桥梁双柱式桥墩下部结构设计

合集下载

桥梁下部结构尺寸表

桥梁下部结构尺寸表

75
2*100
50
说明:侧墙尾端只设一阶襟边。
柱径 110 110 120 140 150
桩径 120 150 150 150
桩台襟边 50 50 50 50 50 50
台身背坡 3:1 3:1 3:1
桩径 120 120 130 150 160
柱系梁
桩系梁 80x100 80x100 100x120 120x140 120x140
3 20米小箱梁 桥墩
140
70
160
25(45)/COSa
60
1070/COSa 110/COSa 670/COSa
4 25米小箱梁 桥墩
140
70
170
25(42.1)/COSa
60
1070/COSa 100/COSa 670/COSa
5 30米小箱梁 桥墩
150
80
180
30(45)/COSa
备注
墩高大于5米设桩 顶系梁;墩高大于15 米设柱间系梁。
耳墙底宽 20 20 20 20
耳墙倒角 20 20 20 20
备注
搭板搁置 台阶式 台阶式 台阶式
备注
130
40
160
25(45)/COSa
60
1200/COSa 153
700/COSa
3 25米小箱梁 桥台
130
40
160
25(42.1)/COSa
60
1200/COSa 173
700/COSa
4 30米小箱梁 桥台
140
50
170
30(45)/COSa
60
1200/COSa 193
700/COSa

城市高架桥双柱花瓶墩设计计算案例

城市高架桥双柱花瓶墩设计计算案例

关键词:高架桥;双柱花瓶墩;设计计算1引言随着我国人民生活水平的提高以及城市的快速发展,城市道路交通量越来越大,某些大城市因为用地限制等诸多因素,原有道路拓宽改造困难,城市高架桥的出现,很好地解决了这一问题,既节约了用地空间,又很好地解决了交通拥堵等问题,且城市高架相较于隧道等地下结构,既可以大大节省工程造价,又能缩短建设周期。

随着城市高架桥梁建设的日趋成熟,其上下部结构形式在满足受力要求的基础上,还要兼顾景观效果,故花瓶墩在城市高架桥中的应用越来越多。

对于城市高架中的整体式主线桥,双柱花瓶墩在墩顶向两侧弧形扩头,一方面加大了支座间距,受力合理;另一方面占用地面空间少,空间利用率高。

2花瓶墩受力特点桥墩主要承受上部结构传递下来的荷载,主要包括上部结构恒载、汽车活载、风荷载和温度荷载等,对于连续梁结构,还包含支座不均匀沉降荷载等。

花瓶墩墩柱主要承受通过支座传递下来的竖向力,花瓶墩由于在墩顶向两侧弧形扩头,所以竖向力往往不在墩柱形心,因此在竖向力作用下,墩柱会产生弯矩,且在横桥向风荷载、离心力,顺桥向制动力、摩阻力等水平力的作用下,墩柱在顺桥向及横桥向均产生弯矩,故墩柱可按照双向偏心受压构件进行验算。

对于有系梁的双柱式花瓶墩,因系梁主要承受轴向拉力和弯矩,故系梁可按照拉弯构件进行验算。

3案例分析3.1工程概况本文依托项目为合肥市包公大道工程,西起二十埠河,东至龙兴大道,全长约15.5km,规划为城市快速路。

桥梁工程包括11.7km主线高架及三座互通立交。

本文选取标准跨径3m×30m预应力混凝土连续梁桥下部结构中墩作为研究对象。

3.2下部结构桥墩设计方案3.2.1墩柱形式方案比选根据上部结构的受力、外形特点并兼顾景观效果,高架桥下部结构一般采用柱式、板式、T型、Y型等样式的桥墩。

包公大道主线高架采用整体式断面,横向双向六车道,高架横断面全宽25m,根据主梁横断面尺寸,主线跨线桥标准桥墩必须采用双柱式,因此本项目桥墩设计主要针对不同墩柱形式展开,按照前述原则选择一个与上部结构和整体环境协调的桥墩形式。

简支T形梁下部结构设计(完整版)

简支T形梁下部结构设计(完整版)

桥梁毕业设计—简支T形梁下部结构设计辽宁工程技术大学交通土建专业毕业设计双柱式桥墩摘要本次设计的课题是南水北调大桥下部结构,本设计选择部分预应力混凝土简支梁桥为方案进行下部结构设计。

