高中数学 第2章 数列 第17课时 等差等比数列复习一教学案苏教版5 精
高中数学 第2章 数列 第17课时 等差等比数列复习(一)

等差数列、等比数列-----复习(一)一、基础知识性质:1.已知,,,m n p q N *∈,且m n p q +=+,①若{}n a 是等差数列,则m n p q a a a a +=+;②若{}n a 是等比数列,则m n p q a a a a ⋅=⋅. 2.设n S 是等差(比)数列的前n 项和,则()2321,,,,m m m m m pm p m S S S S S S S ----L()1,3,,m p m p N *>≥∈仍成等差(比)数列.**方法提炼**1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.如等差数列{}n a 的通项n a kn b =+,等比数列{}n a 的通项是nn a k q =⋅等.2.等差(比)数列中,1,,(),,n n a n d q a S “知三求二”,体现了方程(组)的思想、整体思想.等差(比)数列的性质能够起到简化运算的作用.3.求等比数列的前n 项和n S 时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 二、基础训练1.已知等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 。
2.设n s 为等比数列{}n a 的前n 项和,已知3432,s a =-2332s a =-,则公比q = 。
3.设S n 为等差数列{a n }的前n 项和,若24,363==S S ,则3a = .4.在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是 .5.设等差数列{}n a 的前n 项和为n S 。
若111a =-,466a a +=-,则当n S 取最小值时,n= 。
6.已知等比数列}{n a 的前n 项和为n S ,若5331164S a ==,,则5432111111a a a a a ++++= .三、典例欣赏:例1. (1)}{n a 是等比数列,21551-=-a a ,54-=s ,求4a (2)在等差数列}{n a 中,105,4,a d ==-则______n S =; (3)在等差数列}{n a 中,41,2,440,n n a d S ===则1______a =; (4)}{n a 是等比数列,,661=+n a a ,126,12812==•-n n s a a 求n 和公比q.例2.已知正数组成的两个数列}{},{n n b a ,若1,+n n a a 是关于x 的方程02122=+-+n n n n b b a x b x 的两根 (1)求证:}{n b 为等差数列;(2)已知,6,221==a a 分别求数列}{},{n n b a 的通项公式; (3)求数n nns n b 项和的前}2{。
高中数学《数列复习课》公开课优秀教学设计整理

)
一般特殊
一般特殊
《数列》复习课的点评
在高三的数学复习课上最容易出现的就是“油水分离”式的复习模式,即先对知识点进行梳理,再进行相应的题目训练。
至于这种模式下知识梳理的效果以及相应题目训练是否直指学生学习的困惑或难点,不易得知。
王老师这节复习课的亮点可以用三个字来概括,即“新,准,实”。
一、新
“新”在形式上。
基于教师对学生认知的了解,明确了高三的复习课必须规避“油水分离”式的复习模式,针对怎样才能做到有针对性的复习,王玲老师的这节课给了我们很好的启发。
为了了解学生的情况,王玲老师在本单元复习之前做了章前测,在复习完等差数列后又做了相关的学生调查问卷。
这种新的教学形式正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师正是据此确定了本节课的定位并设计了课堂上相关的学生活动。
二、准
“准”在定位上。
正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点的聚焦,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师据此确定了本节课的定位并制定了相关的教学目标和重、难点。
使本节课有了很强的指向性。
三、实
“实”在效果上。
王老师这节课真正做到了把课堂还给学生,在学生的自主评价和相互评价中,对知识建构和多角度解读条件的必要性有了感性认识,并且可以比较灵活地应用。
高中数学 第二章 数列 2.3 等比数列教案 苏教版必修5-苏教版高二必修5数学教案

