Comment on Nucleon-nucleon scattering lengths in QCD sum rules,
量子力学对称与守恒定律讲义

“为什么对称是重要的?“ --- 毛主席1974年5月向李政道请教的
第一个问题
对称与不对称(破缺)
在艺术(对联,画),数学(海螺,浪花), 自然(山峰,窗))均有精彩表现 完全对称的东西极少见!
不是静态的概念(适用一切自然现象) 物理学中对称性:现象或系统在某变换下不变 宏观->直观; 微观世界-> 不直观,但极重要
SU(2)是u,d夸克对称,破坏2--3% SU(3)SU(4)SU(5)SU(6) 同位旋破坏主要来自多重态不同分量质 量差印起的运动学效应
奇异数(Strangeness)和重 子数
1947年宇宙线实验(after pion),1954年
加速器实验发现一批奇异粒子(photos)
特性一:协同产生,独立衰变
即 H 0, H H
厄米算符p
i
与H对易,
是守恒量
2
分立变换下:
U 1HU H i.e.,UH HU ,all _ states
U与H对易,U是守恒量 时空对称性:场与粒子时空性质变换 内部对称性:与时空无关
Some symmtries and the associated conservation laws
群论与对称性
对称性变换必须满足群的性质 (Closure,Identity,Inverse,Associativity) 如空间转动群,SO(3),3 axis, 3 生成元 (与守恒荷一一对应) 重要的李群/李代数, O(N),SO(N),U(N),SU(N) 复合对称性 --》 复合守恒量, e.g., CP parity,G parity etc.
Translation in time Energy Translation in space Momentum
Meson-nucleon scattering and vector mesons in nuclear matter

a r X i v :n u c l -t h /9808071v 1 27 A u g 1998(1)Meson-nucleon scattering and vector mesonsin nuclear matter ∗Bengt FrimanGesellschaft f¨u r Schwerionenforschung (GSI)D-64220Darmstadt,Germany&Institut f¨u r Kernphysik,TU DarmstadtD-64289Darmstadt,Germany(Received February 9,2008)The properties of vector mesons in nuclear matter are discussed.I examine the constraints imposed by elementary processes on the widths of ρand ωmesons in nuclear matter.Furthermore,results for the ρ-and ω-nucleon scattering amplitudes obtained by fitting meson-nucleon scattering data in a coupled-channel approach are presented.1.IntroductionThe electromagnetic decay of the vector mesons into e +e −and µ+µ−pairs makes them particularly well suited for exploring the conditions in dense and hot matter in nuclear collisions.The lepton pairs provide virtually undistorted information on the mass distribution of the vector mesons in the medium.The lepton-pair spectrum in nucleus-nucleus collisions at SPS energies exhibits a low-mass enhancement compared to proton-proton and proton-nucleus collisions [2].A quantitative interpretation of the lepton-pair data can be obtained within a scenario,where the effective vector-meson masses are reduced in a hadronic environment [3,4,5,6].On the other hand,attempts to interpret the low-mass enhancement of lepton pairs in terms of many-body effects also yield good agreement with the data [7,8].In these calculations the broadening of the ρmeson in nuclear matter due to the interactions of its pion cloud with the medium [9,10,11,12]and the momentum dependence of the ρ-meson self energy due to the coupling with baryon-resonance–nucleon-hole states [13,14]are taken intoaccount.2proc printed on February9,2008Through the low-density theorem hadron-nucleon scattering data can be used to determine the self-energies of hadrons in nuclear matter at low densities.In this talk I discuss the the constraints on the imaginary part of the vector-meson self energy in nuclear matter that can be derived from elementary reactions,and present results of a coupled channel calculation of meson-nucleon scattering.The latter provides a model for the vector-meson–nucleon scattering amplitude.2.Constraints from elementary processesThe low-density theorem states that the self energy of e.g.a vector meson V in nuclear matter is given by[15]ΣV(ρN)=−4π(1+m Vk2πIm¯f(π−p)ωn→ωn(θ=0),(2)where¯f denotes the spin-averaged scattering amplitude.Close to theωn threshold,the scattering amplitude can be expanded in powers of the rel-ative momentum in theωn channel qω.An excellentfit to the data from threshold up to q=120MeV/c2is obtained with Im¯f(π−p)ωn→ωn=a+bq2ω+cq4ω, where a=0.013fm,b=0.10fm3and c=−0.08fm5(see Fig.1).The co-efficient a is the imaginary part of the scattering length.The corresponding contribution of theπ-nucleon channel to the width of theωmeson at rest in nuclear matter can now be obtained by using theproc printed on February9,20083Fig.1.Theπamplitudelow-densityω24proc printed on February9,2008Fig.2.The line shows the best fit,while the[22]. amplitude energy of a vector-mesonSince we close to threshold,it is sufficient to consider only s-wave scattering in theρN andωN channels.This implies that in theπN andπ∆channels we need only s-and d-waves.In particular,we consider the S11,S31,D13and D33 partial waves ofπN scattering.Furthermore,we consider the pion-induced production ofη,ωandρmesons offnucleons.In order to learn something about the momentum dependence of the vector-meson self energy,vector-meson–nucleon scattering also in higher partial waves would have to be considered.In accordance with the approach outlined above only data in the relevant kinematical range will be used in the analysis.The threshold for vector-proc printed on February9,20085 Fig.3.The points are fromref.[18],as√mesonwith 4-point the reader is referred to ref.[21].In Fig.2ourfit to theπN scattering data is illustrated by the D13channel.In the remaining channels the quality of thefit is in general better.Furthermore,in Fig.3the cross section for the reactionπ−p→ρ0n is shown.The bumps at s1/2below1.6GeV are due to the coupling to res-onances below the threshold,like the N⋆(1520).This indicates that these resonances may play an important role in theρ-nucleon dynamics,in agree-ment with the results of Manley and Saleski[20].However,the strength of the coupling is uncetrain,due to the ambiguity in theρ-production cross section close to threshold mentioned above.Wefind that also theωmeson couples strongly to these resonances.The pion-inducedη-production cross section is well described up to s1/2≃1.65GeV.At higher energies presumably higher partial waves,not included in our model,become important.Similarly,the pion-induced pro-duction ofωmesons is reasonably well represented close to threshold,al-though the strong energy dependence of the amplitude shown in Fig.1is not reproduced by the model.This may be due to the coupling to channels not included at present,like the K−Σchannel.The resultingρ-andω-nucleon scattering amplitudes are shown in Fig.4. Theρ−N andω−N scattering lengths are(-0.2+0.7i)fm and(-0.5+0.1i) fm respectively.To lowest order in the density,this corresponds to the following in-medium modifications of masses and widths at nuclear matter density:∆mρ≃20MeV,∆mω≃50MeV,∆Γρ≃140MeV and∆Γω≃206proc printed on February9,2008Fig.4.The over spin and isospin.MeV.resonances below of the amplitudes,will be split into a meson a resonance-hole like mode,which is pushed down in energy.The downward shift of vector-meson strength would contribute to the low-mass enhancement in the lepton-pair spectra.Thus,our results support the dynamical scenario discussed in ref.