2017 2018高二上学期文科期末考试卷及答案word文档良心出品
2017-2018学年高二上期末数学文科试卷(1)含答案解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.43.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣37.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤08.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>09.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=111.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是.(椭圆的一部分,圆的一部分,椭圆,直线的)14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切【解答】解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.4【解答】解;①∵l⊥α,α∥β,∴l⊥β,又∵m⊂β,∴l⊥m,①正确.②由l⊥m推不出l⊥β,②错误.③当l⊥α,α⊥β时,l可能平行β,也可能在β内,∴l与m的位置关系不能判断,③错误.④∵l⊥α,l∥m,∴m∥α,又∵m⊂β,∴α⊥β,正确;故选:B.3.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:条件q:直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.则¬p是¬q的必要不充分条件.故选:B.4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.【解答】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度不超过半径长度的对应的弧长为•2πR,则AB弦的长度不超过半径长度的概率P=.故选:C.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解答】解:对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性关系的强弱,求相关系数,写出线性回归方程,最后对所求出的回归直线方程作出解释;故正确顺序是②⑤④③①故选D.6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选B.7.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤0【解答】解:命题的逆否命题为,若方程x2+x﹣m=0 没有实根,则m≤0,故选:D.8.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【解答】解:命题“存在x0∈R,2x0≤0”的否定是对任意的x∈R,2x>0,故选:D.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=1【解答】解:设椭圆的短轴为2b(b>0),长轴为2a,则2a+2b=18又∵个焦点的坐标是(3,0),∴椭圆在x轴上,c=3∵c2=a2﹣b2∴a2=25 b2=16所以椭圆的标准方程为故选B.11.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9【解答】解:本题在算法与统计的交汇处命题,考查了同学们的识图能力以及计算能力.本题计算的是这8个数的方差,因为所以故选B二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是椭圆的一部分.(椭圆的一部分,圆的一部分,椭圆,直线的)【解答】解:方程,可得x≥0,方程化为:x2+4y2=1,(x≥0),方程表示焦点坐标在x轴,y轴右侧的一部分.故答案为:椭圆的一部分;14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为[﹣2,2] .【解答】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.【解答】解:由椭圆的标准方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以③﹣②得t1t2=12,∴∠F1PF2=3.故答案为:3.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.【解答】解:当P为真时,a=0,或,解得:a∈[0,4)﹣﹣(3分)当Q为真时,△=1﹣4a≥0.解得:a∈(﹣∞,]﹣﹣(6分)如果p∨q为真,p∧q为假,即p和q有且仅有一个为真,﹣﹣(8分)当p真q假时,a∈(,4)当p假q真时,a∈(﹣∞,0)a的取值范围即为:(﹣∞,0)∪(,4)﹣﹣(12分)18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.