等比数列教学过程一、复习回顾师:前面我们已经学习了有关等差数列的有关知识,请一位同学来回答一下等差数列的定义的文字语言是什么?生:如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列。
师:等差数列的定义的数学表达式是什么?生:*+∈=-N n d d a n )(a 1n 为常数师:等差数列的通项公式是什么?生:d n a )1(a 1n -+=二、新知探究(一)等比数列的定义师:学完等差数列后,有学生问我:“老师,既然研究了差,我们是不是还要研究等和数列,等积数列,等商数列呢?我充满了好奇!”请问如果一个数列,从第二项起,每一项与它的前一项所得的“和”都等于同一个常数,请同学们举例子。
生:生:师:如果一个数列,从第二项起,每一项与它的前一项所得的“积”都等于同一个常数,请同学们举例子。
生:生:师:如果一个数列,从第二项起,每一项与它的前一项所得的“比”都等于同一个常数,请同学们举例子。
生:生:“等和数列”,“等积数列”,“等比数列”三者中,哪种更具有研究价值呢?生:生:我们的生活中“等比数列”的例子很多,如商品打折,银行存款等。
师:探究,类比等差数列定义同桌之间互相讨论,总结等比数列定义的文字语言。
生:师:定义中你觉得关键的字眼有哪些?生:生:师:你会用数学表达式来表示等比数列定义吗?生:生:例1:观察以下几个数列,回答下面问题:1, 1, 1, 1, 1;0, 1, 2, 4, 8;1, 2, 0, 4, 8;1, 2, 4, 8,0;-3,-9,-27,-81,-243;-1,1/2,1/4,1/8.师:①有哪几个是等比数列?若是,公比等于多少?生:师:②公比q能等于零吗?首项能为零吗?等比数列中会有某一项等于0吗?生:师:③存在公比q=1的等比数列吗?存在公比q=-1的等比数列吗?生:师:④从第三项起,每一项与它的前一项之比是同一个常数,这个数列是否是等比数列?生:师:⑤既是等差数列又是等比数列的数列存在吗?如果存在,请举例!例2:求出下列等比数列中的未知项(1)2,a ,8(2)-4,b ,c ,8(二)等比中项师:由例2中的(1),类比等差中项的概念,你能给出等比中项的概念吗? 生:师:2,-6之间是否存在等比中项?生:师:1和4的等比中项是什么?生:师:若ab G =2,则G 是否一定是a 和b 的等比中项吗?生:师:如果把例2中的(2),变为 -4,a,b ,c ,d,e,f,8呢?(三)等比数列的通项公式:这两个等比数列的通项公式。
高中数学 第二第15、16课时《数列复习课时》(2课时)教案(学生版) 苏教版必修5

第15、16课时数列复习课(2课时)【学习导航】 知识网络 【自学评价】(一)数列的概念数列的定义(一般定义,数列与函数)、数列的表示法。
数列的通项公式。
求数列通项公式的一个重要方法:对于任一数列}{n a ,其通项n a 和它的前n 项和n s 之间的关系是 (二)等差数列和等比数列的概念、有关公式和性质 1.等差数列(1)定义 (2)通项公式n a =1a +( )d=k a +( )d=dn +1a -d(3)求和公式(4)中项公式A=2ba + 推广:2n a =(5)性质①若m+n=p+q 则②若}{n k 成A.P (其中N k n ∈)则}{nk a 也为A.P 。
③n n n n n s s s s s 232,,-- 成 数列。
④1________()1n a a d m n n -==≠- 2.等比数列 (1)定义(2)通项公式 (3)求和公式(4)中项公式ab G =2。
(5)①若②若{N k n ∈③n n s s 2,④1q n -3. (1)(2)(3) 4. (1)当(2)当时,1. 2. :适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
3. :适用于学习札记{}n n b a 其中{}n a 是等差数列,{}n b 是各项不为0的等比数列。
4.倒序相加法: 类似于等差数列前n 项和公式的推导方法。
5.常用结论1) 1+2+3+...+n = _________ 2)1+3+5+...+(2n-1) =3)_________n +++=33312 4) ___________n ++++=2222123 5) __________()n n =+116) (______)()p q pq q p=<-11【精典范例】一 函数方程思想在研究数列问题中的运用 【例1】(1)首项为正数的等差数列{a n },其中S 3=S 11,问此数列前几项和最大? (2)等差数列{a n }中,S 10=100,S 20=300,求 S 30。
高中数学 第二章数列 数列复习1导学案 苏教版必修5

