1 0 1 d 1 1 0
式中di j ≥ 0 i, j = 1, 2, …, K为信源方发送符号xi而信宿方判为 yj引起的失真度。 对于矢量传输情况,若信道的输入、输出均为N 长序列X = X1 X2 … XN ,Y = Y1 Y2 … YN ,定义失真测度为
RD min I X ; Y : D D
p( y x)
(4-12)
式(4-12)的意义在于,选择p(y∣x)即选择某种编码方法在满足 的 D D前提下,使I (X ; Y) 达到最小值R(D) ,这就是满足平 均失真 D D 条件下的信源信息量可压缩的最低程度。
4.2
N
k J
p( x
k 1 i 1 j 1
ki
, ykj )d ( xki , ykj ) (4-5)
(4-5)式表明了离散无记忆N次扩展信道的输入输出符号之 间平均失真等于单个符号xki,ykj之间失真统计值的总和。
若矢量信源是原离散无记忆信道的N次扩展,且矢 量信道也是原离散无记忆信道的N次扩展,则每个 Dk
第4章 信息率失真函数

原始图像和限失真图像
原始图像
红色图像
绿色图像
蓝色图像
香农首先定义了信息率失真函数R(D),并论述了关于这个 函数的基本定理。 定理指出:在允许一定失真度D的情况下,信源输出的信 息传输率可压缩到R(D)值,这就从理论上给出了信息传输率与 允许失真之间的关系,奠定了信息率失真理论的基础。 信息率失真理论是进行量化、数模转换、频带压缩和数据 压缩的理论基础。 本章主要介绍信息率失真理论的基本内容,重点讨论离散 无记忆信源。 给出信源的失真度和信息率失真函数的定义与性质; 讨论离散信源和连续信源的信息率失真函数计算; 在此基础上论述保真度准则下的信源编码定理。
XY i 1 j 1
r
s
• 若平均失真度D不大于我们所允许的失真D0,即: D D0 称此为保真度准则。
信源固定(即给定了p(x)),单个符号失真度固定时(即 给定了d(ai,bj)) ,选择不同试验信道,相当于不同的编码方 法,所得的平均失真度是不同的。 有些试验信道满足D D0,而有些试验信道D>D0。 凡满足保真度准则-----平均失真度D D0的试验信通称为 ----D失真许可的试验信道。 把所有D失真许可的试验信道组成一个集合,用符号PD表 示,则: PD={p (bj / ai): D D0}
则
0 1 D 1 0
1 2 1 2
[例3] 对称信源(s = r) 。信源X={a1,a2,…ar} ,接收Y= {b1,b2,…bs} 。若失真度定义为:
d (ai , bj ) (bj ai )2
如果信源符号代表信源输出信号的幅度值,这就是一种平 方误差失真度。它意味着幅度差值大的要比幅度差值小的所引 起的失真更为严重,其严重的程度用平方来表示。 当 r=3时, X={0,1,2},Y={0,1,2} ,则失真矩阵为:
《信号处理原理》 第4章 信息失真率

d(0,2)=d(1,2)=0.5
则得失真矩阵
d
0 1
1 0
0.5 0.5
4.1 平均失真和信息率失真函数
说明:失真函数d (xi, yj) 的数值是依据实际应 用情况,用 yj代替xi, 所导致的失真大小是人为决 定的。比如上例中,用y=2代替x=0和x=1所导致 的失真程度相同,用0.5表示;而用y=0代替x=1 所导致的失真程度要大,用1表示。失真函数d (xi, yj) 的函数形式可以根据需要任意选取,例如平方 代价函数、绝对代价函数、均匀代价函数等。
信源编码器的目的是使编码后所需的信 息传输率R尽量小,然而R越小,引起的平 均失真就越大。给出一个失真的限制值D,
在满足平均失真 D D的条件下,选择一种
编码方法使信息率R尽可能小。信息率R就 是所需输出的有关信源X的信息量。
16
4.1 平均失真和信息率失真函数
将此问题对应到信道,即为接收端Y需要 获得的有关X的信息量,也就是互信息 I(X;Y)。这样,选择信源编码方法的问题就 变成了选择假想信道的问题,符号转移概 率p(yj/xi)就对应信道转移概率。
输入符号集 X:{a1, a2, …, an}中有n种不同的符 号xi (i =1, 2, …, n) ;输出符号集Y:{b1, b2, …, bm}中有m种不同的符号yj (j =1, 2, …, m);对于 图所示的系统,对应于每一对(xi, yj)(i = 1, 2, …,n;j=1, 2, …, m),定义一个非负实值函数
平均失真D是对给定信源分布p(ai)经过某一种 转移概率分布为p(bj|ai)的有失真信源编码器后产 生失真的总体量度。
13
4.1 平均失真和信息率失真函数
第4章信息率失真函数