在设计中,首先根据地质条件选择适合本桥的桩基础,比较常用的桥墩(台)形式,经过方案必选后选择合适的桥梁墩(台),方案确定后再从上到下开始计算。

首先是盖梁的计算,着重计算盖梁在使用过程中上部构造恒载、盖梁自重以及汽车及人群荷载的作用,通过荷载集度进行盖梁内力的计算,然后是盖梁的配筋,经过盖梁内力计算后对盖梁进行配筋及承载力校核;其次是桥墩的计算,桥墩的计算主要是桥墩所受的恒载、活载的计算及双柱反力的计算,然后是配筋计算及应力验算;然后是钻孔灌注桩的计算,主要是桩长的计算,桩长根据单桩容许承载力的经验公式确定桩长,桩内力的计算主要是用m法,根据m法确定的桩的内力进行桩筋的设计及强度验算;最后是埋置式U型桥台刚性扩大基础的计算,主要是对桥台恒载、活载、土压力的计算,经过计算后,对计算结果进行地基承载力、基底偏心距、基础稳定性的验算。

关键词:简支梁桥;盖梁;桥墩(台);钻孔灌注桩AbstractThe design of the subject is the nanshuibeidiao bridge structure diversion,I select the partially prestressed concrete beam bridge solution for the structure design.In the design, according to the geological conditions of the first choice for this bridge pile foundation, compare common pier (Abutment), after scheme will be selected to choose the appropriate bridge pier (Abutment), plan again after the start counting from top to bottom. First is capping beam, the calculation used in engine ering calculation capping beam in the upper structure, capping beam and car and weight load and load are set by the internal force calculation, capping beam is then cover the beams, capping beam reinforcement through calculation of cover after reinforcemen t and bearing capacity of beams are checked, Second is the bridge pier, the calculation of main pier is constant, live load calculation and the twin pillars of calculation, and then is calculated and reinforcement stress calculation, Then the cast-in-place pile length is calculated, the main pile length calculation, the bearing capacity of single pile according to allow pile length, experience formula calculation of internal piles is mainly use m method, according to the method of pile m. internal piles of reinforcement design and strength calculation, Finally is buried type abutment u-shaped rigid expand the calculation, is mainly based on the abutment and live load, soil pressure calculation, through calculation, analysis and the bearing capacity of foundation, the stability of eccentricity.Keywords:simple-supported;Bridges;Capping beam;Piers (Abutment);Bored piles目录第一章绪论 (1)1.1概述 (1)1.2桥梁的发展概况 (1)1.3设计资料与方案比选 (2)1.3.1 设计标准及上部构造 (2)1.3.2 水文地质条件 (2)1.3.3 材料 (3)1.3.4 下部结构比选 (3)1.3.5 桥梁下部结构尺寸 (4)第二章盖梁计算 (7)2.1荷载计算 (7)2.1.1 上部构造恒载 (7)2.1.2 盖梁自重及内力计算 (7)2.1.3 活载计算 (9)2.1.4 双柱反力Gi的计算 (20)2.2内力计算 (22)2.2.1 恒载加活载作用下的各截面的内力 (22)2.2.2 盖梁内力汇总表 (26)2.2.3 盖梁各截面的配筋设计及承载力校核 (26)第三章桥墩墩柱计算 (33)3.1恒载计算 (33)3.2活载计算 (33)3.3双柱反力横向分布计算 (34)3.4荷载组合 (35)3.4.1 最大最小垂直反力计算 (35)3.4.2 最大弯矩计算 (35)3.5截面配筋计算及应力验算 (37)3.5.1 作用于墩柱顶的外力 (37)3.5.2 作用于墩柱底的外力 (37)3.5.3截面配筋计算 (37)第四章钻孔灌注桩计算 (39)4.1设计资料 (39)4.2荷载设计 (39)4.2.1每一根桩承受的荷载 (39)4.3桩长计算 (38)4.4桩的内力计算 (40)b的确定 (40)4.4.1 桩的计算宽度14.4.2 桩的变形系数 (40)M与水平压应力4.4.3 地面以下深度z处桩身截面上的弯矩z的计算 (40)zx4.4.4 桩身截面配筋与强度验算 (43)4.4.5 墩顶的位移验算 (44)第五章埋置式U型桥台刚性扩大基础设计 (49)5.1设计资料 (49)5.2桥台及基础构造拟定尺寸 (49)5.3荷载计算 (50)5.3.1恒载计算 (50)5.3.2土压力计算 (51)5.3.3支座活载反力计算 (54)5.4.荷载组合 (56)5.4.1荷载组合计算 (56)5.4.2 荷载组合汇总表 (58)5.5地基承载力验算 (58)5.5.1 台前、台后填土对地基产生的附加应力计算 (58)5.5.2 基底压应力计算 (59)5.6.基底偏心距验算 (60)5.6.1仅受恒载 (60)5.6.2考虑附加组合 (60)5.7基础稳定性验算 (61)5.7.1 抗倾覆稳定性验算 (61)5.7.2 抗滑动稳定性验算 (61)谢辞 (62)参考文献 (633)附录 (644)第一章绪论1.1 概述本次所设计的南水北调大桥是部分预应力钢筋混凝土简支T形梁桥,桥梁主跨标准跨径50米,其跨径组合为(30+50+30)m。