必修5 数列复习小结第1课时第 19 课时一、学习目标(1)进一步熟练掌握等差等比数列的通项公式和前n项和公式;(2)提高分析、解决问题能力.二、知识点总结(一)数列的概念1.数列的概念与简单表示法(1)从定义角度看:(2)从函数角度看:数列可以看成以正整数集N*它的有限子集为定义域的函数a n=f(n)当自变量从小到大依次取值时所对应的一列函数值.2.数列的表示(1)列表法;(2)图象法:注意图象是,而不是_______;(3)通项公式:(4)递推公式:如果已知数列{a n}的第一项(或前几项)及相邻两项(或几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.3.数列的分类1)按数列项数的多少可以分为和。
2)按数列中相邻两项的大小可分为、、和 .4.数列的通项a n与前n项和S n之间的关系对任一数列有a n=(二)等差数列1.等差数列的定义:若数列{a n}为等差数列,则有a n-a n-1=(其中n≥2,n∈N*).2.等差中项:3.等差数列的通项公式:a n=,其中a1为首项,d为公差.当d>0时,数列{a n}为数列;当d<0时,数列{a n}为数列;当d=0时,数列{a n}为列.4.等差数列的前n项和公式:_____________________________; _____________________________5.等差数列的性质:(1)等差数列{a n }中,a n -a m = d ;(2)等差数列{a n }中,若m+n=p+q (其中m,n,p,q ∈N *),则 ;若m+n=2p ,则a m +a n = p ,也称a p 为a m ,a n 的 .(3)等差数列中依次k 项和成等差数列,即___________________________________成等差数列,其公差为 。
6.已知三个数成等差数列,可设这三个数为___________________ 若四个数成等差数列,可设为_____________________________. 7.等差数列的判定方法:1)定义法: ⇔{}n a 是等差数列。
高中数学等比数列教案2 苏教版必修5.doc

第8课时:§2.3 等比数列(2)【三维目标】:一、知识与技能1.进一步熟练掌握等比数列的定义及通项公式;2.深刻理解等比中项概念,掌握等比数列的性质;3.提高学生的数学素质,增强学生的应用意识.二、过程与方法通过自主探究、合作交流获得对等比数列的性质的认识。
三、情感、态度与价值观充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
【教学重点与难点】:重点:等比中项的理解与应用难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题【学法与教学用具】:1.学法:2.教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母g表示((?工0),即:d=q(gzO)a…-i2.等比数列的通项公式:a n = , a n = a m -q n~m{a m - 0)3.[a n]成等比数列o 也 =g ( " w N+, gHO)“ a…工0”是数列[a n]成等比数列的必要非充分条件a”4.既是等差又是等比数列的数列:非零常数列.二、研探新知1.等比中项:如果在&与方中间插入一个数使a,G,b成等比数列,那么称这个数0为$与方的等比中项.即Q 土y[ab (②方同号)推导:若在仪与方中间插入一个数使a,G,b成等比数列,则—=^>G2= ab^> G = ±y/~ab / a G反之,若G? =ab,则9 = 2,即aGb成等比数列/. a,G,b成等比数列o G? =ab〈ab壬0)a G探究:已知数列{a”}是等比数列,(1) af = a3a7是否成立?af = 成立吗?为什么?(2) a; = a”-%](“〉1)是否成立?你据此能得到什么结论?a: = a n_k a n+k(n >k>0)是否成立?你又能得到什么结论?结论:若{a”}为等比数列,m + n = p + q (m,n,q,p & NJ ,贝0 a m - a n =a p-a q.由等比数列通项公式得:a m =a l q m^ a n = a x q n^ , a p=a x q p~x ,a^= a x-q q {, 故a,” • a n = Q冷2 且勺.仙=a^q p+q 2, ': m + n = p + q, :. a m• a” =a p-a q.2.等比数列的性质:(1)与首末两项等距离的两项积等于首末两项的积。
高中数学 第2章数列教案 苏教版必修5