R( D) min p(ai ) p(b j / ai ) log
Pij PD i 1 j 1
n
m
p(b j / ai ) p(b j )
p(ai),i=1,2,…,n 是信源符号概率分布; p(bj/ai),i=1,2,…,n,j=1,2,…,m 是转移概率分布; p(bj),j=1,2,…,m 是接收端收到符号概率分布。
如果选取对压缩更为有利的编码方案,则压缩的 效果可能更好。但一旦达到最小互信息这个极限 值,就是R(D)的值,或超过这个极限值,那么失 真就要超过失真限度,如果需要压缩的信息率更 大,则可容忍的平均失真就要更大。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
17
4.1.4 信息率失真函数的性质
1 L d L (x i , y j ) d ( xil , y jl ) L l 1
其中d(xil,yjl)是信源输出L长符号样值xi中的第l个符号xil
时,编码输出L长符号样值yj中的第l个符号yjl的失真函数。
7
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
4.1.2
以R(D)也是一个非负函数,它的下限值为0。当 R(D)=0意
味着什么呢? 不需传输任何信息。显然D越大,直至无限大都能满足这
样的情况。
选择所有满足R(D)=0中D的最小值,定义为R(D)定义域 的上限Dmax,即 Dmax min D
R ( D ) 0
因此可以得到R(D)的定义域为
n
D 0, Dmax
第4章
信息率失真函数
本章主要讨论在信源允许一定失真情况下所需的最少
信息率,从分析失真函数、平均失真出发,求出信息 率失真函数R(D) 。 平均失真和信息率失真函数 离散信源和连续信源的R(D)计算
第4章信息率失真函数

4.1
第4章 信息率失真函数
定义: 信源序列的失真函数
N
基
d ( x, y) d (i , j ) d (ail , bjl )
本 概
l 1
x X, y Y;i X N , j Y N ;ail X ,bjl Y
念
信源序列失真函数等于信源序列中对应的
单符号失真函数之和。也可写成rN sN阶矩阵形 式。
Page 6
4..1.1
第4章 信息率失真函数
4.1 基本概念
失 4.1.1失真函数(失真度)
真
函 为什么引入失真函数?
数
在实际问题中,信号有一定的失真是可 以容忍的,但是当失真大于某一限度后,将 丧失其实用价值。
要规定失真限度,必须先有一个定量的 失真测度。为此可引入失真函数.
Page 7
4.1.1
i1 j1
Page 19
4.1.2
第4章 信息率失真函数
(3)均方失真函数
适用于连续 信源
平 均
d(a,b) (a b)2
(a X ,b Y 或 a,b R)
失
真 在均方失真函数下,平均失真度就是均方误差。
度
rs
离散信源的均方误差 D (a b)2 P(a,b) i1 j1
连续信源的均方误差D: (a b)2 P(a, b)dxdy
1.离散信源单个符号的失真函数
定义:设离散无记忆信源输出变量X {a1, a2,L , ar},
失 真
概率分布为P(X ) [P(a1), P(a2),L , P(ar )],经过有失真的
函 数
信源编码器,输出的随机变量 Y {b1,b2,L ,bs}。
将所有的 d(ai ,bj ) 0 (ai X ,bj Y ) 排列起来,用
ch4信息率失真函数

j
/
ai
)
p 1
(b
j
/
ai
)
(1
)
p
2
(b
j
/
ai
)
nm
D
p(ai ) p(bj / ai )d (ai ,bj )
i1 j1
D1 (1 )D2
满足保真 度准则
D' (1 )D'' D
I ( X ;Y ) R ( D ) R[D ' (1 ) D '' ]
由 I ( X ;Y ) 对 p(b j ai )的下凸性: I ( X ;Y ) I ( X ;Y1 ) (1 ) I ( X ;Y2 )
nm
D(S )
p(a ) p(b )eSd(ai ,bj )d (a , b )
ii
j
ij
4
i1 j 1
(4.2.5)
n
R(S)
m
p(a
)
p(b
)eSd (ai ,bj )
ln
i
p(b )eSd(ai ,bj ) j
ii
j
i1 j1
p(b ) j
n
SD(S ) p(a ) ln
n
1
Dm a x
min j
Dj
min j
i 1
p(ai )d (ai , bj )
n
2
i p (ai )e Sd (ai ,b j ) 1
i
i 1
3
1
i
m j 1
p(b j )eSd (ai ,bj )
p(bj )
4 p(bj ai ) p(bj )ieSd(ai ,bj )
信息论基础与编码课件第四章 信息率失真函数