桥梁下部结构的分类和受力特点

桥梁下部结构的分类和受力特点

桥梁下部结构分类和受力特点一、桥梁下部结构分类●重力式桥墩、重力式桥台、轻型桥墩、轻型桥台(一)重力式墩、台1.主要特点:●靠自身重量来平衡外力而保持其稳定性●墩、台身比较厚实,可以不用钢筋,用天然石材或片石砼砌筑2.适用:●地基良好的大中型桥梁●流冰、漂流物较多的河流●砂石料方便地区的小桥3.缺点:●圬工体积较大●自重和阻水面积较大4.分类:①桥墩:●普通墩●制动墩:比较厚实,承受单向较大的水平推力,防止出现一侧的拱桥倾坍;及梁桥重力式墩比较,具有拱座等构造设施②桥台:●U型桥台是梁桥和拱桥常用的重力式桥台●适用于:填土高度<8-10m或跨度稍大的桥梁●缺点:桥台体积和自重较大,增加了对地基的要求③注意点:●桥台的两个侧墙之间填土容易积水,结冰后冻胀,使侧墙产生裂缝●宜使用渗水性较好的土夯填并做好台后排水措施(二)轻型墩、台1.梁桥轻型墩、台(1)梁桥轻型桥墩①钢筋砼薄壁桥墩:●施工简便,外形美观,过水性良好●适用于:地基土软弱地区●需耗费立模的木材和一定数量的钢筋②柱式桥墩:●外形美观●圬工体积少,重量较轻③钻孔桩柱式桥墩:●适合多种场合和各种地质条件●通过增大桩径、桩长、用多排桩加建承台等措施,也能适用于更复杂的软弱地质条件以及较大的跨径和较高的桥墩④柔性排架桥墩:●优点:用料省、修建简便、施工速度快●缺点:用钢量大,使用高度和承载能力受到一定限制●适用于:低浅宽滩河流、通航要求低、流速不大的水网地区河流上修建小跨径桥梁时采用(2)梁桥轻型桥台:①设有支撑梁的轻型桥台:●适用于:单跨桥梁,桥孔跨径6-10m,台高<6m②埋置式桥台:●桥台受的土压力小,桥台的体积相应的减少●由于台前护坡是用片石做表面防护的一种永久性设施,存在被洪水冲毁而使台身裸露的可能●设计时需慎重的验算强度和稳定性●分类:后倾式、肋形埋置式、双柱式、框架式●桩柱式桥台:适合于各种土壤地基;适用范围:桥孔跨径8-20m,填土高度3-5m●填土高度>5m,宜采用框架式埋置式桥台③钢筋砼薄壁桥台:●适用于:软弱地基●构造和施工比较复杂,钢筋用量较多④加筋土桥台:●适用于:台后路基填土不被冲刷的中、小跨径桥梁,台高3-5m2.拱桥轻型桥墩、台(1)拱桥轻型桥墩:①带三角杆件的单向推力墩:●只在桥不太高的旱地上采用②悬臂式单向推力墩:●适用于两铰双曲拱桥(2)拱桥轻型桥台:●适用于:跨径<13m的小跨径拱桥和桥台水平位移量很小的情况●工作原理:当桥台受到拱的推力后,发生绕基底形心轴向路堤方向的转动,台后土产生抗力平衡拱的推力,从而使桥台的尺寸较小①八字形桥台:●适合于:桥下需要通车或过水的情况②U字型桥台:●适合于:较小跨径桥梁③背撑式桥台:●适合于:较大跨径的高桥和宽桥④靠背式框架桥台:●适合于:非岩石地基上修建拱桥桥台其他形式桥台:①组合式桥台:●适用于:各种地质条件②空腹式桥台:●适用于:软土地基、河床无冲刷或轻微冲刷、水位变化小的河道上③齿槛式桥台:●适用于:软土地基和路堤较低的中小跨径拱桥二、桥梁下部结构的构造特点及受力特点(一)桥梁下部结构的构造特点1.