【解答】解:(1)根据题意,填写被调查人答卷情况统计表如下:男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(2)由表格可以看出女生同意的概率是,男生同意的概率是;用男女生同意的概率乘以人数,得到同意的结果数为105×+126×=105,估计高二年级学生“同意”的人数为105人;(3)设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法;其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),共8种满足题意;则恰有一人“同意”一人“不同意”的概率为P=.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.【解答】解:(1)由a=2bsinA.根据正弦定理,得sinA=2sinBsinA,sinA≠0.故sinB=.因△ABC为锐角三角形,故B=.(2)cosA+sinC=cosA+sin=cosA+sin=cosA+cosA+sinA=sin.由△ABC为锐角三角形,知=﹣B<A<,∴<A+<,故<sin<,<<.故cosA+sinC的取值范围是.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:p:实数x满足x2﹣4ax+3a2<0,其中a>0,解得a<x<3a.命题q:实数x满足.化为,解得,即2<x≤3.(1)a=1时,p:1<x<3.p∧q为真,可得p与q都为真命题,则,解得2<x<3.实数x的取值范围是(2,3).(2)∵p是q的必要不充分条件,∴,a>0,解得1<a≤2.∴实数a的取值范围是(1,2].21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,=∴V P﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.【解答】(本题满分12分)解:证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)。
2017-2018学年高二语文第一学期期末测试卷及答案

2017—2018学年第一学期期末统一检测题高二语文本试卷共8页,18小题,满分150分。
考试用时150分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔,将自己所在县(市、区)、姓名、试室号、座位号填写在答题卷上对应位置,再用2B铅笔将准考证号涂黑.2. 选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷或草稿纸上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再在答题区内写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效一、默写(15分)(1)外无期功强近之亲,。
(李密《陈情表》)(2)袅袅兮秋风,。
(屈原《湘夫人》)(3),两朝开济老臣心。
(杜甫《蜀相》)(4)楼船夜雪瓜州渡,。
(陆游《书愤》)(5)熊咆龙吟殷岩泉,。
(李白《梦游天姥吟留别》)(6),渔粱渡头争渡喧。
(孟浩然《夜归鹿门歌》)(7)春水碧于天,。
(韦庄《菩萨蛮(其二)》)(8),乾坤日夜浮。
(杜甫《登岳阳楼》)(9)心非木石岂无感?。
(鲍照《拟行路难·其四》)(10)引壶觞以自酌,。
(陶渊明《归去来兮辞》)(11)渔舟唱晚,。
(王勃《滕王阁序》)(12)使六国各爱其人,则足以拒秦;使秦复爱六国之人,,谁得而族灭也?(杜牧《阿房宫赋》)(13)况阳春召我以烟景,。
(李白《春夜宴从弟桃花源序》)(14),芙蓉泣露香兰笑。
(李贺《李凭箜篌引》)(15)小楼昨夜又东风,。
(李煜《虞美人》)二、文言文阅读(29分)阅读下面的文言文,完成2-7题。
(一)伶官传序欧阳修呜呼!盛衰之理,虽曰天命,岂非人事哉!原庄宗之所以得天下,与其所以失之者,可以知之矣。
世言晋王之将终也,以三矢赐庄宗而告之曰:“梁,吾仇也;燕王,吾所立;契丹与吾约为兄弟;而皆背晋以归梁。
17—18学年上学期高二期末考试语文试题(附答案)(2)

2017——2018学年度第一学期高二期末检测语文试卷考试时间:150分钟第一卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1—3题。
围棋与国家林建超围棋起源于中国,是黄河文明的产物,其形制弈法等都饱含着文明母体的基因和特征。
围棋极可能源自上古时期的结绳而治、河图洛书和周易八卦,因为其形制、内涵与中华文明的源头相符。
围棋的产生和发展,始终与弈者对自然、社会和人生的思考感悟联系在一起。
围棋不仅对个人修身养性,而且对民族社会的群体心理产生深刻影响。
围棋是中华五千年文明的象征、民族文化的瑰宝、高度智慧的结晶,这种地位不是任何人封赐的,也不是带有感情色彩的主观结论,而是人们在反复实践和比较中认识到的,是随着社会和文明的进步而不断深化和升华的。
围棋的价值和地位是在与各种掷彩博累活动的比较中确立起来的。
最早有文献记载的围棋活动是在春秋时期。
从春秋到西汉,社会风气浮躁、趋利,具有运气性和刺激性、宜于赌博的博累棋流行甚广,围棋处于受挤压的位置,但始终保持着顽强的生命力。
东汉中期后,社会风气转变,文明程度提高,思想更为自由,人们不满足于掷彩行棋的非公平的竞智斗巧,围棋更加受到人们的喜爱和重视,而曾经盛极一时的博累棋逐步走向衰弱,到唐代时完全消亡了。
博累棋消亡的原因从根本上说是它们不符合我们民族的思想特征,不能满足人们精神生活的真正需求,而围棋在与它们的比较中表现出了本质上的优势。
围棋的价值和地位是在与传统礼教观念斗争中确立起来的。
围棋作为反映和体现人们心灵自由的智力博弈活动,在很长一段时间里,被认为不符合传统伦理观念。