[23].AcknowledgmentsI thank M.Lutz and G.Wolf for valuable discussions.I am grateful to W.Florkowski and M.Nowak for their warm hospitality during my stay in Cracow and I acknowledge the partial support by the Polish Governmentproc printed on February9,20087 Project(KBN)grant2P03B00814as well as by the Institute of Nuclear Physics in Cracow.REFERENCES[1]CERES,G.Agakichiev et al.,Phys.Rev.Lett.75,1272(1995);Nucl.Phys.A610,317c(1996);A.Drees,Nucl.Phys.A610,536c(1996);P.Wurm,in Proc.Workshop on Astro-Hadron Physics,Seoul,Korea,Oct.,1997[2]Helios-3,M.Masera et al.,Nucl.Phys.A590,93c(1992)[3]G.Q.Li,C.M.Ko and G.E.Brown,Phys.Rev.Lett.75,4007(1995)[4]W.Cassing,W.Ehehalt and C.M.Ko,Phys.Lett.B363,35(1995);W.Cass-ing,W.Ehehalt and I.Kralik,Phys.Lett.B377,5(1995)[5]G.E.Brown and M.Rho,Phys.Rev.Lett.66,2720(1991)[6]T.Hatsuda and S.H.Lee,Phys.Rev.C46,R34(1992)[7]R.Rapp,G.Chanfray and J.Wambach,Phys.Rev.Lett.76,368(1996);Nucl.Phys.A617,472(1997)[8]W.Cassing,E.L.Bratkovskaya,R.Rapp and J.Wambach,nucl-th/9708020[9]M.Herrmann,B.Friman and W.N¨o renberg,Nucl.Phys.A560,411(1993)[10]G.Chanfray and P.Schuck,Nucl.Phys.A545,271c(1992)[11]M.Asakawa,C.M.Ko,P.Levai and X.J.Qiu,Phys.Rev.C46,R1159(1992)[12]F.Klingl,N.Kaiser and W.Weise,Nucl.Phys.A624,527(1997)[13]B.Friman and H.J.Pirner,Nucl.Phys.A617,496(1997)[14]W.Peters,M.Post,H.Lenske,S.Leupold and U.Mosel,Nucl.Phys.A628,109(1998)[15]W.Lenz,Z.Phys.56,778(1929);C.D.Dover,J.H¨u fner and R.H.Lemmer,Ann.Phys.66,248(1971)[16]B.Friman,in Proc.Workshop on Astro-Hadron Physics,Seoul,Korea,Oct.,1997,nucl-th/9801053[17]J.Keyne et al.,Phys.Rev.D14,28(1976);H.Karami et al.,Nucl.Phys.B154,503(1979)[18]A.D.Brody et al.,Phys.Rev.D4,2693(1971)[19]Handbook of Physics,Landolt and B¨o rnstein,vol.1/12a(Springer,Ber-lin,1987)[20]D.M.Manley and E.M.Saleski,Phys.Rev.C45,4002(1992)[21]M.Lutz,G.Wolf and B.Friman,to be published[22]R.A.Arndt et al.,Phys.Rev.C52,2120(1995)[23]G.E.Brown et al,to be published in Proceedings International Workshopon the Structure of Mesons,Baryons,and Nuclei,Cracow,May,1998,nucl-th/9806026。
cof瞬态吸收光谱

cof瞬态吸收光谱英文回答:Coherent Anti-Stokes Raman Scattering (CARS)。
Coherent anti-Stokes Raman scattering (CARS) is a nonlinear optical technique used to measure the vibrational spectra of molecules. CARS is based on the inelastic scattering of two laser beams by a molecule. The difference in frequency between the two laser beams matches the vibrational frequency of the molecule, which causes a stimulated Raman scattering process. The scattered light is detected as a coherent beam at a frequency that is higher than the frequency of the pump lasers.CARS is a powerful technique for measuring vibrational spectra because it is sensitive, specific, and non-destructive. CARS can be used to study a wide variety of materials, including gases, liquids, and solids. CARS is also used for imaging applications, such as vibrationalimaging and chemical mapping.Transient Absorption Spectroscopy.Transient absorption spectroscopy is a spectroscopic technique used to study the dynamics of photoexcited molecules. Transient absorption spectroscopy measures the change in absorption of a sample after it has been excited by a laser pulse. The change in absorption is due to the formation of excited states, which have different absorption spectra than the ground state.Transient absorption spectroscopy can be used to study a wide variety of photoexcited processes, such as electron transfer, energy transfer, and chemical reactions. Transient absorption spectroscopy is also used to measure the lifetimes of excited states.Applications of CARS and Transient Absorption Spectroscopy.CARS and transient absorption spectroscopy are powerfultechniques for studying the structure and dynamics of molecules. CARS is used to measure vibrational spectra,while transient absorption spectroscopy is used to study photoexcited processes. Both techniques can be used tostudy a wide variety of materials, including gases, liquids, and solids. CARS and transient absorption spectroscopy are also used for imaging applications, such as vibrational imaging and chemical mapping.中文回答:相干反斯托克斯拉曼散射 (CARS)。
research statement的范例_jiangyun

Research StatementYun JiangPh.D.candidate in Physics at U.C.Davis2013LHC-TI Graduate FellowMy current research concentrates on Large Hadron Collider(LHC)phenomenology,especially that related to Higgs physics and dark matter.The phenomenology of the125.5GeV Higgs boson,which was discovered at the LHC,in the next-to-minimal supersymmetric standard model(NMSSM)and two-Higgs-doublet model(2HDM)has constituted the main part of my work towards my Ph.D. degree.I am in the process of expanding my research work to include the topics of extra dimensions and inflation of the early universe.Accomplished workWefirst assessed the extent to which various semi-constrained NMSSM(scNMSSM)scenarios with a∼125GeV lightest CP-even Higgs h1are able to describe the LHC signal.We found that enhancedγγrates are most natural when the h1has mass similar to the second lightest CP-even Higgs,h2,with enhancement particularly likely if the h1and h2are degenerate.To experimentally probe this possibility,we developed diagnostic tools that could discriminate whether or not there are two(or more)Higgs bosons versus just one contributing to the LHC signals at125.5GeV.In