重力式桥墩:(1)梁桥重力式桥墩:●由墩帽、墩身、基础等组成●墩帽要满足支座布置和局部承压的需要(2)拱桥重力式桥墩:●具有拱座等构造设施●制动墩比普通墩尺寸更厚实,能承受单向较大的水平推力,防止倾坍2.重力式桥台(U形桥台):●由台帽、背墙、台身(前墙、侧墙)、基础、锥坡等组成●背墙、前墙、侧墙结合成一体,兼有挡土墙和支撑墙的作用3.梁桥轻型桥墩:(1)钢筋砼薄壁桥墩:●圬工体积小、结构轻巧●比重力式桥墩可节约圬工量70%左右(2)柱式桥墩:●由分离的2根或多根立柱(或桩柱)组成●是公路桥梁中采用较多的桥墩形式之一(3)柔性排架桩墩●由单排或双排的钢筋砼桩及钢筋砼盖梁连接而成●主要特点:可以通过一些构造措施,将上部结构传来的水平力(制动力、温度影响力等)传递到全桥的各个柔性墩台,或相邻的刚性墩台上,以减少单个柔性墩所受到的水平力,从而达到减小桩墩截面的目的4.梁桥轻型桥台(1)设有支撑梁的轻型桥台:●台身为直立的薄壁墙●台身两侧有翼墙●在两桥台下部设置支撑梁●上部结构及桥台锚栓连接,构成四铰框架(2)埋置式桥台:●台身埋在锥形护坡中●只露出台帽在外以安置支座及上部结构(3)钢筋砼薄壁桥台:●由扶壁式挡土墙和两侧的薄壁侧墙构成(4)加筋土桥台:●一般由台帽和由竖向面板、拉杆、锚定板、填料共同组合的台身组成5.拱桥轻型桥墩:(1)带三角杆件的单向推力墩:●在普通墩的墩柱上,从两侧对称地增设钢筋砼斜撑和水平拉杆,用来提高抵抗水平推力的能力●为了提高构件的抗裂性,可以采用预应力砼结构(2)悬臂式单向推力墩:●墩柱顶部向两桥跨处伸出悬臂段●当该墩的一侧桥孔遭到破坏,可以通过另一侧拱座上的竖向分力及悬臂长所构成的稳定力矩来平衡拱的水平推力导致的倾覆力矩6.拱桥轻型桥台(1)八字形桥台:●台身由前墙和两侧的八字翼墙构成(2)U字型桥台:●由前墙和平行于行车方向的侧墙组成●桥台侧墙是拱上侧墙的延伸(不同于U形重力式桥台)(3)背撑式桥台:●在八字桥台或U形桥台的前墙背后加一道或几道背撑,稳定性好(4)靠背式框架桥台:●用三角形框架把台帽、前壁、耳墙和设置在不同标高且具有不同斜度的分离式基础连接而成●水平和仰斜的基底能满足施工期间的稳定性,且能合理承受主拱作用力(二)桥梁下部结构的受力特点1.桥梁墩台总的受力特点:●承担桥梁上部结构所产生的荷载●并将荷载有效传递给地基基础●起着承上启下作用2.桥墩受力特点:●桥墩为多跨桥梁中的中间支承结构物●承受上部结构产生的竖向力、水平力、弯矩●自然界的风力、流水压力●偶然发生的地震力、冰压力、船只和漂流物的撞击力3.桥台受力特点:●桥台设置在桥梁两端,除支承桥跨结构外,又是衔接两岸接线路堤的构筑物●既能挡土护岸,又能承受台背填土及填土上车辆荷载所产生的附加土侧压力4.桥梁墩台的要求:●自身应有足够的强度、刚度、稳定性●对地基的承载能力、沉降量、基础之间的摩阻力也有一定的要求●避免上述荷载作用下产生危害桥梁整体结构的水平、竖向位移和转角位移5.桥梁墩台受力计算:受力计算时的荷载及其组合应根据可能出现的各种荷载情况进行最不利的荷载组合。