后来,人们逐步认识到这些观念都是不对的。
从东汉中后期到魏晋时期,人们开始从生命意义上认识围棋的价值,就把围棋作为自觉的艺术追求和精神宣寄的工具,并把它纳入儒士必备的艺技。
围棋的价值和地位是从正反两方面的社会实践对比中确立起来的。
人们在围棋活动的实践中逐渐认识到,围棋本身具有娱乐、教育、竞技、交际等功能。
2017-2018学年高二(上)期末数学试卷(文科)(解析版)

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.101(9)化为十进制数为()A.9 B.11 C.82 D.101【解答】解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.2.随机事件A发生的概率的范围是()A.P(A)>0 B.P(A)<1 C.0<P(A)<1 D.0≤P(A)≤1【解答】解:∵随机事件是指在一定条件下可能发生,也有可能不发生的事件∴随机事件A发生的概率的范围0<P(A)<1当A是必然事件时,p(A)=1,当A是不可能事件时,P(A)=0故选C.3.如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数的平均数和方差分别是()A.B.C.D.【解答】解:∵x1,x2,…,xn的平均数是,方差是s2,∴的平均数为,的方差为3s2故选C4.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.5.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B6.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=++=(此时k=6),因此可填:S≤.故选:C.7.若直线l经过A(2,1),B(1,﹣m2)(m∈R)两点,则直线l的倾斜角α的取值范围是()A.0≤α≤B.<α<πC.≤α<D.<α≤【解答】解:根据题意,直线l经过A(2,1),B(1,﹣m2),则直线l的斜率k==1+m2,又由m∈R,则k=1+m2≥1,则有tanα=k≥1,又由0≤α<π,则≤α<;故选:C.8.从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是()A.B.C.D.【解答】解:从1,2,3,4,5中任取两个不同的数字,构成一个两位数有=5×4=20,这个数字大于40的有=8,∴这个数字大于40的概率是=,故选:A9.已知点P(x,y)在直线2x+y+5=0上,那么x2+y2的最小值为()A.B.2C.5 D.2【解答】解:x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,即为原点到该直线的距离平方d2,由点到直线的距离公式易得d==.∴x2+y2的最小值为5,故选:C10.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B11.一条光线沿直线2x﹣y+2=0入射到直线x+y﹣5=0后反射,则反射光线所在的直线方程为()A.2x+y﹣6=0 B.x+2y﹣9=0 C.x﹣y+3=0 D.x﹣2y+7=0【解答】解:由得,故入射光线与反射轴的交点为A(1,4),在入射光线上再取一点B(0,2),则点B关于反射轴x+y﹣5=0的对称点C(3,5)在反射光线上.根据A、C两点的坐标,用两点式求得反射光线的方程为,即x﹣2y+7=0.故选D.12.已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.2【解答】解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线8kx2﹣ky2=8的一个焦点为(0,3),则k的值为﹣1.【解答】解:根据题意可知双曲线8kx2﹣ky2=8在y轴上,即,∵焦点坐标为(0,3),c2=9,∴,∴k=﹣1,故答案为:﹣1.14.椭圆+y2=1的弦被点(,)平分,则这条弦所在的直线方程是2x+4y﹣3=0.【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得,又弦中点为(,),故k=﹣,故这条弦所在的直线方程y﹣=﹣(x﹣),整理得2x+4y﹣3=0.故答案为:2x+4y﹣3=0.15.已知命题p:|x﹣1|+|x+1|≥3a恒成立,命题q:y=(2a﹣1)x为减函数,若p且q为真命题,则a的取值范围是(.【解答】解:∵p且q为真命题,∴命题p与命题q均为真命题.当命题p为真命题时:∵|x﹣1|+|x+1|≥3a恒成立,∴只须|x﹣1|+|x+1|的最小值≥3a即可,而有绝对值的几何意义得|x﹣1|+|x+1|≥2,即|x﹣1|+|x+1|的最小值为2,∴应有:3a≤2,解得:a≤,①.当命题q为真命题时:∵y=(2a﹣1)x为减函数,∴应有:0<2a﹣1<1,解得:,②.综上①②得,a的取值范围为:即:(].故答案为:(].16.已知椭圆+=1,当椭圆上存在不同的两点关于直线y=4x+m对称时,则实数m的范围为:﹣<m<.【解答】解:∵+=1,故3x2+4y2﹣12=0,设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),则3x12+4y12﹣12=0,①3x22+4y22﹣12=0,②①﹣②得:3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即3•2x0•(x1﹣x2)+4•2y0•(y1﹣y2)=0,∴=﹣•=﹣.