addition,we considered the case where the lightest Higgs h1provides a consistent description of the small LEP excess at98GeV whereas the heavier Higgs h2possesses the primary features of the LHC Higgs-like signals at125GeV.Besides the NMSSM studies,the2HDM,one of the simplest extensions of the Higgs sector,is another focus of my research work.We recently performed an exhaustive analysis for Type I and Type II models to address an important question:to what extent are the latest measurements of the125.5GeV Higgs-like signal at the LHC compatible with the2HDM,assuming that the observed 125.5GeV state is one of the two CP-even Higgs bosons?We also discussed the implications for future colliders,including expectations regarding other lighter or heavier Higgs bosons.In an earlier study,we examined the maximum Higgs signal enhancements that can be achieved in the2HDM in which either a single Higgs boson or multiple Higgs bosons have mass(es)near125.5GeV.We found that the constraints requiring vacuum stability,unitarity and perturbativity substantially restrict possibilities for signal enhancement.Furthermore,we extend the2HDM by adding a real gauge-singlet scalar(2HDMS),which couldbe stable under the extra Z2symmetry and thereby a possible dark matter(DM)candidate. Comparing with the simplest singlet extension this model has richer phenomenology.For heavy DM (mass above55GeV)which generates the desired relic abundance,the predicted cross section for DM-nucleon scattering is below the current LUX limit and even the future XENON1T projection. In contrast,this model can accommodate light DM,even if the constraint on Higgs invisible decay is taken into account,and describe the CDMS II and CoGeNT positive signal regions. More impressively,the tension with the LUX/SuperCDMS exclusion can be alleviated in the Type II2HDMS in which the DM-nucleon interaction could be isospin-violating.In the process of completing this project,we independently worked out the modelfiles for the FeynRules program and will make the model database publicly available soon.Ongoing projectsBased on the comprehensive studies we have accomplished,we focus on the light(pseudo)scalar Higgs boson region in the2HDM.We are also pursuing whether the current LHC8TeV-run data pushes the2HDM to the alignment limit and/or the decoupling limit.In the meanwhile we are developing a routine to simplify the calculation for gluon-fusion and bottom-quark associated production cross sections.Besides,we consider the decoupling2HDM to determine if the vacuum could be stable above the inflation or GUT scale,assuming the2HDM is a low-energy effective theory.If it is stable,then the inflation driven by the2HDM Higgs would be possible and a topic for future study.One of the most important extensions of the standard model(SM)is the inclusion of additional particle(s)that comprise the DM of the universe.So far a number of collaborations have been devoted to working on the direct detection of DM.They typically translate the limit on the event rate against recoil energy they directly detect into a limit on the DM-proton cross section as a function of DM mass.However,there are several standard assumptions hidden in this translation that might not be correct.In particular,it is normally assumed that DM has equal coupling to neutrons and protons.In fact,the tension between the null LUX/SuperCDMS exclusions and the positive signal regions favored by CDMS II and CoGeNT could be alleviated if the DM interactions with nucleons are allowed to violate isospin symmetry.Thus,we are now interested in exploring the possibilities of a light isospin-violating DM(IVDM)in the2HDMS and NMSSM even though such an isospin-violation effect in supersymmetry(SUSY)models has been claimed to be negligible.If present,such light annihilating IVDM may explain the origin of the excess of gamma rayflux from the galactic center,as indicated in the previous studies.Another project I am now involved in is warped DM.In view of the success of extra dimensions in resolving the hierarchy andflavor problems of the SM,we are studying DM in warped extra dimensions in particular with Randall-Sundrum like geometries.We consider the case that all SM fields live in the bulk.In our model thefirst Higgs excited state is a possible stable DM candidate due to the presence of a geometric KK-parity.Our focus is on phenomenological implications of the DM after imposing constraints from current experimental data.Future planIn the near future I will continue investigating LHC implications of various Higgs models beyond the SM both within and outside the framework of SUSY.Potential extensions to my previous studies include the future prospects of2HDM at the100TeV collider and the related analyses in the framework of phenomenological NMSSM,a version of NMSSM without GUT-scale unification assumptions.Additionally,dark matter physics and inflation of the early universe driven by the Higgs boson,Higgs portal DM,axion,etc.will be important topics of exploration in my post-doctoral research.It is well-known that Higgs inflation is unlikely to occur within the pure SM given the latest LHC measurement on the top quark mass.To remedy this issue,I am considering the additional loop contribution from Higgs portal interactions to raise the tensor-to-scalar ratio at the inflation scale.Another probable direction of my future work is in Higgs triplet and neutrino physics.I wish to construct a model that contains a LHC observed Higgs and a DM candidate and is also able to explain the neutrino mass by means of Type-II seesaw mechanism.Rather than being the end of the story,the discovery of the125.5GeV Higgs boson has marked a new era in particle physics.I anticipate that this discovery will provide a key window into theories beyond the SM,and that additional Higgs bosons and SUSY particles may well be found.A variety of ongoing experiments aimed at detecting dark matter will either provide further limits or succeed in detecting dark matter.Either way,DM models will be constrained and/or eliminated,thereby providing guidance to ongoing theoretical work.As a young researcher,I am fortunate to be in the midst of an exciting time and will certainly work extremely hard to contribute to our high energy physics community.。