探讨桥梁下部结构的设计及施工

探讨桥梁下部结构的设计及施工
于 鹏
【 新疆立 弓交通勘察设计研究院 )

要: 桥梁下部的构造是整体桥 梁的重要 组成部分 , 其最终设计 和施 工质量的好坏直接影响着桥 梁整 体的
质量和造价等 , 将就桥梁下部结构 构造及其设计 、 施工特点进行详 细的探讨 分析 。
关键词 : 下部结构 ; 设计 ; 施工
中图分类号 : U 4 4 5
2 0 1 3年 第 6期 ( 总第 2 3 2期 )
黑 龙江 交通科技
HE L L ONGd l ANG d l AOT O NG E J J
No . 6, 2 0 1 3
( S u m N o . 2 3 2 )
探 讨 桥 梁 下部 结构 的设 计 及 施 工
收稿 日期 : 2 0 1 3 一 O 1 - 3 1

( 1 ) 重力式桥 墩。重 力式 桥 墩是采 用石 砌和 混凝土 而 成 的实体结构 , 由于其借 助 自身截面较大以及水 平和竖直 方 向的外力 , 具有施工 方便 、 坚 固耐用等特 点 , 但 有圬 工量大 、 阻水面较大等缺点 , 此种 型式 桥墩不宜设在水流流速大 以及 泥沙含量较多的河流。重力式桥墩大多做成实体形式 , 钢筋 量使用少 多采用混凝土或石砌而成 。 ( 2 ) 轻型桥墩。轻型桥墩具 有圬工体 积小 、 基 础工程 量 较小等优点 , 利于施 工进度 的加快 , 提高 施工 效率。轻型桥 墩又分构 架式桥墩 、 空心 桥墩 、 桩 柱式桥 墩 和薄壁式 桥墩 5 种。构架式桥墩由于对地基要求较小的特点, 适应范围较 大; 空心桥墩外形看似重力式桥墩 , 实为 中空的薄壁 墩 , 适用 于高桥墩 ; 桩柱式桥墩又分双柱式 、 桩式以及单柱式桥墩 , 是 采用预制 构件 拼装 或就地灌 筑混凝土建造的 ; 薄壁式桥墩又 叫柔 性桥 墩 , 其原理是利用桥跨结构用铰将各种柔性桥墩和 邻近的刚性桥墩连接起来 , 使之形成跨超静定的结构, 使刚 性桥墩承担整体桥 梁的纵向水平 力 , 有效地改善 了柔性桥墩 的受力情 况。 2 . 2 . 2 桥墩结构 的设 计 桥墩 的选择多 采用 Y型 薄壁 墩和 柱式 墩 , 柱 式墩 又分 方柱和圆柱 , 圆柱在外观 质量施 工上较 为简便 , 因此广 泛应 用于平原地 区 , 方柱在棱 角 以及 视线诱 导性 , 比较 美观。就 受力方面而言 , 在圆柱截面积与方柱截面积相同的条件下, 圆柱抗弯 能力小 于方柱抗 弯能力 , 方柱 受力较 于圆柱 , 方柱 更好 。但方柱具有墩柱和桩基 间要通过 帽连接 的缺点 , 如果 施工属 山区, 桥梁地面横坡 较 陡峭 , 还增 加 了柱 帽结构 和工 程数量 、 加大挖方的工程 量。在桥墩设 计 中 , 要 充分考 虑到 地形 、 墩 高以及上 构结 构型式。Y型薄壁墩 比较美 观但施 工 较为复杂 , 如 墩高较高时 , Y型薄壁 墩施工 只需要 一套模板 以及一个支架 , Y型薄壁墩适用于地面横坡较陡但有大量模 板需求的 山区桥梁建设 , 当桥 墩较 矮时 , 桥墩则会 不仅不 美 观还未有简单施工 , 因此很 少被采用。

14-Midas Civil应用—桥梁下部结构实体

14-Midas Civil应用—桥梁下部结构实体

Midas Civil应用—桥梁下部结构实体011、桥梁下部结构建模及分析(1)基本概况一引桥下部结构为双柱式,墩柱直径130cm,高度5m,标号C30混凝土,柱间距685cm;盖梁长度1155cm,宽度170cm,高度140cm,标号C30混凝土。

(2)Midas Civil 桥梁下部结构分析步骤桥梁下部结构的分析步骤如下:①设置操作环境及项目信息②定义材料和截面③建立结构三维模型④输入静力荷载⑤输入荷载数据⑥输入荷载组合⑦运行结构分析⑧查看分析结果(3)设置操作环境及项目信息打开【工具】/【单位系】/将单位体系设为KN,mm。

该单位可以根据输入数据的种类任意转换。

打开【文件】 /【项目信息】/完善基本信息。

(4)定义材料和截面。

打开【特性】/【材料特性值】/【材料】/【添加】/【类型】/【名称】/【数据库】/选择材质/【适用】。

(5)建立结构三维模型。

利用面单元建立桥墩单元结构>基本结构>板单元>输入,类型 ,R(半径):0.65m;>编辑,选择分隔数量:m=16,n=14,显示辅助尺寸(打开); >插入,插入点(0,0,0),Alpha:-90°,显示号:3,确定。

建立结构组“面柱”选择最新建立的个体 ,打开组>结构组>新建“面柱”,拖放至主界面。

节点单元>节点>复制和移动选择节点21,形式>复制,等间距>dx,dy,dz>(0,0.2,0)m,复制次数>(1)选择节点5,形式>复制,等间距>dx,dy,dz>(0.2,0,0)m,复制次数>(1)选择节点67,形式>复制,等间距>dx,dy,dz>(0,0.85,0)m,复制次数>(1)节点单元>单元>建立单元,单元类型>桁架单元,材料>1:C30,截面>无连接节点(5,67),(67,68),(66,68),(21,66)。

