2013年人教版小学数学六年级上册知识点整理归纳B4
小学六年级数学知识点归纳

小学6年级毕业考试数学重难知识点:行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
人教版学校六年级上册数学知识点百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少。
一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金。
最新人版小学六年级数学(上册)知识点及题型总结

小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
小学六年级数学知识点归纳大全

小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
[全]六年级上册数学1-3单元知识点考点讲解
![[全]六年级上册数学1-3单元知识点考点讲解](https://img.taocdn.com/s3/m/575607f0192e45361166f546.png)
六年级上册数学1-3单元知识点考点讲解第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
小学数学六年级上册单元知识点(1-3单元)

小学数学六年级上册单元知识点(1-3单元)第一单元位置用数对确定点的位置,如(3,)表示:(第三列,第五行)几列几行↓↓竖排叫列横排叫行一般(从左往右看)(从前往后看)平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
图形左、右平移:行不变图形上、下平移:列不变第二单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:×表示求个的和是多少?也表示的倍是多少?×表示求的是多少2、分数乘分数是求一个数的几分之几是多少。
例如:×表示求的是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:×=a×乘法分配律:(a+b)×=a+b二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
人教版六年级数学上册全册知识点

第一单元分数乘法1、分数乘整数的意义:求几个相同数相加的简便运算;或者说求一个数的几倍是多少。
2、分数乘整数的方法:分母不变,整数和分子相乘,再约分。
3、分数乘分数的意义:求一个数的几分之几是多少4、分数乘分数的方法:分子相乘的积作积的分子,分母相乘的积作积的分母,再约分。
5、分数乘法的简便方法:交叉约分,再相乘。
6、判断积是否大于第一个因数的方法:因数和积的关系:(1)其中一个因数大于1,积大于另一个因数;(2)其中一个因数等于1,积等于另一个因数;(3)其中一个因数小于1,积小于另一个因数。
7、整数乘法的运算定律分数乘法同样适用。
交换律、结合律、分配律,8、分数乘法解决问题:(1)找准单位“1”,(2)列出关系式单位“1”乘以几分之几单位“1”乘以(1+几分之几)单位“1”乘以(1—几分之几)第二单元位置与方向第三单元分数除法1、分数除法的意义:已知两个因数的积和其中一个因数求另一个因数的运算2、分数除法的方法:除以一个数(0除外)等于乘以这个数的倒数3、判断商是否大于被除数的方法:除数和商的关系:(1)除数大于1,商小于被除数;(2)除数等于1,商等于被除数;(3)除数小于1,商大于被除数。
4、分数除法的混合运算:括号老大乘除老二加减老三。
5、除法简便运算的时候,先把所有的乘法写成除法。
6、分数除法解决问题:(1)找准单位“1”;(2)列出关系式比较量÷几分之几=单位“1”)比较量÷(1+几分之几)=单位“1”比较量÷(1—几分之几)=单位“1”对应量÷对应的几分之几=单位“1”是……比……占……相当于……后的是单位“1”分数前面的是单位“1”7、分数乘除法的解决问题:单位“1”已知用乘法单位“1”未知用除法8、倒数:乘积是1的两个数互为倒数,1的倒数是1,0没有倒数。
第四单元比1、比的意义:比的意义:两数相除又叫做两个数的比。
比的各部分的名称:“:”是比号,读作“比”。
小学六年级数学知识点归纳