核工程与核技术专业英语

Auxiliary 辅助的,备用的Blowdown 冷却管突然爆裂,排污管 Compress 压缩,精简Instrument仪器,乐器,工具,仪表 Component组件,部件,成分,设备 Condensate 凝结水,冷凝水,凝结 Condenser凝气器Feed 补给Removal除去,拆除,取出 Containment 安全壳Polishing抛光,磨光,清洗Volume容积;卷,册,书卷;音量,响度 Diverse不同的;多种多样的;变化的 Circulating循环的 ;流动的Actuation动作,驱动,开动,刺激 Processing处理,加工;调整,搬运 Standby备用的人或物,待命Diesel柴油机,内燃机Boiler锅炉,烧水器Storm drain暴雨水沟;暴雨下水道;雨水道Drain 耗尽;排水沟,排水管,下水道 Demineralize去除矿物质,软化,除盐;脱矿Non-class非安全Process过程Trace跟踪,追踪,痕迹Plant工厂,发电厂Cathodic阴极的,负极的;阴极保护 Feedwater给水Startup启动,启动选项Gland填料压盖Seal密封,阀座,密封面Generator发电机,信号发生器Heater 加热器Incore堆内;核心Lub oil润滑油,润滑剂Meteorology气象学,气象Monitoring监控,监测,监听,追踪 Mechanical handling 机械搬运,机械装卸 Operation操作,运行,运转Passive被动的,无源的,非能动的 Sampling抽样,取样 ,采样Potable可以喝的,适合饮用的 Coolant冷却剂,冷却液Roof屋顶,顶部Roof drain屋顶排水,屋顶排水口 Radiation 辐射,放射Residual剩余的,残余的Raw生的,原始的,天然的,未经处理过的 Sanitary卫生的,清洁的,保健的 Sanitary drainage 生活污水排放系统 Drainage 排水,放水;排水系统;下水道 Spent 消耗的,用过的,废的,好近的 Spent fuel乏燃料Seismic地震的,有关地震的Secondary 二回路Vent排气,通气,泄放Relief解除,减轻,排放Diognostic诊断的,判断的ventilation 通风,换气,通风设备 recirculation再循环habitability可居住,适居住性filtration过滤,筛选hydrogen氢气pump house泵房radwaste 放射性废物radwaste building废物厂房leak泄漏chilled以经冷却的annex附属物,附件,附属建筑gasous气体的,气态的,瓦斯的 transmission传输,传送,传递 switchyard户外配电装置offsite 厂区外的,装置外的onsite 现场,厂内excitation励磁,激发voltage电压,载波电压regulation整顿,调节,管理核物理基本概念ion离子system international 国际单位制 molecule分子atom原子,威力 ,原子能nucleus原子核,核心,核子coulomb库伦electron电子proton质子neutron中子defect缺损,缺陷binding 粘合,绑定nucleon核子kinetic动力的,运动的indentity 个性,特性potential潜在的,势的positively带正电的jump跃迁negatively负的,负电性的repulsion排斥,斥力;反感uncharted不带电的neutal中立的,中性的periodic table周期表bombardment轰击,轰炸emission排放,放射,发射atomic number原子序数mass number质量数energy level能级orbital 轨道,轨道的fission分裂,裂变;裂变增值isotope同位素fussion聚变occur发生,出现decay衰退,衰减,腐败,衰变artificial人工的,人造的,虚假的,人为地barium钡bond 连接,接合,键boron硼compound复合物,混合物,化合物 bismuth铋superscript上标,上角标subscript下标uranium铀plutonium钚oxygen氧气thorium钍lithium锂deuterium氘,重氢sodium钠reaction反应、tritium氚,超重氢 carbon碳helium氦,氦气transuranium铀后的,超铀的 radioactive放射性的fissionable可裂变的mean平均数,平均值weighted加权的,加权平均fissile易裂变fragment碎片,断片momentum动量macroscopic宏观的,肉眼可见的 microscopic微观的,显微的,精微的 electromagnetic电磁mesoscopic介观的electrostatic静电的,静电学的放射性Cosmic宇宙射线Inversel相反的Proportional成比例的Ionization电离Bremsstrahlung韧致辐射Inhale吸入,吸气Photon光子,光量子Scattering散射Shielding屏蔽Collision碰撞,冲突Positron正电子Aluminum铝Accelerator加速器Beryllium铍Annihilation湮灭,淹没 Interaction相互作用 Photoelectric光电的Effect效应,效用Ingest摄取,吞下核反应Attenuation衰减Recoil反冲,弹回Amplification放大Cadmium镉Transmutation转变,嬗变Cobalt钴Diffusion扩散Nitrogen氮气Mercury汞flux通量elastic弹性的neutrino中微子inelastic非弹性的radioisotope同位素section截面thermonuclear热核反应核材料Pellet燃料芯块Moderator慢化剂,减速剂Cladding覆层,包层,包壳Rod杆,棒Sublime升华Boric acid硼酸Chromium铬Swelling膨胀,肿胀,隆起Hafnium铪Burnup 燃耗,烧完Gadolinium钆Alloy合金Indium铟Magnox镁诺克斯合金Magnesium镁Zircloy 锆合金Nickel镍Compound合成,复合物,混合物,化合物 Zirconium锆Silicon硅Fission fragment裂变产物Graphite石墨Posion毒液,阴离子Pressing模制,压制Sintering烧结,溶结Oxidize氧化,使生锈Crack开裂,破裂Dioxide二氧化碳Fertile多产的,富饶的,可繁殖的 Hedrocarbon碳氢化合物Breeding增殖,再生Ratio比率,比例 Enriched浓缩的,富集的,强化的 Thermal热的,热量的Conductivity传导率,传导性Specific特有的,专门的,比的 Viscosity粘稠,粘性,粘度Saturation饱和,饱和度,饱和状态Flux通量,流动Shaping修整的,外形塑造Sustaining支持的,持续的Self-sustaining chain reaction自持链式反应Fast Neutron快中子Fuel cycle燃料循环Hexafluxride六氟化铀Critical临界的,极限的Centrifuge离心机Supercitical超临界Gaseous气体的,气态的Siffusion扩散Criticality临界(a)Refuel换料Critical size 临界尺寸Resonance共振,共鸣Elastic有弹性的,灵活的Core堆芯,活性区Facor系数,因子,因素Thermal utilization factor热中子利用系数 Blanket再生区、Slow down慢化Permeable可渗透的Membrane膜,薄膜Spin转转,偏转Depleted废弃的,贫化的Multiplication增殖,增加,乘法 Pressurized waterreactor压水反应堆,压水堆Margin裕度,边缘Moisture水汽,湿气Inservice inspection在役检查Steam dryer干燥器Internal内部的,里面的Fuel pellet燃料芯块Pressurizer加压器,稳压器Vessel导管,容器Reactor vassel.pressure vassel压力容器 Surge波浪,浪涌,涌Surge line波动管Sectional断面的,剖面的Sectional view剖视图Shim薄垫片Chemical shim control 化学补偿控制Pit坑,洞,深坑Reactor pit堆坑Element元素,元件Assembly组件Airtight密封的,不透气的 Mechanism机械装置,机构Nozzle喷嘴,管口,接管Seed点火区Plate板块,平板Utility用户,业主,业界Fuel assembly燃料组件Vendor卖主,供货商Inlet进口,入口Outlet出口Multiple多重的,多样的Barrier栅栏,屏障,障碍Barrel桶Core barrel堆芯吊篮Burnable absorber可燃吸收体 Redundancy多余,过多,冗长,冗余度 Diversity多样性Shell壳,外壳,壳体Steam line 蒸汽管线Contain包容Reactivity反应性Insert插入,嵌入Reactivity insertion反应性引入 Concentration浓度,浓缩,集中Load负荷,转载,负荷量Dilution稀释,摊薄Buildup累积,形成In-core detector system堆内测量系统 Self-powerd neutron detector 自给能中子探测器Axial power distribution轴向功率分布 Axial 轴的,轴向的Conditioning调节,调整 Distribution分布,分配Azimuthal方位的,方位角的Tilt倾斜,倾斜度Trip跳闸,错误,旅行Reactor trip反应堆紧急停堆Turbine trip气机脱扣Departure离开,出发,启程,背离,违反 Departure from nucleate boiling偏离泡核沸腾Nucleate成核的,有核的,具核的 Reliability可信度,可靠性Forging锻造Ring-forging环锻件Velocity速度,速率Surveillance监视,监督Specimen样品,抽样Bypass旁路,绕道,避开Mount安装,支架Phosphorous磷Austenitic奥氏体的Sulfur硫磺,硫Stainless不锈的Stainless steel 不锈钢Weld焊接Flange法兰,凸缘Threshold临界值,限值,阈值 Thermalcouple热电偶Engage接合,啮合,对位Nil零,无,零分Ductility延展性,延伸性Transition转变,转移,过度Nil-ductility transition temperature零延性转变温度Tapered逐渐变细的Fluence通量,注量率,影响Dome圆屋顶,像圆屋顶一样的东西 Integrated集成的,整合的,整体的 Shroud覆盖物,遮盖物,围板Burnable absorber rod 可燃吸收棒 Californium锎Creep潜变,蠕变Indium铟Lattice格子,框架,栅格Ceramic陶瓷的,陶器的Clearance间隙看,空隙Plug塞子,栓,阻力塞Contaminate污染,玷污Reactivity worth反应性价值Grid网格,格子,栅格Specific power比功率Inconel因科镍合金,镍铬合金 Antimony锑Inherent固有的,内在的,与生俱来的 Inherent safty固有安全性Cadmium镉Passive safety非能动安全Active 主动的,活动的Active safty能动安全Spider星形架Sleeve套管,套筒Spacer隔离物Spacer grid定位格架U-tube steam generator U型管蒸汽发生器 Rated 额定的,规定的Reted load额定负荷Azinuthal方位角的,方位的Clearance间隙Amplification放大,扩大,扩增Flux-shaping通量展平Effluent废水,流出物,污水 Radioactive effluent放射性流出物 Inelastic无弹性的,非弹性的Diffusion扩散,传播Head头,封头Mount安装,装Elastic弹性的Crust地壳,面包皮Seed点火区Electromagnetic radiation电磁辐射 Electric.cable电缆Forging锻造Emit发出,射出Flange法兰Be.inversely.proportional.to反比于 