∴y0=3x0,代入直线方程y=4x+m得x0=﹣m,y0=﹣3m;因为(x0,y0)在椭圆内部,∴3m2+4•(﹣3m)2<12,即3m2+36m2<12,解得﹣<m<.故答案为:﹣<m<三、解答题(本大题共6小题,70分)17.为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是115,中位数是121.3.【解答】解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.∴样本容量是=150,∴第二小组的频率是=0.08.(2)∵次数在110以上为达标,∴在这组数据中达标的个体数一共有17+15+9+3,∴全体学生的达标率估计是=0.88 …6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即=115,…7分处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 …8分18.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]19.已知直线l:y=kx+1,圆C:(x﹣1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.【解答】解:(1)由,消去y得到(k2+1)x2﹣(2﹣4k)x﹣7=0,∵△=(2﹣4k)2+28k2+28>0,∴不论k为何实数,直线l和圆C总有两个交点;(2)设直线与圆相交于A(x1,y1),B(x2,y2),则直线l被圆C截得的弦长|AB|=|x1﹣x2|=2=2,令t=,则有tk2﹣4k+(t﹣3)=0,当t=0时,k=﹣;当t≠0时,由k∈R,得到△=16﹣4t(t﹣3)≥0,解得:﹣1≤t≤4,且t≠0,则t=的最大值为4,此时|AB|最小值为2,则直线l被圆C截得的最短弦长为2.20.已知回归直线方程是:=bx+a,其中=,a=﹣b.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:X 122 131 126 111 125 136 118 113 115 112Y 87 94 92 87 90 96 83 84 79 84(1)试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)(2)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?【解答】解:(1)由题意,==120.9,==87.6,=146825,=102812,∴===0.538,a=﹣b≈22.521∴=0.538x﹣22.521,(2)由(1)=0.538x﹣22.521,当y=93时,93=0.538x﹣22.521,x≈131.21.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.22.已知H(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足.(1)当点P在y轴上移动时,求点M的轨迹C;(2)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.【解答】解(1)设点M的坐标为(x,y),由.得,由,得,所以y2=4x由点Q在x轴的正半轴上,得x>0,所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(2)设直线l:y=k(x+1),其中k≠0代入y2=4x,得k2x2+2(k2﹣2)x+k2=0①设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得所以,线段AB的中点坐标为,线段AB的垂直平分线方程为,令,所以,点E的坐标为.因为△ABE为正三角形,所以,点E到直线AB的距离等于|AB|,而|AB|=.所以,解得,所以.。
(审核版)2017-2018学年高二语文上学期期末考试试题(含解析)(新人教版 第6套)

2017——2018学年度第一学期期末考试高二年级语文学科试卷2018年1月20日第Ⅰ卷阅读题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题中国民间剪纸艺术就是一种融物质文明和精神文明为一体,深深植根于民族土壤,广泛表现在民间信仰和生活习俗之中,鲜明地反映出我国民间广大民众最基本的心理特征和审美情趣、价值观念的民俗文化之一。
因此,它是我国传统文化不可忽视的一部分。
民间剪纸是劳动人民为满足精神生活的需要而创造,并在他们自己当中应用和流传的一种艺术样式。
从艺术的角度看民间剪纸艺术是属于精神文化的范畴,它是劳动人民集体创造出来,反映了我们民族的集体表象的一种文化模式。
民间剪纸的作者们在创造时,从来没有任何政治功利,但有生活方面的功利意识潜入在其中。
他们在创造时,往往让人(包括创造者自己)从中感受到一种审美情趣。
这是由于它们适合于人的审美经验的审美心理而形成的美感。
所以,自中国民间产生剪纸以来,人们一直将其作为一种象征性装饰物,尽管历代在造型样式和利用形式上不断发生更新和变化,可民间大众所赋予它的造型思维方式和特定的深层寓意内涵,却一直不变地流传至今。
因此,可以说民间剪纸是一种大众艺术。
从客观上说,中国民间剪纸是一种物承文化现象。
它不仅有它的造型形式的传承,而且还有着它自身深层独有的特定内涵。
从中国民间剪纸的纹饰寓意中,我们可以看到从中反映出来的中国民间图腾崇拜和宗教信仰的传承,以及当地民众的心理特征、生活追求和审美情趣。