桥梁下构设计的一般要求

桥梁下构设计的一般要求

桥梁下构设计的一般要求
l、基础设计应保证具有足够的,稳定及耐性。

基础类型应根据水文、地形、地质及施工条件综合考虑合理选用。

一般情况是优先考虑挖扩大基础,但当基础开挖深度h6m时宜采用桩基础。

2、非通航河流墩高<20m者,可采用双柱或多柱式桥墩。

通航河流,应验算船舶撞击力,可采用矩形板式桥墩或薄壁式园端形桥墩。

3、山区桥梁墩高20~40m,地震烈度7度区者,参照西南地区经验采用T型实体墩(矩形实体墩);墩高40~60m者采用T梁型空心墩。

4、弯箱梁或城市内的箱梁桥,有条件时可采用独柱墩,但应作桥墩的防护设施。

5、柱径,桩径其主筋布置,暂无计算资料时可参照表1、表2处理。

附注:1、挖孔桩控制桩长15m
2、桩柱设计时注意与桩的主筋一致性。

二、桥台及基础
1、根据台后填土及地形、地质条件,可选择肋板式桥台、桩柱式桥台和U型桥台。

肋板式桥台可视地质条件设计为桩基础或扩大基础,而U 型桥台仅在填土6m的小型U台,地质条件又欠佳等,可配置桩基础,一般情况U型桥台只配置扩大基础。

2、U型桥台有关尺寸可参照通用图办理。

为统一标准当台后填土6m以。

桥墩课程设计计算

桥墩课程设计计算

桥墩课程设计计算桥墩课程设计计算设计资料上部结构为5孔20m 装配式混凝土简支梁,桥面净宽11m.下部结构采用双柱式圆柱墩。

墩柱及桩身尺寸构造见图,墩柱直径130cm,混凝土C30,f cd =13.8MPa,主筋RB335,f sd =280 MPa,灌注桩直径150cm, 混凝土C20, f cd =13.8MPa,主筋HRB335,f sd =280 Mpa 。

墩顶每片梁梁端设400⨯400mm 板式橡胶支座一个,台顶每片梁梁端设四氟版活动支座一个,板式橡胶支座摩阻系数f=0.05,滑板支座最小摩阻系数f=0.03,一般情况取0.05。

桥台上设橡胶伸缩缝。

盖梁、墩身构造均采用C30混凝土,4c 3.010MPa E =⨯,系梁采用C25混凝土,MPa 102.84C⨯=E ,主筋采用HRB335级钢筋,4C2.110MPa E =⨯,箍筋采用R235级钢筋,MPa 102.04C⨯=E 。

每片边梁自重 每片中梁自重 一孔上部结构每个支座支反力(kN)(kN ) (kN) 总重(kN)1、5号梁2、3、4号梁2706.18 边梁支座中梁支座26.6 27.46 265.47 270.05 一、荷载计算 (一)、恒载计算:墩柱上部恒载值由上知:(1)上部构造恒载,一孔重:2706.18kN; (2)盖梁自重(半根自重):5304.29kN;(3)横系梁重:kN 8425.6250.12.1=⨯⨯⨯; (4)墩柱自重:墩柱自重:21.31225398kN 4π⨯⨯⨯=; (二)、活载计算荷载布置及行驶情况参考前面计算,数值直接取用。

1、汽车荷载(1)单孔单车时120255.28kN 0255.28255.28kN B ,B ,B ===+=相应得制动力为:[]2010.50.752380.751033.6kN T %=⨯⨯+⨯⨯=<90kN所以单孔单车时得制动力取为:T=90kN(2)双孔单车时1276.28kN 255.28kN 76.28255.28332.06kNB ,B ,B ===+= 相应得制动力为:[]22010.50.752380.751049.35kN 90kNT %=⨯⨯⨯+⨯⨯=<取双孔单车制动力为:T=90kN 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某桥梁下部结构设计一、设计资料 (3)1、设计标准及上部构造 (3)2、水文地质条件 (3)3、材料 (3)4、桥墩尺寸 (4)5、设计依据 (4)二、盖梁计算 (4)(一)荷载计算 (4)1、上部结构永久荷载 (4)2、盖梁自重及作用效应计算 (5)3、可变荷载计算 (6)4、双柱反力i G计算所引起的各梁反力 (13)(二)内力计算 (14)1、恒载加活载作用下各截面的内力 (14)2、盖梁内力汇总 (16)(三)截面配筋设计与承载力核算 (17)1.正截面抗弯承载力验算 (17)2.斜截面抗剪承载能力验算 (18)3.全梁承载力校核 (19)三桥墩墩柱计算 (19)(一)荷载计算 (19)1.恒载计算: (19)2.汽车荷载计算 (20)3、双柱反力横向分布系数计算 (21)4. 荷载组合 (22)(二)截面配筋计算及应力验算 (23)1.作用于墩柱顶的外力 (23)2、作用于墩柱底的外力 (23)3、截面配筋计算 (23)四、钻孔灌注桩的设计计算 (25)(一)荷载计算 (25)1、一孔恒载反力(图12) (25)2、盖梁恒重反力 (25)3、系梁恒重反力 (26)4、一根墩柱恒重 (26)5、灌注桩每延米自重 (26)6.可变荷载反力 ....................................................................................................... 26 7、作用于桩顶的外力,图13 . (27)(二)桩长计算 ...................................................................................................................... 27 (三)桩的内力计算(m 法) . (28)1,桩的计算宽度b : ............................................................................................. 28 2. 桩的变形系数α: (29)3 地面以下深度Z 处桩截面的弯矩M z 与水平压应力的计算: (29)(四) 桩身配筋计算及桩身材料截面强度验算 .................................................................... 30 (五)墩顶纵向水平位移验算 . (32)1. 桩在地面处的水平位移和转角(00, x )计算 ............................................... 32 2. 墩顶纵向水平位移验算 . (34)某桥梁下部结构设计一、设计资料1、设计标准及上部构造(1) 设计荷载:公路-Ⅱ级;人群荷载:3.0kN/m2(2) 桥面净空:净7+2×0.75(人行道)(3) 跨径:标准跨径:16m;主梁全长:15.96m;计算跨径:15.5m(4) 上部结构:图2(5) 桥面铺装:桥梁桥面铺装由上至下为:沥青混凝土厚2cm,25号混凝土垫层(6~12cm),桥面横坡为:1.5%。