Proportional比例的,成比例的Recoil反冲,弹回Orbital轨道,轨道的Enthalpy焓 Weld焊,焊接Alloy合金Valence价,化合价Chemical.identity化学性质Annular环形的Activation product活化产物Delayed慢性的American nuclear society美国核学会 Excite激发,励磁American society of mechanical engineer 美国机械工程师协会Quench急速冷却,淬火Magenesium镁Magnox镁诺克斯合金Heatup加热,升温Friction摩擦,冲突Surveillance监视,监督管理Diverging渐扩的,发散的Wear磨损,损耗Converging收敛的,汇聚的,渐缩的 Concentration浓度,含量,浓缩 Repulsion排斥,厌恶,反感,斥力 Electrostatic静电的,电的Rupture断裂,破裂Sectional断面的,剖面的,部分的 Airtight气密的,密封的Gaseous气体的,气态的Gaseous diffusion process气体扩散工艺 Weighting factor权重因子Thermal shock热冲击Centrifuge离心机,使分离Centrifuge process离心工艺 Superscript上标Bremsstrahlung韧致辐射Hexafluoride六氟化物Uranium hexafluoride六氟化铀Entropy熵,平均信息量Sintering烧结,熔结Sublime升华Dome圆屋顶,圆顶Jump跃迁Service factor使用因子Blanket再生区Manually手动的,手工的Inservice.inspection在役检查 Attenuation衰减,减少Carbide 碳化物Steam line蒸汽管线Ceramic陶瓷的,陶器的Positron正电子Manufacturer制造商Confidence置信度,信心Thrust推力,推动力Neutrino中微子Swelling肿胀Out of service退役的Microscopic微观的,显微的Shroud围板Axial power distribution轴向功率分布 Draw a pressure steam bubble稳压器汽空间建立Tapered逐渐变细的,锥形的,渐缩的 Fouling污垢,结垢Contaminate污染,弄脏,玷污Self-powered neutron detector自给能中子探测器Inhale吸入,吸气Suction吸入口Plug阻力塞,塞子Dilution稀释Signal conditioning信号调理Quality质量,品质,蒸汽干度Spin旋转,偏转Annihilation湮灭Oxidize氧化,使生锈Specimen样品,式样,标本Blade,vane叶片,叶栅,轮叶Sump集水坑,污水坑Containment sump安全壳地坑Safety injection pump安注泵Primary outlet nozzle一次初接管 Primary inlet plenum一次进水室 Primary coolant一次冷却剂Cladding包壳,包层,覆层Saturation饱和,饱和度Threshold阈值,临界值Ductility延展性,柔软性,韧性Nil无,零,零分 Transition转变,转移,过度Nil-ductility transition trmperature零延性转变温度Vender,supplier卖主,供应商Full power(FP)满功率Moserater减速剂Revolution旋转,改革,革命Rpm=revolutions per minute转每分Rps=revolutions per second转没秒 Gland steam system密封蒸汽系统 Blowdown喷放,排污,突然爆裂 Departure离开,偏离Departure from nucleate boiling偏离泡核沸腾Depleted废弃的,贫化的Depleted uranium贫化铀Mean平均值,平均数Mean free path平均自由程Pneumatic气动的,风动的Pneumatic valve气动阀Turbine driven feedwater pump气动给水泵Turbine trip气机脱扣(甩负荷) Turbine generater汽轮发电机Latent潜伏的,潜在的Latent heat 潜热Chernobyl accident切尔诺贝利事故 Thermocouple热电偶,温差电偶 Thermal reactor热中子反应堆Thermalneutron热中子Redunda ncy过多,过度,冗余,冗余度 Conponent部件,元件,设备Graphite石墨Prompt瞬间的,临界的Prompt neutron瞬发中子Outrage停堆,停堆期Flow restrictor限流器Accumulater储压器,蓄压箱Fissile易裂变的Cosmic ray宇宙射线Reinforced加强的,加固的Margin边缘,裕度Prime mover原动力,发动者Nucleus原子核Nuclei原子核Boost pressure增压Booster pressure增压泵Breeding增殖Breeding ratio增殖比Fertile可繁殖的,可增殖的Fertile material增殖材料Lattice格子,框架Viscosity粘性,粘度Mega electron-volt兆电子伏Deflection折射Occupational exposure职业照射Non-return valve止回阀Mass defect质量亏损Defect欠缺,亏损Deuterium氘,重氢Transuranium超铀的,铀后面的 Transuranium element超铀元素Uranium carbide碳化铀Actinide锕系元素Fertile isotope增殖同位素Fusion融合,聚变,核聚变Cross section横截面,断面Fissile易裂变的Canadian deuterium and uranium reactor 加拿大重水铀反应堆British gas-cooled magnox reactor英国气冷堆High temperature gas cooled reactor高温气冷堆Reactor pressure vessel反应堆压力容器 Up closure head上封头Hydraulic水力的,液压的Hydraulic stud tensioner液压螺栓拉伸机(张紧机)Xenon氙Fast breeder reactor快中子增殖堆 Advanced reactor先进反应堆European pressurized water reactor(EPR) Control element assembly控制棒组件(CEA)Control element drive mechanism控制棒驱动机构(CEDM)Barrel吊篮,桶 Reactor vassel internals反应堆内构件 Swelling肿胀,浮肿Corrode腐蚀,浸蚀Integrity完整,完全,完整性Reactor coolant pump 反应堆主泵(RCP) Shaft轴,传动轴Seal密封,封住Shaft seal pump轴封泵Nuclear steam supply system核蒸汽供应系统(NSSS)Primary system一回路系统Pressurizer稳压器(PRZ)Surge line波动管Feed regulating valve给水调节阀 Steam generater(SG)蒸汽发生器Main steam line(MSL)主蒸汽管Moisture separater reheater(MSR)汽水分离再热器(normal/abnormal)operating condition 运行工况Operater操纵员Maintenance维护,维修,保养 Surveillance监视,监督,监测Feed (water) pump给水泵Foundation地基,基础Stack烟囱,烟道Penetration穿透,贯穿件Nuclear island核岛Conventional非核的,常规的,常见的 Balance of plant(BOP)核电厂配套子项 Auxiliary system for primary loop一回路辅助系统Chemical and volume control system(CVCS)化学与容积控制系统Engineered safety feature(ESF)专设安全设施Residual heat-removal system(RHRS)余热排出系统Emergency core cooling system(ECCS)应急堆芯冷却系统Safety injection system(SI)安注系统 Refueling water storage tank(IRWST)换料水箱Diesel柴油机车,内燃机Diesel generator柴油发电机 Automatic protective system(APS)自动保护系统Instrument and control system(A&C system)仪控系统Scram/trip紧急停堆Outage 中断,停运Refueling outage换料停堆Full power operation满功率运行 Insertion插入Withdrawal抽出Reactor regulating system(RRS)反应堆调节系统Transient 瞬态,瞬时,不稳定的 Decay heat衰变热Void coefficient空泡系数Act法案Guidance导则Criteria标准,条件,准则 Radioactivity放射性Scatter分散,散射,散开Diffraction衍射Commission调试Decommissioning退役Main control room主控制室Reactivity insertion accident(RIA)反应性引入事故Inherent固有的,内在的,与生俱来的 Inherent safety固有安全Passive 被动 的,无源的Passive safety非能动安全 Redundancy冗余,过多,冗余度 Diversity多样性,多样化Regulation监管,规则Ionization电离Annihilate湮灭Attenuate 衰减的,减少Projectile 入射离子,抛射Irradiation辐射 照射Exposure照射Fluence注量Dose剂量,一剂药Equivalent当量,等量的Dose equivalent 剂量当量 Coma昏迷Cramp绞痛,抽筋World association of nuclear operators世界核电运营者协会Momentum动量,动力Diarrhea腹泻,拉肚子Tremor颤抖,发抖Vomit呕吐Somatic肉体的,身体的Symptom症状,征兆Therapy治疗,疗法Activation活化,激活Activation product活化产物Effluent废水,污水Natural background天然本底Spectrum谱,光谱,频谱,波谱Radon氡Disposal处理,处置Inertia惯性Magnitude重要性,数量级Eliminate消除,排除,根除 Mechanism ,approach,priciple,theory 机理,原理Susceptible敏感的,易受影响的Toxic有毒的Acute急剧的,极大地,严重的Seismic地震的Tornado旋风,龙卷风Heat sink热阱Coastdown惰转Excursion漂移Power excursion功率漂移Postulate假定,假设Ductility延展性Demonstration reactor示范堆 Prototype原型,蓝本Prototype reactor原型堆Commercial reactor商用堆Blanket转换区Breeding region增殖区Shim rod补偿棒Neutron source中子源Core grid堆芯栅板Reactor lattice反应堆栅格Cell栅元Core barrel堆芯吊篮Control rod drive mechanism控制板驱动机构Pressure Housing耐压壳Moderator慢化剂Irradiation rig辐照装置Reflector反射层Rabbi shuttle跑兔Black黑体Grey灰体Conversion转换Criticality临界Criticalsize临界尺寸Critical volume临界体积Subcriticality次临界Supercriticality超临界Group cross section群截面Neutron diffusion中子扩散Diffusion equation扩散方程 Undermoderated欠慢化 Overmoderated过慢化Flux flattening通量展平Critical position of control rod临界棒位 Shimming补偿Chemical shimming control化学补偿控制 Excess reactivity剩余反应性Reactivity feedback反应性系数 Reactivity coefficient 反应性系数 Temperature coefficient of reactivity反应性温度系数Load factor负荷因子After heat剩余释热Decay heat衰变热Decay power衰变功率Subcooled boiling欠热沸腾Nucleate boiling泡核沸腾Film boiling膜态沸腾Critical