它是我们探寻本民族的民族渊源和原始文化的活证。
例如“蛙”这一形象在民间剪纸中屡见不鲜,民间常将它视为一种威力的象征,看作是生活中最可靠的保护神,并将“蛙”这一自然中丑陋的动物形态,运用民间美术中的互渗造型手法,将其变为神圣、稚拙、亲切、动人、给人美感的剪纸花样,缝绣在孩童的枕头、围涎、肚兜、香包等衣物上,以希望孩子在“蛙”的保护下,茁壮成长,美满幸福。
需要指出的是,“蛙”这一图腾物产生以来,因为囿于民间文化而没有上升到中国的上层文化之中,所以也就得不到龙凤那样由皇权所推崇的中华文化象征的地位。
2017-2018学年高二上学期期末数学试卷(文科) word版含解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分.在所给的四个选项中,只有一项是符合题目要求的)1.cos600°=()A.B.﹣C.D.﹣【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.2.设集合A={x|x2﹣5x+6<0},B={x|2x﹣5>0},则A∩B=()A.B. C. D.【解答】解:由A中不等式变形得:(x﹣2)(x﹣3)<0,解得:2<x<3,即A=(2,3),由B中不等式解得:x>,即B=(,+∞),则A∩B=(,3),故选:C.3.复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2) C.(﹣2,﹣2) D.(﹣2,2)【解答】解:==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.4.已知数列,则a2016=()A.1 B.4 C.﹣4 D.5【解答】解:数列,∴a3=a2﹣a1=4,同理可得:a4=﹣1,a5=﹣5,a6=﹣4,a7=1,a8=5,…,21·世纪*教育网可得an+6=an.则a2016=a335×6+6=a6=﹣4.故选:C.5.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是()A.B.C.D.【解答】解:记“两段的长都不小于1.5m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1.5,所以事件A发生的概率P(A)=.6.已知==2,且它们的夹角为,则=()A. B. C.1 D.2【解答】解:根据条件:==12;∴.故选A.7.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3其中正确的命题是()A.①② B.②③ C.③④ D.②④【解答】解:①a>b⇒ac2>bc2在c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=﹣2,b=1时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确;故选:D8.如图所示的程序的输出结果为S=1320,则判断框中应填()A.i≥9 B.i≤9 C.i≤10 D.i≥10【解答】解:首先给循环变量i和累积变量S赋值12和1,判断12≥10,执行S=1×12=12,i=12﹣1=11;判断11≥10,执行S=12×11=132,i=11﹣1=10;判断10≥10,执行S=132×10=1320,i=10﹣1=9;判断9<10,输出S的值为1320.故判断框中应填i≥10.故选:D.9.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则A .f (4)<f (7)B .f (4)>f (7)C .f (5)>f (7)D .f (5)<f (7) 【解答】解:根据题意,y=f (x+6)为偶函数,则函数f (x )的图象关于x=6对称, f (4)=f (8),f (5)=f (7); 故C 、D 错误;又由函数在(6,+∞)上为增函数,则有f (8)>f (7); 又由f (4)=f (8), 故有f (4)>f (7); 故选:B .10.已知一个几何体的三视图如图所示,则该几何体的体积是( )A .B .C .D .【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥, 其底面面积S=2×2=4,高h=×2=,故体积V==,故选:C .11.气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃):21教育名师原创作品甲地:五个数据的中位数是24,众数为22; 乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10. 则肯定进入夏季的地区有( ) A .0个 B .1个 C .2个 D .3个【解答】解:气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”, 由此得到:甲地肯定进入夏季,∵五个数据的中位数是24,众数为22,∴22℃至少出现两次,若有一天低于22℃,中位数就不是24℃,故甲地进入夏季; 乙地不一定进处夏季,如13,23,27,28,29,故乙地不一定进入夏季; 丙地不一定进入夏季,10×5﹣(30﹣24)2≥(24﹣x )2, ∴(24﹣x )2≤14,x=21时,成立,故丙地不一定进入夏季. 故选:B .12.已知圆O 的半径为2,PA 、PB 为圆O 的两条切线,A 、B 为切点(A 与B 不重合),则的最小值为( )2·1·c ·n ·j ·yA .