同样,可得Pij时的平均互信息为 I''(X;Y)0.37b9i/t符号
从此例我们可以看到,若固定P(x)不变时,平均互信息量随信
道的转移概率的变化而变化。这是因为信道受到干扰的作用 不同,传递的信息量也不同。可以证明这样一个结论:P(x)一 定时,平均互信息量I(X;Y)是关于信道的转移概率的下凸函数, 即存在一极小值。
m × n个 p i j 的值,代入平均失真的公式中,可解出随S参数值变
化的D值,即
D (S ) p ip j id ij p ip ij ie S d ijd ij (4-16)
ij
ij
25
离散信源的R(D)函数及其计算(续)
信源的信息率失真函数R(D)为
R (S ) i
j
pi p j i e Sdij
源输出符号序列 X (X 1 ,X 2 , ,X L ) ,其中L长符号序列样
值 Y(Y 1,Y 2, ,Y L) ,经信源编码后,输出符号序
列 x i (x i1 ,x i2 , ,x iL )
,其中L长符号序列样
值 y i (y i1 ,y i2 , ,y iL ),则失真函数定义为:
1L
dL(xi,yj)Ll1d(xil,yjl)
其中d(xil,yjl)是信源输出L长符号样值 x i 中的第l个符号xil时,
编码输出L长符号样值 中的y i 第l个符号yjl的失真函数。
7
平均失真
定义平均失真度为失真函数的数学期望,即 d ( xi , yj ) 在 X 和 Y的 联合概率空间 P(XY ) 中的统计平均值
nm
D E [d (x i,y j)] p (x i)p (y j|x i)d (x i,y j) (4-4) i 1j 1
第4章 信息率失真理论