小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数的意义:(没有最小的整数,也没有最大的整数,整数的个数是无限的)2.自然数的意义:(最小的自然数是,没有最大的自然数,自然数的个数也是无限的)3.正数和负数的意义:(既不是正数也不是负数)4.分数的意义(包括真分数、假分数、带分数,最简分数的意义)5.百分数的意义(百分数和分数的对比)6.小数的意义7.小数的分类A、按小数部分是否有分为:纯小数和带小数B、按小数部分的位数是否有限:有限小数无限小数(无限不循环小数,无限循环小数)知识点二:计数单位和数位1.计数单位:个、十、百……以及十分之一、百分之一……都是计数单位2.数位:各个计数单位所占的位置,叫做数位.3.十进制计数法4.数的分级知识点三:数的读、写法1.整数的读、写法2.小数的读、写法3.分数的读、写法4.百分数的读、写法5.正、负数的读、写法知识点四:数的改写1.把多位数改写成以“万”或“亿”为单元的数(1)直接改写(2)省略尾数改写2.求小数的近似数13.假分数和带分数、整数之间的互化4.分数、小数与百分数之间的互化常识点五:数的大小比较1.整数大小的比较2.小数大小的比较3.分数大小的比较4.正、负数的大小比较(在比较小数、分数和百分数的大小时,通常是把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序成效一定要排列原数。
)常识点六:数的性子1.分数的根本性子2.小数的基本性质3.小数点的位置移动引发小数大小变化的纪律(移动小数点的位置时,如果位数不够,要用补位)知识点七:因数倍数质数合数1.因数和倍数的意义2.因数和倍数的特征(一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身)(一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数)(一个数既是它本身的因数,也是它本身的倍数)3.2、3、5的倍数的特征4.奇数和偶数的意义(研究奇数和偶数时包括,因此自然数不是奇数就是偶数。
小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学知识点 第一单元 位臵1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位臵。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 ×61表示: 求9的61是多少?A ×61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b1(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:a ×(b ±c)=a ×b ±a ×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位臵。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a ≠0),它的倒数为a 1;非零整数a 的倒数为a 1;分数ab 的倒数是ba 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题 1是多少?(用乘法)行号“1”× a b =例如:求25的53是多少? 列式:25×53=15 甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的)()(几几。
( )= ( “1” ) ×)()(几几 例1:已知甲数是乙数的53,乙数是25,求甲数是多少?甲数=乙数×53 即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例225,求甲数是多少?甲数=乙数 ±乙数×53 即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?——速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间 ——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙少:(乙-甲)÷乙 第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例53÷3=53×31=51 3÷53=3×35=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a ÷b=c 当b>1时,c<a (a ≠0)②除以小于1的数,商大于被除数:a ÷b=c 当b<1时,c>a (a ≠0 b ≠0) ③除以等于1的数,商等于被除数:a ÷b=c 当b=1时,c=a 三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a ±b )÷c=a ÷c ±b ÷c 四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=20121220=53=0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位臵,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别: 后项前项 前项后项比号比值比字后面的量乙)—甲(=比后差附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用1、已知单位“1”的量用乘法。
例:甲是乙的53,乙是25,求甲是多少?即:甲=乙×53(15×53=9)2、未知单位“1”的量用除法。
例: 甲是乙的53,甲是15,求乙是多少?即:甲=乙×53(15÷53=25)(建议列方程答)3、分数应用题基本数量关系(把分数看成比) (1)甲是乙的几分之几?甲=乙×几分之几 (例:甲是15的53,求甲是多少?15×53=9)乙=甲÷几分之几 (例:9是乙的53,求乙是多少?9÷53=15)几分之几=甲÷乙 (例:9是15的几分之几?9÷15=53)(“是”字相当“÷”号,乙是单位“1”) (2)甲比乙多(少)几分之几?A 差÷乙=乙差(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15=15915-=156=52) B 多几分之几是:乙甲–1 (例: 15比9少几分之几?15÷9=915-1=35–1=32)C 少几分之几是:1–乙甲 (例:9比15少几分之几?1-9÷15=1–159=1–53=52)D 甲=乙±差=乙±乙×乙差=乙±乙×几几=乙(1±几几) (例:甲比15少52,求甲是多少?15–15×52=15×(1–52)=9(多是“+”少是“–”) E 乙=甲÷(1±几几 )(例:9比乙少52,求乙是多少?9÷(1-52)=9 ÷53=15)(多是“+”少是“–”)(例:15比乙多32,求乙是多少?15÷(1+32)=15 ÷35=9)(多是“+”少是“–”) 4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。