﹣12+4B .﹣16+4C .﹣12+8D .﹣16+8【解答】解:设PA 与PO 的夹角为α,则|PA|=|PB|=,y=•=||||cos2α=•cos2α=•cos2α=4记cos2α=μ.则y=4=4[(﹣μ﹣2)+]=﹣12+4(1﹣μ)+≥﹣12+8.当且仅当μ=1﹣时,y 取得最小值:8.即•的最小值为8﹣12.故选:C .二.填空题:本大题共4小题,每小题5分.13.若函数f (x )=x2﹣|x+a|为偶函数,则实数a= 0 . 【解答】解:∵f (x )为偶函数 ∴f (﹣x )=f (x )恒成立 即x2﹣|x+a|=x2﹣|x ﹣a|恒成立 即|x+a|=|x ﹣a|恒成立 所以a=0故答案为:0.14.某程序框图如图所示,则该程序运行后输出的k 的值是 5 .【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43 b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.15.若平面向量,满足||≤1,||≤1,且以向量,为邻边的平行四边形的面积为,则与的夹角θ的取值范围是.【解答】解:∵以向量,为邻边的平行四边形的面积为,∴.∵平面向量,满足||≤1,||≤1,∴,∵θ∈(0,π),∴.∴与的夹角θ的取值范围是.故答案为:.16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【解答】解:由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:三、解答题17.在△ABC中,内角A,B,C所对边长分别为a,b,c,,∠BA C=θ,a=4.(1)求bc的最大值;(2)求函数的值域.【解答】解:(1)∵=bc•cosθ=8,由余弦定理可得16=b2+c2﹣2bc•cosθ=b2+c2﹣16,∴b2+c2=32,又b2+c2≥2bc,∴bc≤16,即bc的最大值为16,当且仅当b=c=4,θ=时取得最大值;(2)结合(1)得,=bc≤16,∴cosθ≥,又0<θ<π,∴0<θ≤,∴=2sin(2θ+)﹣1∵0<θ≤,∴<2θ+≤,∴sin(2θ+)≤1,当2θ+=,即θ=时,f(θ)min=2×,当2θ+=,即θ=时,f (θ)max=2×1﹣1=1,∴函数f (θ)的值域为[0,1]18.已知函数的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1). (1)求函数f (x )的最小正周期;(2)若存在,使f (x0)=0,求λ的取值范围.【解答】(本题满分为12分)解:(1)=sin2ωx ﹣cos2ωx ﹣λ=2sin (2ωx ﹣)﹣λ,∵函数f (x )的图象关于直线x=π对称,∴解得:2ωx ﹣=kπ+,可得:ω=+(k ∈Z ),∵ω∈(,1).可得k=1时,ω=,∴函数f (x )的最小正周期T==…6分(2)令f (x0)=0,则λ=2sin (﹣),由0≤x0≤,可得:﹣≤﹣≤,则﹣≤sin (﹣)≤1,根据题意,方程λ=2sin (﹣)在[0,]内有解,∴λ的取值范围为:[﹣1,2]…12分19.向量与的夹角为θ,||=2,||=1,=t,=(1﹣t ),||在t0时取得最小值,当0<t0<时,夹角θ的取值范围是 .【解答】解:由题意可得=2×1×co sθ=2cosθ,=﹣=(1﹣t )﹣t,∴||2==(1﹣t )2+t2﹣2t (1﹣t )=(1﹣t )2+4t2﹣4t (1﹣t )cosθ =(5+4cosθ)t2+(﹣2﹣4cosθ)t+1由二次函数知当上式取最小值时,t0=,由题意可得0<<,解得﹣<cosθ<0,∴<θ<故答案为:20.在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,PD ⊥DC ,底面ABCD 是梯形,AB ∥DC ,AB=AD=PD=1,CD= (1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,=λ,试确定 λ的值使得二面角Q ﹣BD ﹣P 为60°.【解答】(1)证明:∵AD ⊥平面PDC ,PD ⊂平面PCD ,DC ⊂平面PDC ,图1所示.∴AD ⊥PD ,AD ⊥DC ,在梯形ABCD 中,过点作B 作BH ⊥CD 于H , 在△BCH 中,BH=CH=1,∴∠BCH=45°, 又在△DAB 中,AD=AB=1,∴∠ADB=45°, ∴∠BDC=45°,∴∠DBC=90°,∴BC ⊥BD . ∵PD ⊥AD ,PD ⊥DC ,AD ∩DC=D . AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD ⊥BC ,∵BD ∩PD=D ,BD ⊂平面PBD ,PD ⊂平面PBD . ∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)解:过点Q 作QM ∥BC 交PB 于点M ,过点M 作MN ⊥BD 于点N ,连QN . 由(1)可知BC ⊥平面PDB ,∴QM ⊥平面PDB ,∴QM ⊥BD , ∵QM ∩MN=M ,∴BD ⊥平面MNQ ,∴BD ⊥QN ,图2所示. ∴∠QNM 是二面角Q ﹣BD ﹣P 的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.21.已知椭圆C:+=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.21教育网(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.22.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4(舍去),∴m﹣n>3;(3)解法一、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.。