R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
③对D具有单调递减性
由R(D)对D具有的非负性、严格下凸性及R(Dmax) =0说明
信息率失真理论
当Dmin=0时,信息率失真函数R(D)的大致曲线 R(D) H(X)
Dmin
Dmax D
信息率失真理论
3、信息率失真函数的表达式
ˆ P( x j / x i ) i ˆ ln Sd( x i , x j ) 0 ˆ P( x j ) P( x i ) i 1,2,, n j 1,2,, n
i 令 ln i P( x i ) ˆ P( x j / x i ) ˆ Sd ( x i , x j ) ln ln i e ˆ P( x j )
信息率失真理论
第2个实验信道满足D2条件下R(D)的定义 ˆ ˆ P (X / X) {P(X / X) : D D }
D2 2
ˆ ˆ R (D 2 ) min I(X; X) I 2 (X; X) ˆ
PD2 ( X / X )
取一个新的实验信道
ˆ ˆ PD1 (X / X) (1 )PD2 (X / X) ˆ {P(X / X) : D D1 (1 )D 2 }
ˆ ... d( x1 , x n ) ˆ ... d( x 2 , x n ) ... ... ˆ ... d( x n , x n )
汉明失真矩阵
0 1 [ D] ... 1 1 0 ... 1 ... ... ... ... 1 1 ... 0
R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
设第1个实验信道满足D1条件下R(D)的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ij
式中D是预先给定的失真度,上式称为保真度准则。
根据[定理2.2],当信源q (x)一定时,平均互信息量I (X ; Y) 是信道转移概率函数p(y∣x)的∪型凸函数,这意味着可以 关于p(y∣x)对平均互信息量I (X ; Y)求得极小值,定义这个
极小值为率失真函数R(D),即:
RD min I X ;Y : D D p(y x)
第4章 率失真编码
第4章 率失真编码
内容提要 数据压缩是信息传输和处理的重要研究内容,率失 真理论研究的就是在允许一定失真的前提下,对信 源的压缩编码。率失真信源编码定理(香农第三定
理)指出:率失真函数R (D) 就是在给定失真测度
条件下,对信源熵可压缩的最低程度。 本章只限于研究率失真理论最基本的内容,失真测 度,率失真函数,率失真函数的定义域,值域,性
dii 0 i, j 1,2, , K dij 1
上述约定可以用矩阵表示为
0
d 1
1 0
1 1
1 1 0
式中di j ≥ 0 i, j = 1, 2, …, K为信源方发送符号xi而信宿方判为 yj引起的失真度。
对于矢量传输情况,若信道的输入、输出均为N 长序列X = X1 X2 … XN ,Y = Y1 Y2 … YN ,定义失真测度为
质及定量计算。R (D) 的计算很烦琐,文中通过二 个例子介绍了几种特殊情况下R (D )的求法,一般
情况只能用参数法求解。
第4章 率失真编码
信息率失真函数R(D)——香农1959年提出 ✓ 在允许一定失真度D的情况下,
信源输出的信息率可压缩为R(D)值 ✓ 数据压缩的理论基础 I(X;Y)——H(X)、H(Y/X)的二元函数 ➢ 固定H(Y/X) ,改变H(X)得I(X;Y)最大值
(4-12)
式(4-12)的意义在于,选择p(y∣x)即选择某种编码方法在满足
的 D D前提下,使I (X ; Y) 达到最小值R(D) ,这就是满足平 均失真 D D 条件下的信源信息量可压缩的最低程度。
4.2 信息率失真函数R(D)
补充:试验信道(D允许信道)PD 1.定义:固定信源(H(X)时,满足失真度准则 (D D) 的所有转移概率p(y/x)的集合 2.单符号信源、单符号信道的试验信道
i1 j1
i1 j1
平均失真D 是对在给定信源分布q(x)条件下,通过 有扰信道传输而引起失真的统计平均度量。
平均失真说明:
①是在平均意义上,对系统失真的总体描述
②是信源统计特性p(xi)的函数 是信道统计特性p(yj / xi)的函数 是规定失真度 d(xi, yj)的函数 若保持p(xi)、d(xi, yj) 不变,则平均失真 度就是信道特性p(yj / xi)的函数
x1 q( x1
)
x2 q(x2 )
xI q(xI
)
,经有扰信
道传输,信道输出符号为Y = {y1, y2, …, yJ},平均失真即对d i j(i =1, 2, …,I; j = 1, 2, …, J)求统计平均值,记为
IJ
IJ
D
p(xi y j )di j
q(xi ) p( y j xi )di j (4-4)
d d 21 d 22
d1J
d
2
J
(4-1)
d I 1 d I 2 d I J
【例4.1】 汉明(Hamming)失真测度
信源输出符号X = {x1, x2, …, xK},信道输出符号Y = {y1, y2, …,
yK},约定失真测度
yi xi
无误码
y
j
xi (i
j)
误码
J
p(xki , ykj )d (xki , ykj )(4-5)
j 1
(4-5)式表明了离散无记忆N次扩展信道的输入输出符号之 间平均失真等于单个符号xki,ykj之间失真统计值的总和。
若矢量信源是原离散无记忆信道的N次扩展,且矢
量信道也是原离散无记忆信道的N次扩展,则每个 Dk
k 1,2,...,N 对一位信源信道所取的均值相等,即
N次扩展信道
对于矢量传输情况,若信道的输入、输出符号均为
N长序列X=X1,…,Xk,…,XN,X k {x1, x2 ,..., xI } , Y=Y1,…,Yk,…,YN, Yk {y1, y2 ,..., yJ } ,
平均失真定义为
D( N )
1 N
N
Dk
k 1
1 N
N k 1
I i 1
d (N ) (X ,Y )
1 N
N
d ( X k ,Yk )
k 1
(4-2)
【例4.2】 平方误差失真测度
信源输出符号X = {0, 1, 2}, 信道输出符号Y = {0, 1, 2} , 给
出失真测度d i j = (xi - yj )2 i, j = 0, 1, 2
则失真测度矩阵为
0
d 1
1 0
4 1
4 1 0
【例4.3】 绝对值误差失真测度
信源输出符号X = {0, 1, 2},信道输出符号Y = {0, 1, 2} ,给出
失真测度
d i j = ︱xi - yj ︱
则失真测度矩阵为
0 1 2
d 1 0 1
2 1 0
i, j = 0, 1, 2
2.平均失真
ቤተ መጻሕፍቲ ባይዱ
离散信源
q
X (X
)
1.失真测度d( x,
给定离散信源
y)
X
q( X
)
x1 q(x1
)
x2 q(x2 )
xI q(xI
)
,信道
输出符号yj引起的失真用 d (xi ,y j)(i =1, …,I j = 1, …, J)
表示,简记为d i j,将所有的d i j列出来,可以得到下面的失真
测度矩阵
d11 d12
——信道容量 ➢ 固定H(X),改变H(Y/X) 得I(X;Y)最小值
——率失真函数
4.1 失真测度与平均失真
在允许一定失真的前提下,从提高传输效率的角度出发, 可以对信源信息量事先进行压缩再予传输,这章要讨论的 问题就是给定一个失真度,求出在平均失真小于给定值的
条件下,信源所能压缩的最低程度,即率失真函数R(D)。
从而, D1 ... Dk ... DN D
D(N) D
4.2 信息率失真函数R(D)
4.2.1 率失真函数的定义
给定信源,即信源概率分布q (x) 一定,给定失真测度矩阵
[d]=[dij],寻找信道,记它的转移概率矩阵为 P [ p( y j xi )]
,要求满足
D
q(xi )p( y j xi )di j D (4-11)