本章复习与小结(1)【三维目标】:1.系统掌握数列的有关概念和公式。
2.了解数列的通项公式n a 与前n 项和公式n S 的关系。
3.能通过前n 项和公式n S 求出数列的通项公式n a 。
【授课类型】:复习课【课时安排】:1课时【教学思路】:一、本章知识结构二、知识纲要(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.(5)等差、等比数列的前n 项和公式及其推导方法.三、方法总结1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.四、知识内容:1.数列数列的通项公式:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn 数列的前n 项和:n n a a a a S ++++= 321 2.等差数列等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
等差数列的判定方法:(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
(2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
等差数列的通项公式:如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。
说明:该公式整理后是关于n 的一次函数。
高中数学 第2章 数列 2.3 等差数列与等比数列的综合应用学案苏教

高中数学第2章数列 2.3 等差数列与等比数列的综合应用学案苏教高中数学第2章数列2.3等差数列与等比数列的综合应用学案苏教算术序列和算术序列的综合应用学习目标:1、进一步熟练掌握等差、等比数列的通项公式和前n项和公式;(2)提高分析、解决问题能力.学习重点:使用相关公式;学习困难:序列I的综合应用研究:●完成下列填空,并写出所用等差数列与等比数列知识(表格)及方法。
1.知道吗?一(an?0)是一个等比序列,那么序列?洛根?是一个数字序列(填入相等的差或相等的比率),如果是log2a5?log2a2?6.那么?一共同的比例是;2.知道吗?1、a1、a2、,?4成等差序列,?1、b1、b2、b3、,?4变成相等的比例序列,然后是3。
如果公差不为零,那么等差序列是什么?一A2、A3和A6的比例顺序相等,然后是其公共比率Q,a1?a3?a5?;a2?a4?a6a2?A1的值为;B224。
2A3在序列{an}中,公差不为零?a7?2a11?0,序列{BN}是等比序列,并且b7?a7,则b6b8=;5.Sn是等比序列吗?一如果S1、2s2和3s3形成一个等差序列,那么?一共同的比率是_;;如果S1、S2和S3形成一个等差序列,那么?一共同的比率是u;6、若数列{an}是等差数列,首项a1?0,a2021?a2021?0,a2021.a2021?0,,则使前n项和sn取最大值时的最大自然数n是;使得sn?0成立的最大自然数n是;定义求和公式、算术序列和算术序列中的一般项公式和项公式的重要属性探究案询问二:●已知数列{an}为等差数列,公差d≠0,{an}的部分项组成下列数列:ak1,ak2,…,akn,恰为等比数列,其中k1=1,k2=5,k3=17,求kn探索三:●将n个数排成n行n列的一个数阵:二a11a12a13a21a22a23a31a32a33a1na2na3nAn1an2an3ann知道a11=2,A13=A61+1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列、等比数列-----复习(一)
一、基础知识
性质:1.已知,,,m n p q N *∈,且m n p q +=+,
①若{}n a 是等差数列,则m n p q a a a a +=+;②若{}n a 是等比数列,则m n p q a a a a ⋅=⋅. 2.设n S 是等差(比)数列的前n 项和,则()2321,,,
,m m m m m pm p m S S S S S S S ----
()1,3,,m p m p N *
>≥∈仍成等差(比)数列.
**方法提炼**
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.如等差数列{}n a 的通项n a kn b =+,等比数列{}n a 的通项是n n a k q =⋅等. 2.等差(比)数列中,1,,(),,n n a n d q a S “知三求二”,体现了方程(组)的思想、整体思想.等差(比)数列的性质能够起到简化运算的作用.