2017-2018学年高二上学期期末试卷语文试题 Word版含答案(17)

高二语文上学期期末质量检测试题语文试题考试时间:150 分钟试卷分数:150 分,一、现代文阅读(9 分,每小题3 分)阅读下面的文字,完成1-3如果承认唐诗是中国诗的高峰,就不能不进而承认盛唐诗乃是这座高峰的顶点。
从玄宗即位到代宗登基,这半个世纪通常称为盛唐。
但在公元755年安史乱前和乱后,诗坛的面貌是并不一样的。
在这次战乱以前,诗人们在其创作中都发散着强烈的浪漫气息。
或者表现为希企隐逸,爱好自然,诗中的代表人物形象是隐士;或者表现为追求功名,向往边塞,诗中的代表人物形象是侠少。
这,实质上也就反映了他们由于生活道路的千差万别而形成的得意与失意、出世与入世两种互相矛盾的思想情感。
不同的生活道路与不同的生活态度,使他们或者成为高蹈的退守者,或者成为热情的进取者,或者因时变化,两者兼之。
前人所谓“盛唐气象”,在很大的程度上,指的就是这种富于浪漫气息的精神面貌。
孟浩然、王维、常建、储光羲等的许多作品,都极为成功地描绘了幽静的景色,借以反映其宁谧的心境。
这种诗使人脱离现实斗争,但对于热衷奔竞、趋炎附势者流,也具有清凉剂的作用,而其所提供的自然美的享受则是不可替代的。
这些人是以写田园山水诗得名的陶渊明、谢灵运、谢朓的后继者,气象的浑穆或有不及,而措语的精深华妙则有过之。
其后的韦应物、柳宗元在这方面是他们的追随者。
但王维却在描摹自然、歌颂隐逸之外,还曾将其诗笔扩展到更广阔的生活领域。
在另外许多同样成功的篇章中,他反映了当时人们的进取精神和悲壮情怀。
王维在高蹈者孟浩然等和进取者高适、岑参、李颀、王昌龄等之间,恰好是一座桥梁。
所以有些评论家就一方面将其与孟浩然相提并论,合称王孟;而另一方面,又将其与高适等相提并论,合称王、李、高、岑。
当然,这种提法也包含有对诗歌样式的考虑在内。
王维是兼有五七言古今体之长的,而王孟并提,偏指五律;王、李、高、岑并提,则偏指七古。
集中反映了盛唐时代积极进取精神的,是出自王、李、高、岑等人之手的边塞诗。
2017-2018学年高二语文上学期期末考试试题

2017——2018学年度第一学期期末考试高二语文试题满分150分,考试时间120分钟注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上。
2.考生作答时,请将答案涂写在答题纸上,在本试卷上答题无效.按照题号在各题的答题区域内作答,答题区域错误或超出答题区域书写的答案无效。
3.答案使用0.5毫米的黑色中性(签字)笔书写,字体工整、笔迹清楚.4.保持答题纸纸面清洁、不破损、不折叠.考试结束后,将本试卷自行保存,答题纸交回。
一、现代文阅读(26分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题.有人说到“经”,便有意无意地把它等同于“经典”,而提起“中国经典",就转换成“儒家经典”,这种观念有些偏狭。
中国经典绝不是儒家一家经典可以独占的,也应包括其他经典,就像中国传统是“复数的”传统一样.首先,中国经典应当包括佛教经典,也应当包括道教经典。
要知道,“三教合一”实在是东方的中国与西方的欧洲在文化领域中最不同的地方之一,也是古代中国政治世界的一大特色。
即使是古代中国的皇帝,不仅知道“王霸道杂之”,也知道要“儒家治世,佛教治心,道教治身”,绝不只用一种武器。
因此,回顾中国文化传统时,仅仅关注儒家的思想和经典,恐怕是过于狭窄了。
即便是儒家,也包含了相当复杂的内容,有偏重“道德自觉”的孟子和偏重“礼法治世”的荀子,有重视宇宙天地秩序的早期儒家和重视心性理气的新儒家。
应当说,在古代中国,关注政治秩序和社会伦理的儒家,关注超越世界和精神救赎的佛教,关注生命永恒和幸福健康的道教,分别承担着传统中国的不同责任,共同构成中国复数的文化。
其次,中国经典不必限于圣贤、宗教和学派的思想著作,它是否可以包括得更广泛些?比如历史著作《史记》《资治通鉴》,比如文字学著作《说文解字》,甚至唐诗、宋词、元曲里面的那些名著佳篇.经典并非天然就是经典,它们都经历了从普通著述变成神圣经典的过程,这在学术史上叫“经典化”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明市第二十四中学2017~2018学年上学期期末考
文科数学试卷
考试时间120分钟,试卷满分150分
命题人:云付泽审题人:
注意事项:
1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)
M N?}?3n?Z?1?n2?{m?Z?3?m?}N?M{ (,1,.设集合则)
0,1}{-1,1,2}{-1,0{0,{0,1},1,2}.A.C.B.D 2.试从四个图中点在散点图上的分布状态,直观上初步判断两个量之间有线性相关关系的是
( )
23)
(+1≤0”的否定是.命题“对任意的x∈R,x -x32332 1≤0,x+-x B.存在xxA.不
存在∈R,x∈-xR+1≤0;
23321>0 x,x+-D.存在x∈C.对任意的x∈R,xR-x +1>0;
??cos2sin??2?tan)
,则的值是4.已知(??cossin2?3443??