heat flux临界热流密度Initial core初始堆芯Scheduled discharge specific burnup计划卸料比燃耗Optimum specific burnup最佳比燃耗 Fission poison裂变毒物 Xenon equilibrium氙平衡Chemical and volume control system化学和容积控制系统Volume control tank容积控制箱 Protection system保护系统Safety action 安全动作Active component能动部件Engineered safety feature专设安全设施 High head safety injection system高压安全注射系统Low head safety injection system低压安全注射系统Accumulator安全注射箱Core spray system堆芯冷却系统 Suppression压制Pressure suppression system压力抑制系统 Recirculation再循环地坑 Recombination复合,再结合Equipment hatch设备闸门Air lock气密闸门Shutdown cooling system停堆冷却系统 Refueling water tank换料水箱Fuel handling and storge system换料装卸和贮存系统Fuel transfer tube燃料运输通道New fuel elevator新燃料升降机Fuel transfer carriage燃料运输小车 Rotating plug旋转屏蔽塞Liquid metal seal液态金属密封In-vessel refueling machine堆内换料机 Primary circuit 一回路 Commissioning调试,试运行Startup test of reactor反应堆启动测试 Precritical临界前试验Power ascension test功率提升试验 Leakage rate 泄漏率Endurance test强度测试Fuel loading装料Reactor start up反应堆启动Shuffing 倒料Discharge卸料Shutdown停堆Shutdown安全停堆Hot standby热备用Boron injection硼注入Dilution稀释,摊薄Outage中断,停机,停运 Decommissioning退役,解除运作Safety system setpoint安全系统整定值 Defence in depth纵深防御Anticipated预期的,预计的 Anticipated operational occurrences预计运行事件Accident condition事故工况Severe accident严重事故Accident management事故处理Design basis accident设计基准事故 Phase阶段,时期Injection phase注入阶段 Recirculation phase再循环阶段Loss of electrical load accident负荷丧失事故Loss of main feed water accident主给水丧失事故Fuel misposition accident燃料错位事故 Critical accident临界事故Control rod stuck卡棒事故Ejection accident弹棒事故Main steam line breake accident主蒸汽管道破裂事故Cladding ballooning包壳臌胀Cladding collapse包壳塌陷Common cause failure共因故障 Redundancy多重性,冗余,冗余度 Specification技术规格书Non-conformance不符合项,不合格项 Audit 监查,审查Per capita人均的,每人Spontaneous自发得 ,无意识的 Undergo经历,发生Emission发射,放射,排放Nuclei核,原子核,核心Scattering散射,分散,散布 Liberation解放,释放Sufficient足够的,充足的Plutonium钚Combustion燃烧,燃烧过程Strike打击,撞,碰 Graphite石墨Instrumentation测量仪表 Conventional常规的,常用的Sensor传感器Convection传送,对流Corrosion腐蚀Chloride氯化物Hazard危险Philosophy哲学Malfunction故障,误动作Postulate假Actinides锕系元素Active放射性的,有源的Acute exposure急性照射 Americium镅Arming system保险解除系统 Assignment批量Demolition爆破Munition弹药,军火Attenuation衰减Attrition消耗,损耗Inventory详细清单Beryllium铍Beta gauge测量计Biological dosimeter生物剂量仪 Bismuth铋Black lead石墨Blanket增殖区Blast爆炸,爆破Blast wave冲击波Boron trifuoride三氟化硼 Contaminate污染,玷污,沾染 Brown oxidizer二氧化铀Buffer缓冲,缓冲剂Byproduct material副产物 Californium锎Calutron同位素分离器Deuterium氘,重氢Carnotite钒钾铀矿Cavity ionization chamber空腔电离室 Centrifuge离心机Cesium铯Challenge inspection质疑监查 Civilian use民用Cobalt钴Prohibition禁止Destruction销毁Destruction毁灭,消灭Ceal隐藏,隐瞒Constant常量Radiant发光的,辐射的Ratio 比例,常数Continuous monitoring连续监测 Counter计数管Critical accident临界事故Cyclotron回旋加速器Decommission退役Density gauge密度计 Denuclearization非核化Depleted uranium贫铀Deployment部署Desired ground zero预计爆心投影点 Deterministic effect确定效应 Deterrence威慑Detonator引爆装置,雷管Dewar flask杜瓦瓶Dismantlement拆除Curve曲线,弧线Dual-use两用Dynamic pressure and overpressure动压与超压Electronvolt(ev)电子伏特Shock wave冲击波Emergency Standby紧急待命 Enrichment浓缩Escalation逐步升级,扩大,增加 Euratom欧洲原子能中心Evaluation评价Evaluation of radiation protetion辐射防护评价Excitation激发,激起Excuting commander执行指挥官 External irradiation外照射Fuel fabrication燃料组合Gas centrifuge 气体离心Gaseous diffusion气体扩散Geiger-muller counter盖革米勒计数器 Germanium锗 High leve waste强放射性废物High yield test高威力试验 Implosion bomb内爆法炸弹Induce引起,感应,感生Initiation引发Initiator起爆器Intermediate中间的,中级的 Intervention介入,干涉,干预 Iridium铱Radius半径Cruiser巡洋舰Krypton氪Nitrogen氮Lithium锂Permissiable允许Lethal致命的,致死的 Demolition爆破Munitions弹药,军需品Milling研磨Mini-nuke小型核武器Molecular分子Medium中型的Negligible微小的,轻微的 Comprehensive广泛的,综合的,全面的 Neptunium镎Neutrino中微子Nominal名义上的,标称的Artillery炮兵,大炮Aviation航空,航空工业,飞行 Warfare战争Bonus奖金,红利,意外收获 Collateral附属的Nuclear column核柱Assessment评估,估计、 Deterrent威慑,制止Doctrine声明,教条Isobar同量异位素Resonance共振,共鸣 Proliferation扩散Propulsion推进Spin自旋Abstract文摘Stockpile储存,储备Burst爆炸Survivability生存能力Threshold阈值,门槛 Transmutation转变 Transformation转变Vulnerability弱点Degradation退化Maneuver手法,操作法Yield当量Nucleon核子Hucleus原子核Nuclide核素Optimization最优化,优化 Optimum最佳Osmium鋨Photon光子Aggragate集合,总数Plasma等离子体Plumbago石墨Plutonium钚Poison毒物Polonium钋Positron正电子,阳离子 Preinitiation提前起爆Prescribed规定的,法定的Prompt neutron瞬发中子 Proportional counter正比计数管 Quality factor品质因子 Contaminiation沾染Meter仪Weighting权重Debris碎片,残渣Leakage 泄漏Radiological放射性的Radiology放射学Radiometric辐射测量的,放射测量的 Radon氡Rarefaction稀薄的Residual剩余的,残余的 Scintillation counter闪烁计数器、 Scintillator闪烁体 Semiconductor detector半导体探测器 Shallow浅的Sievert希沃特Sodium钠 Dome圆顶屋Stochastic随机的,可能的Standstill停止,停顿Strategic bomber战略轰炸机 Strontium锶Subcritical亚临界Surveillance监测Tactical nuclear weapons战术核武器 Target organ靶器官Tellurium碲Thorium钍Transmutation核嬗变Trigger触发器Tritium氚Unsealed未密封的Uranium Hexafluoride六氟化铀 Uranium mining and milling铀矿开采与选矿Uranium trtrafluoride四氟化铀 Verification核查Regime政权,制度Vertical垂直的,纵向的Vitrification玻璃化Reserve储备,保留,预备Weapon grade plutonium武器级钚 Withhold限制,抑制Stock储备Laser激光器Yellowcake黄饼Zirconium锆Auxiliary 辅助的,备用的Blowdown 冷却管突然爆裂,排污管 Compress 压缩,精简Instrument仪器,乐器,工具,仪表 Component组件,部件,成分,设备 Condensate 凝结水,冷凝水,凝结 Condenser凝气器Feed 补给Removal除去,拆除,取出 Containment 安全壳Polishing抛光,磨光,清洗Volume容积;卷,册,书卷;音量,响度 Diverse不同的;多种多样的;变化的 Circulating循环的 ;流动的Actuation动作,驱动,开动,刺激 Processing处理,加工;调整,搬运 Standby备用的人或物,待命Diesel柴油机,内燃机Boiler锅炉,烧水器Storm drain暴雨水沟;暴雨下水道;雨水道Drain 耗尽;排水沟,排水管,下水道 Demineralize去除矿物质,软化,除盐;脱矿Non-class非安全Process过程Trace跟踪,追踪,痕迹Plant工厂,发电厂Cathodic阴极的,负极的;阴极保护 Feedwater给水Startup启动,启动选项Gland填料压盖Seal密封,阀座,密封面Generator发电机,信号发生器Heater 加热器Incore堆内;核心Lub oil润滑油,润滑剂Meteorology气象学,气象Monitoring监控,监测,监听,追踪 Mechanical handling 机械搬运,机械装卸 Operation操作,运行,运转Passive被动的,无源的,非能动的 Sampling抽样,取样 ,采样Potable可以喝的,适合饮用的Coolant冷却剂,冷却液Roof屋顶,顶部Roof drain屋顶排水,屋顶排水口 Radiation 辐射,放射Residual剩余的,残余的Raw生的,原始的,天然的,未经处理过的 Sanitary卫生的,清洁的,保健的 Sanitary drainage 生活污水排放系统 Drainage 排水,放水;排水系统;下水道 Spent 消耗的,用过的,废的,好近的 Spent fuel乏燃料Seismic地震的,有关地震的Secondary 二回路Vent排气,通气,泄放 Relief解除,减轻,排放 Diognostic诊断的,判断的 ventilation 通风,换气,通风设备 recirculation再循环habitability可居住,适居住性 filtration过滤,筛选hydrogen氢气pump house泵房radwaste 