(6) 人行道和栏杆荷载:人行道宽为0.75m时取5kN/m,人行道宽为1.5m时取8.5kN/m。

(7) 横隔梁设置:跨径13m桥梁以下,横隔梁设置3道,跨径13m桥梁以上,横梁设置5道,横梁宽度为15cm,高为100cm。

平均布设。

2、水文地质条件冲刷深度:2.5m地质条件:密实细砂夹砾石:地基承载力400kPa按无横桥向水平推力(漂流物、冲击力、水流压力等)及纵桥向风荷载3、材料钢筋:盖梁主筋用HRB335钢筋,其它均用R235钢筋;混凝土:混凝土、墩柱用C30,系梁及钻孔灌注桩用C25;4、桥墩尺寸:如下图(尺寸单位:cm )5、设计依据《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D60-2004) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《基础工程》王晓谋主编 人民交通出版社《结构设计原理》(第二版)叶见曙主编 人民交通出版社 《桥梁工程》(第二版)邵旭东主编 人民交通出版社二、盖梁计算(一) 荷载计算1、上部结构永久荷载 见表1.表12、盖梁自重及作用效应计算见表2。

(1/2盖梁长度)图1(尺寸单位:cm)盖梁自重产生的弯矩、剪力效应计算表2截面编号自重(kN)弯矩(kN/m)剪力(kN)V左V右1-11q=0.5×0.5×1.2×25+0.5×0.5×1.2×25=9.751M=-7.5×25.-2.25×35.0 =-2.25-9.75 -9.752-22q=21(0.8+1.1)×0.5×1.2×25=14.252M=-0.5×1×1.2×25×0.5-21×0.6×1.2×25×31=-10.50-24.00 -24.00 3-33q=0.6×1.1×1.2×25=19.803M=-0.5×1.0×1.2×25×1.1-×0.6×1.0×1.2×25×(-43.80 69.30=-30.844-44q =0.5×1.1×1.2×25=16.504M =131..1×0.5-(19.8+16.5)×-15×1.6-9×(31+ 1.1)=-0.3152.8052.80 5-55q =1.6×1.1×1.2×25=52.804M =131..1×21-(19.8+16.5+52.8)×-15×3.2-9×(31+27)=41.96 0则:1q +2q +3q +4q +5q =113.10kN3、可变荷载计算(1)可变荷载横向分布系数计算:荷载对称布置时用杠杆法,非对称布置用偏心受压法。