D.A..B. C 4433?)2x?y?sin(x2?siny)
为了得到函数的图像的图像,可以将函数(5. 6??个单位长度A.向右平移B.向右平移个单位长度36??向右平移个单位长度D.C.向左平移个单位长度
1212y?x??x?2y?2yx、z?x?3y的最小值(满足约束条件:,则6.设变量)
??x??2??8?64??2..C.D B A .
7.下表是某工厂1~4月份用电量(单位:万度)的一组数据:
页6 共页1 第
4 月份x 1 2 3
2.5
4.5 34 y
用电量间有较好的线性相关关系,其线性回归方程由散点图可知,用电量y与月份
x???yx?a??0.7?a) ,则(
5.15 . D B.5.25 C.5.2 A.10.5
aa?aa}a??{8?a) ,则中,8.已知等差数列的值是( 开始81n4348321624 D C..B.A.i=0
S=,i) 9.根据下列程序框图,可知输出的结果为(
8A.
9B.i=i+1 10C.
11 D.S=S+2是??][?,b,则使得函数随机取两个数分别记为10.在区间aS<=1023?
222???)?xb?2axf(x)
有零点的概率为否????11B..A48i
输出??3?11? D..C 42结束
22yx1??,|=2|PF为其上一点,且|PF|>0,b>0)的两个焦点为F、F,11.双曲线若P(a2121
22ba)
则双曲线离心率的取值范围为( ∞)[3,+D.C.(3,+∞) A.(1,3] B.(1,3) ?)xf(x)?xf?()x?f(y ba?) 满足12.若函数,则在R上恒成立,且(
)(ab)?bfaf()(b)?bfaf(a B.. A
)a?bf(af(baf(a)?bf()b).. C D
第Ⅱ卷(非选择题)分)5分,共20二、填空题(本题共四小题,每题
?c?0?2b?ca//b3a.13),mb?a?(1(2,?2),、,,若则. 已知平面向量且
.
k=与二进制数11110相等,则k14.若进制数132(2)k()
23?.15y x)(01,x,-1)B(,y)C3A(的最小值、三点共线,且已知、、均为正数,则yx.
是
.某几何体的三视图如图,该几何体的顶点都16. 的球面上,球O的表面积是O
在球
页6 共页2 第
,解答题应写出文字说明、证明过程或演算步骤)三、解答题(共70分12分)17.(本题满分ca b?ABCCBA且、,的彼岸在分角中,别、为、、、所对
Bsin?a)??sinA)(b(c?a)(sinC.C ) 求角的大小;(Ⅰ4c?3?sinA?ABC的面积(Ⅱ) 若., 求, 5
18. (本题满分12分)
某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组分频频
0.050[160,165
0.350 ①[165,170) 2组第②30[170,175) 组第30.200 [175,180)组20第40.100 [180,185] 10 5组第1.00
100 合计
(Ⅰ) 请先求出频率分布表中①,②位置相应的数据,再完成下列频率分布直方图;
(Ⅱ) 为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ) 在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受考官A的面试,求:第4组至少有一名学生被考官A面试的概率.
页6 共页3 第
分)19. (本题满分12ABC?ABC的中BC4,点D是=AC=2如图,在直三棱柱,AA=AB中,AB⊥AC,1111 A点.1ADC C;(Ⅰ) 求证:AB∥平面B1111BBCCADC;⊥平面(Ⅱ) 求证:平面111ADC与距离.C到平面) (Ⅲ求点1
A
D
C
B
12分)20. (本题满分22yx310)b???1(a?C:?e)1,P(.
的离心率,且椭圆过点设椭圆222ba2C(Ⅰ)求椭圆的方程;COO BA到直线分别交于(Ⅱ)过原点两点,证明点作两条互相垂直的射线,与椭圆、AB. 的距离为定值
分)21. (本题满分12x)?xlnf(x.
已知函数
)f(x (Ⅰ) 求函数的单调区间和最小值;)???x)?ax1,1x?[f(. (Ⅱ)若对于任意,求实数的取值范围都有a
:坐标系与参数方程本题满分22. (10分)选修4-4?1??),P(1xxOy Ol为极点,过,倾斜角在平面直角坐标系中,已知直线,在以原点323??C.
的极坐标方程为轴的正半轴的极坐标系中,曲线2?sin1?2Cl的参数方程,并把曲线(Ⅰ)写
出直线的极坐标方程化为直角坐标方程;PBPA?Cl,B两点,求A(Ⅱ)设直线与曲线相交于
页6 共页4 第
参考答案
页6 共页5 第
页6 共页6 第。