放射性废物radwaste building废物厂房leak泄漏chilled以经冷却的annex附属物,附件,附属建筑 gasous气体的,气态的,瓦斯的 transmission传输,传送,传递 switchyard户外配电装置offsite 厂区外的,装置外的 onsite 现场,厂内excitation励磁,激发voltage电压,载波电压 regulation整顿,调节,管理核物理基本概念ion离子system international 国际单位制 molecule分子atom原子,威力 ,原子能 nucleus原子核,核心,核子 coulomb库伦electron电子proton质子neutron中子defect缺损,缺陷binding 粘合,绑定nucleon核子kinetic动力的,运动的indentity 个性,特性potential潜在的,势的 positively带正电的jump跃迁negatively负的,负电性的 repulsion排斥,斥力;反感 uncharted不带电的neutal中立的,中性的periodic table周期表bombardment轰击,轰炸emission排放,放射,发射atomic number原子序数mass number质量数energy level能级orbital 轨道,轨道的fission分裂,裂变;裂变增值isotope同位素fussion聚变occur发生,出现decay衰退,衰减,腐败,衰变artificial人工的,人造的,虚假的,人为地barium钡bond 连接,接合,键boron硼compound复合物,混合物,化合物 bismuth铋superscript上标,上角标subscript下标uranium铀plutonium钚oxygen氧气thorium钍lithium锂deuterium氘,重氢sodium钠reaction反应、tritium氚,超重氢carbon碳helium氦,氦气transuranium铀后的,超铀的 radioactive放射性的fissionable可裂变的mean平均数,平均值weighted加权的,加权平均fissile易裂变fragment碎片,断片momentum动量macroscopic宏观的,肉眼可见的 microscopic微观的,显微的,精微的 electromagnetic电磁mesoscopic介观的 electrostatic静电的,静电学的放射性Cosmic宇宙射线Inversel相反的Proportional成比例的 Ionization电离 Bremsstrahlung韧致辐射 Inhale吸入,吸气Photon光子,光量子 Scattering散射Shielding屏蔽Collision碰撞,冲突Positron正电子Aluminum铝Accelerator加速器Beryllium铍Annihilation湮灭,淹没 Interaction相互作用 Photoelectric光电的Effect效应,效用Ingest摄取,吞下核反应Attenuation衰减Recoil反冲,弹回 Amplification放大Cadmium镉Transmutation转变,嬗变 Cobalt钴Diffusion扩散Nitrogen氮气Mercury汞flux通量elastic弹性的neutrino中微子inelastic非弹性的 radioisotope同位素section截面thermonuclear热核反应核材料Pellet燃料芯块Moderator慢化剂,减速剂Cladding覆层,包层,包壳Rod杆,棒Sublime升华Boric acid硼酸Chromium铬Swelling膨胀,肿胀,隆起Hafnium铪Burnup 燃耗,烧完Gadolinium钆Alloy合金Indium铟Magnox镁诺克斯合金Magnesium镁Zircloy 锆合金Nickel镍Compound合成,复合物,混合物,化合物 Zirconium锆Silicon硅Fission fragment裂变产物Graphite石墨Posion毒液,阴离子Pressing模制,压制Sintering烧结,溶结Oxidize氧化,使生锈Crack开裂,破裂Dioxide二氧化碳Fertile多产的,富饶的,可繁殖的 Hedrocarbon碳氢化合物Breeding增殖,再生Ratio比率,比例Enriched浓缩的,富集的,强化的 Thermal热的,热量的Conductivity传导率,传导性Specific特有的,专门的,比的 Viscosity粘稠,粘性,粘度Saturation饱和,饱和度,饱和状态 Flux通量,流动Shaping修整的,外形塑造Sustaining支持的,持续的Self-sustaining chain reaction自持链式反应Fast Neutron快中子Fuel cycle燃料循环Hexafluxride六氟化铀 Critical临界的,极限的Centrifuge离心机Supercitical超临界Gaseous气体的,气态的Siffusion扩散Criticality临界(a)Refuel换料Critical size 临界尺寸Resonance共振,共鸣Elastic有弹性的,灵活的Core堆芯,活性区Facor系数,因子,因素Thermal utilization factor热中子利用系数 Blanket再生区、Slow down慢化Permeable可渗透的Membrane膜,薄膜Spin转转,偏转Depleted废弃的,贫化的Multiplication增殖,增加,乘法 Pressurized waterreactor压水反应堆,压水堆Margin裕度,边缘Moisture水汽,湿气Inservice inspection在役检查Steam dryer干燥器Internal内部的,里面的Fuel pellet燃料芯块Pressurizer加压器,稳压器Vessel导管,容器Reactor vassel.pressure vassel压力容器 Surge波浪,浪涌,涌Surge line波动管Sectional断面的,剖面的Sectional view剖视图Shim薄垫片Chemical shim control 化学补偿控制Pit坑,洞,深坑Reactor pit堆坑Element元素,元件Assembly组件Airtight密封的,不透气的Mechanism机械装置,机构Nozzle喷嘴,管口,接管Seed点火区Plate板块,平板Utility用户,业主,业界Fuel assembly燃料组件Vendor卖主,供货商Inlet进口,入口Outlet出口Multiple多重的,多样的Barrier栅栏,屏障,障碍Barrel桶Core barrel堆芯吊篮Burnable absorber可燃吸收体 Redundancy多余,过多,冗长,冗余度 Diversity多样性Shell壳,外壳,壳体Steam line 蒸汽管线Contain包容Reactivity反应性Insert插入,嵌入Reactivity insertion反应性引入 Concentration浓度,浓缩,集中Load负荷,转载,负荷量Dilution稀释,摊薄Buildup累积,形成In-core detector system堆内测量系统 Self-powerd neutron detector 自给能中子探测器Axial power distribution轴向功率分布 Axial 轴的,轴向的Conditioning调节,调整Distribution分布,分配Azimuthal方位的,方位角的Tilt倾斜,倾斜度Trip跳闸,错误,旅行Reactor trip反应堆紧急停堆Turbine trip气机脱扣Departure离开,出发,启程,背离,违反 Departure from nucleate boiling偏离泡核沸腾Nucleate成核的,有核的,具核的 Reliability可信度,可靠性Forging锻造Ring-forging环锻件Velocity速度,速率 Surveillance监视,监督Specimen样品,抽样Bypass旁路,绕道,避开Mount安装,支架Phosphorous磷Austenitic奥氏体的Sulfur硫磺,硫Stainless不锈的Stainless steel 不锈钢Weld焊接Flange法兰,凸缘Threshold临界值,限值,阈值 Thermalcouple热电偶Engage接合,啮合,对位Nil零,无,零分Ductility延展性,延伸性Transition转变,转移,过度Nil-ductility transition temperature零延性转变温度Tapered逐渐变细的Fluence通量,注量率,影响Dome圆屋顶,像圆屋顶一样的东西 Integrated集成的,整合的,整体的 Shroud覆盖物,遮盖物,围板Burnable absorber rod 可燃吸收棒 Californium锎Creep潜变,蠕变Indium铟Lattice格子,框架,栅格Ceramic陶瓷的,陶器的Clearance间隙看,空隙Plug塞子,栓,阻力塞Contaminate污染,玷污Reactivity worth反应性价值Grid网格,格子,栅格Specific power比功率Inconel因科镍合金,镍铬合金 Antimony锑Inherent固有的,内在的,与生俱来的 Inherent safty固有安全性Cadmium镉Passive safety非能动安全Active 主动的,活动的Active safty能动安全Spider星形架Sleeve套管,套筒Spacer隔离物Spacer grid定位格架U-tube steam generator U型管蒸汽发生器 Rated 额定的,规定的Reted load额定功率Spray喷雾,喷淋系统Auxiliary辅助的,辅助设备Feed and condensate system 给水与凝汽系统Hot leg热管段Cold leg冷管段Charge上充Letdown下泄Plugging堵漏,封堵Margin差额,储备,裕量Tube plugging margin堵管裕量In the event of在…情况下Backup备用的,备份,后备Heat exchanger换热器Overpressure protection过压保护 Economizer节约装置,节热器,省煤器 Tank槽,油箱,罐Inlet 入口,进口Plenum充实,充满,高压Inlet plenum一次进口水室Nozzle管嘴,喷嘴,管口Primary inlet nozzle一次进口接管 Outlet plenum一次出口水室Tubesheet管板Valve阀门,阀,气门Safety valve安全阀Relief valve泄压阀Downcomer下导管,下降段Quality(蒸汽)干度Void空的,空虚的Fraction分数,小部分Void fraction空泡份额Full power满功率Thermal shock热冲击Rated power额定功率Quench急冷,骤冷Light water reactor Ultimate最终的,最后的,终极的Sink 水池,水槽Ultimate最终热阱Thermal engine热机Primary loop一次回路Prime最初的,原始的Mover推进器,发动机Prime mover原动机Secondary loop二次回路Enthalpy焓Balance of plant核电厂配套子项 Entropy熵,平局信息量Primary pressureboundary一次压力边界 Feedback反馈Isolation隔离Isolation valve隔离阀Pneumatic气动的,风动的,充气的,由压缩空气操作的Pneumatic valve气动阀门Failure 失效,失败,故障Injection注射,注入,喷入Safety injection pump安注泵Fault 故障Malfunction故障,误动作,失灵 Containment安全壳Carnot efficiency卡诺效率Reinforced加固的,加强的,加钢筋的 Reinforced concrete钢筋混凝土Engine efficiency热机效率 Prestressed reinforced concrete 预应力钢筋混凝土Hot reservoir高温热源,储蓄器Cold reservoir低温热源Psi=pounds per aquare inch gauge英制压力单位Refueling换料Annular环形的,环状的Emergency core-cooling system应急堆芯冷却系统Latent 潜伏的,潜在的,隐藏的Latent heat潜热Sensible 可感觉到的,意识到,认识到 Sensible heat显热Bleed出血,流血Feed and bleed补水与排水Hydroxide氢氧化物Engineered safety features专设安全设施 Sodium hydroxide氢氧化钠Caustic苛性的,腐蚀性的,氢氧化钠 Component cooling system设备冷却水系统 Startup启动Missile飞射物,导弹Accumulator 蓄压器,蓄压箱Sump 污水坑,水槽,水坑 Containment sump安全壳地坑Motor-driven valve电动阀Flywheel飞轮Be referded to as 被称为…Blade、 bucket、 vane 叶片,叶栅 Casing缸体,箱体Work功Thrust推力,塞Impulse冲动,冲击,推动Impulse turbine冲动式汽轮机Reaction反动,反作用力,反力,反作用 Reaction turbine反冲动式汽轮机 Lashing捆扎加固Moisture水分水汽,湿气Moisture