○1公路-Ⅱ级 a 、单车列,对称布置(图3)时: 051==ηη281.05625.02142=⨯==ηη()4375.04379.04375.0213=+⨯=ηb 、双车列,对称布置(图4)时:2656.05632.02151=⨯==ηη4375.0)4379.04375.0(2142=+⨯==ηη图3()5938.05938.05938.0213=+⨯=η c 、单车列,非对称布置(图5)时: 由()∑±=2/1a ea i i ηη,已知5=n,1.2=e ,6.25)2.36.1(2222i=+⨯=∑a 则463.06.252.31.2511=⨯+=η 331.06.256.11.2512=⨯+=η2.0513==η 069.0131.0514=-=η063.0-263.0515=-=η图4d 、双车列,非对称布置(图5)时: 已知:5=n,55.0=e ,∑=6.252i a538.0)6.252.355.051(21=⨯+⨯=η468.0)6.256.155.051(22=⨯+⨯=η4.05123=⨯=η332.0)034.051(24=-⨯=η262.0)069.051(25=-⨯=η图5②人群荷载mkN3.25m /kN 0.375.0q 人=⨯=a 两侧有人群,堆成布置时:(图6) 422.151==ηη422.0-42==ηη3=η图6 b ,单侧有人群,对称布置时,图6. 已知:n=5,e=3.875,6.25a 2i =∑ 则:684.06.252.3875.3511=⨯+=η442.06.256.1875.3512=⨯+=η 2.0513==η042.0-242.0-514==η 284.0-484.0-515==η(2)按顺桥向可变荷载移动情况,求得支座可变荷载反力的最大值(图7)图7①公路-Ⅱ级 双孔布载单列车时:KN B 063.2901682875.725.15=+⨯⨯=双孔布载双列车时:KN B 126.580063.29022=⨯=单孔布置单列车时:KN B 031.2291682875.75.15=+⨯=单孔布载双列车时:KN B 062.458031.22922=⨯=②人群荷载,图8图8单孔满载时:KN B 44.175.1500.12125.21=⨯⨯⨯=双孔满载时:KN B B 44.1721== KN B B 88.3421=+(3)可变荷载横向分布后各梁支点反力(计算的一般公式为i i B R η=)各梁支点反力计算 表3荷载横向分布情况 公路-I 级荷载(kN ) 人群荷载(kN ) 计算方法 荷载布置 横向分布系数η单孔 双孔 单孔双孔 BR 1BR 2BR 1BR 2单列行车281.04375.0281.0054321=====ηηηηη229.0310 64.36100.20 64.36 0290.0630 81.51 126.90 81.50 0对称布置双列行车2656.04375.05938.04375.02656.054321=====ηηηηη458.062121.66200.40272.00200.40121.661179.5312.68514.86700.62514.86312.68人群荷载422.1422.0-422.0-422.154321=====ηηηηη17.4424.80-7.36-7.3624.8034.8849.60-14.7-14.749.60非对称布置单列行车063.0-069.0200.0331.0463.054321=====ηηηηη229.031106.0475.8145.8115.80-14.43290.06143.3096.0158.0120.01-18.27双列行车262.0332.0400.0468.0538.054321=====ηηηηη458.062246.44214.37183.22152.08120.01580.126312.11271.50232.05192.60151.99人群荷载284.0042.0200.0422.0684.054321=-====ηηηηη17.4411.937.713.49-0.73-4.9534.8860.5337.3417.70-3.7325.13 (4)各板永久荷载、可变荷载反力组合:计算见表4,表中均取用各板的最大值,冲击系数计算:h=其中混凝土的E=3.0则f=∴1.5HZ即冲击系数 332.1332.011=+=+μ各梁永久荷载,可变荷载基本组合计算表 表4编号 荷载情况 1号梁R 2号梁R 3号梁R 4号梁R 5号梁R ① 恒载 251.80 263.89 263.89 263.89 251.80 ② 双列对称 205.85 339.09 460.23 339.09 205.85 ③ 双列非对称 415.73 361.64 309.09 256.55 202.45 ④ 人群对称 49.60 -14.72 0 -14.72 49.60 ⑤人群非对称23.8615.426.98-1.46-9.9⑥ 1.2①+1.4②+0.8④ 630.03 779.62 960.99 779.62 630.03 ⑦ 1.2①+1.4②+0.8⑤ 609.44 803.73 966.57 790.23 582.43 ⑧ 1.2①+1.4③+0.8④ 923.86 811.19 749.39 664.06 625.27 ⑨ 1.2①+1.4③+0.8⑤ 903.27 835.30 754.98 674.67 577.674、双柱反力iG 计算(图9)所引起的各梁反力 表5:双柱反力G 1计算 表5荷载组合情况计算式反力G 1(kN )组合⑥公路-Ⅱ级 双列对称 人群对称 14.1890)1.103.6705.062.7791.299.9607.362.7793.503.630(2.41=⨯-⨯+⨯+⨯+⨯ 1890.14 组合⑦公路-Ⅱ级 双列对称 人群非对称 92.1901)1.143.5825.023.7901.257.9667.373.8033.544.609(2.41=⨯-⨯+⨯+⨯+⨯ 1901.92 组合⑧公路-Ⅱ级 双列非对称人群对称44.2170)1.127.6255.006.6641.239.7497.319.8113.586.923(2.41=⨯-⨯+⨯+⨯+⨯ 2170.44组合⑨公路-Ⅱ级 双列非对称 人群非对称21.2182)1.167.5775.067.6741.298.7547.330.8353.527.903(2.41=⨯-⨯+⨯+⨯+⨯ 2182.21图9,即偏载左边的立柱反力最大(G1>G2),并由荷载组合⑨时控制设计。

相关文档
最新文档