3.求等比数列的前n 项和n S 时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 二、基础训练
1.已知等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 。
2.设n s 为等比数列{}n a 的前n 项和,已知3432,s a =-2332s a =-,则公比q = 。
3.设S n 为等差数列{a n }的前n 项和,若24,363==S S ,则3a = .
4.在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是 .
5.设等差数列{}n a 的前n 项和为n S 。
若111a =-,466a a +=-,则当n S 取最小值时,n= 。
6.已知等比数列}{n a 的前n 项和为n S ,若5331164S a ==,,则5
432111111a a a a a +
+++= .
三、典例欣赏:
例1. (1)}{n a 是等比数列,2
15
51-
=-a a ,54-=s ,求4a (2)在等差数列}{n a 中,105,4,a d ==-则______n S =; (3)在等差数列}{n a 中,41,2,440,n n a d S ===则1______a =; (4)}{n a 是等比数列,,661=+n a a ,126,12812==∙-n n s a a 求n 和公比q.
例2.已知正数组成的两个数列}{},{n n b a ,若1,+n n a a 是关于x 的方程
0212
2=+-+n n n n b b a x b x 的两根 (1)求证:}{n b 为等差数列;
(2)已知,6,221==a a 分别求数列}{},{n n b a 的通项公式; (3)求数n n
n
s n b 项和的前}2{。
例3.已知数列{}n a 的首项12a =,且对任意n N *
∈,都有1n n a ba c +=+,其中,b c 是常数。
(1)若数列{}n a 是等差数列,且2c =,求数列{}n a 的通项公式;
(2)若数列{}n a 是等比数列,且||1b <,当从数列{}n a 中任意取出相邻的三项,按某种顺序排列成等差数列,求使数列{}n a 的前n 项和341
256
n S <成立的n 的取值集合。
四:课后练习:
1.在等比数列{ n a }中,若公比q=4,且前3项之和等于21,则通项公式n a = 。
2.已知{}n a 为等比数列,S n 是它的前n 项和。
若2312a a a ⋅=, 且4a 与27a 的等差中项为5
4
,则5S = 。
3.设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S = 。
4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 。
5.在等差数列{}n a 中,若24681080a a a a a ++++=,则7812
a a -的值为____ ___.
6.等差数列{}n a 的前n 项和为n S ,已知0211=-++-m m m a a a ,3812=-m S ,则=m .
7.设
{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n
n b
a n =+=若数列{}n
b 有连续四
项在集合{}53,23,19,37,82--中,则6q
= 8.已知{n a }是公差不为
0的等差数列,{n b }
是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β ,使得n a =log n b αβ+对每一个正整数n 都成立,则β
α= .
9.在等比数列{}n a 中,)(0*N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a 。
又3a 与5a 的等比中项为2.(1)求数列{}n a 的通项公式;(2)设n a
n b 2log =,数列{}n b 的前n 项和为n S ,当n
S S S S n ++++ 3213
21最大时,求n 的值。
10.在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (1)设1n n n b a a +=-(*
n N ∈),证明{}n b 是等比数列;(2)求数列{}n a 的通项公式; (3)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*
n N ∈,n a 是3n a +与6n a +的等差中项.
11.设无穷等差数列{}n a 的前n 项和为n S . (1)若首项13
2
a =
,公差1d =,求满足22()k k S S =的正整数k ;
(2)求所有的无穷等差数列{}n a ,使得对于一切正整数k 都有2
2()k k
S S =成立.
12.设数列
{}{}
n n b a ,满足3,4,6332211======b a b a b a ,且数列
{}()++∈-N n a a n n 1是等差数列,数列{}()+∈-N n b n 2是等比数列。
(I )求数列{}n a 和{}n b 的通项公式;
(II )是否存在*N k ∈,使⎪⎭
⎫ ⎝⎛
∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由。