removal除湿Impulse stage 冲动级Reaction stage 反动级Throttle节流,调节,减速,节流阀Stop-throttle valve节流阀Torque扭矩Degree of reactionf反动度Revolution旋转,运转Rev/s=revolutions per second每秒…转 Rpm=revolutions per minute每分钟…转 Converging渐缩的Diverging渐扩的Nozzle喷嘴,接管Turbine generator汽轮发电机moisture separator reheater汽水分离再热器turbine driven feedwater pump 气动给水泵gland压盖,密封gland steam system密封蒸汽系统 steam dump蒸汽排放flow restrictior 限流器main team isolation valve主蒸汽隔离阀 unit机组,单位,单元hotwell热阱regulating调节,调整feed regulating valve给水流量调节阀 feedwater header给水联箱 regenerative feed heating cycle给水回热循环drain疏水step change阶跃变化wear磨损,损耗ramp change线性变化fouling污垢,结垢overflow溢出,溢流overflow valve溢流阀inventory装量,库存process steam工艺汽dump释放,排放steam dump蒸汽释放trip scram紧急停堆condenser steam dump冷凝器排放 shutdown关机,停堆atmospheric steam dump大气排放 outrage停堆期deoxidizer steam dump除氧器排放 manually手动的,手工的electric cable 电缆automatically自动的,机械的auxiliary feed water system 辅助给水系统 mass flow rate质量流率shutoff valve 关断阀shutoff停止,关闭differential pressure,pressure differential压差code of federal regulations联邦管理法规 condensate凝结液booster升压器,增压器booster pump 增压泵head水压 ,压头turbine trip气机甩扣suction 抽,吸,吸入口process heat 工艺热。
Spin effects in lepton-nucleon scattering a theoretical overview

a r X iv :h ep-ph/961214v12Oct1996SPIN EFFECTS IN LEPTON-NUCLEON SCATTERING:A THEORETICAL OVER VIEW G.RIDOLFI INFN Sezione di Genova,Via Dodecaneso 33,I-16146Genova (Italy)I review recent theoretical results on polarized deep inelastic lepton nucleon scat-tering.Some specific issues,like Q 2evolution of structure functions,the small x behaviour,and the determination of polarized parton densities,are discussed in some detail.1Introduction The physics of polarized nucleons has received increasing interest in the past few years,as we had the opportunity to see during the Workshop.Experimen-tal progress in this field has been impressive,and prospect for the next future are even more interesting.A description of the present status of the field on the experimental side is given in another chapter of these Proceedings;1here I will concentrate on the theoretical aspects.The most important tool for studying the structure of polarized nucleons is polarized deep-inelastic scattering,and most of the work presented in our Workshop was devoted to the study of polarized structure functions;I conclude this introduction recalling a few basics concepts in this field.In Section 2,I will discuss the problem of scaling violation in polarized deep inelastic scattering,in the context of perturbation theory.In Section 3I will review the theoret-ical status of the small x behaviour of polarized structure functions,and in Section 4I will discuss the extraction of polarized parton densities.Finally,in Section 5I present my conclusions.The antisymmetric part of the hadronic tensor,relevant for polarized deep inelastic lepton-nucleon scattering,is usually decomposed as W A µν(x,Q 2)=mp ·q p ρ g 2(x,Q 2) ,(1)where m,s,p are the nucleon mass,spin and four-momentum respectively,q is the virtual photon momentum,Q 2=−q 2and x =Q 2/(2p ·q ).This parametrization applies to the case of neutral lepton currents;for charged current scattering three more structure functions must be introduced.2It is easy to see that,for longitudinal polarizations s ,W Aµνis dominated by the g 1term in the Bjorken limit of large Q 2at fixed x .1Thefirst moment of g1,Γ1(Q2)= 10dx g1(x,Q2)(2)is a quantity of great interest,because it is related to the nucleon matrix element of the quark axial current jµ5= n f i=1¯ψiγµγ5ψi whose experimental determination allows important tests of theoretical predictions of perturbative QCD,and possibly provides hints about non-perturbative effects.There are two main difficulties in extractingΓ1from measurements of g1at different values of x and Q2.First,all data point must be evolved to the same Q2 before estimating the integral.Second,one needs an extrapolation criterion to estimate the contribution toΓ1from unmeasured regions of the x range. During the Workshop we have learned how both difficulties can be overcome.2Scale dependenceIn the parton model,improved by QCD radiative corrections,the structure function g1has the following expression:g1(x,Q2)= e2y C S q(xy,αs(Q2))∆g(y,Q2)+C NS q(xtwo different techniques(the operator product expansion in ref.5and the par-ton model in the light-like axial gauge for ref.6)puts this important result on afirm ground.The problem of evolving g1data points to the same Q2,which has also been treated by methods based on the assumption that the evolution of g1 is approximately equal to that of unpolarized structure functions7,can now be consistently approached within next-to-leading order QCD.This involves assigning parton distributions at an initial values of Q2in terms of a set of free parameters,using eq.(3)and the evolution equations to compute g1for values of x and Q2corresponding to data points,and performing afit of the initial condition parameters.Such an analysis has been carried out by different groups;8,9,10details on the results have been presented during the Workshop, and can be found in11,12.In section4I will discuss some specific aspects of these results.3Small-x behaviourThe problem of small(and large)x extrapolation of g1is closely related to that of Q2evolution.In the approach of refs.8,9,10,after thefit parameters have been determined,the x behaviour of g1outside the measured range is completelyfixed,and the integral can be taken over the whole range from0to 1.The associated uncertainty is controlled by the errors on thefit parameters and implicitly by the functional form chosen for the parametrization.This procedure allows to estimate the contribution toΓ1from the unmeasured re-gion taking into proper account the effect of Q2evolution.Such effects are not taken into account if,for example,the small-x contribution to thefirst moment is estimated by assuming that in the small x region g1is equal to the average of the last two data points;in fact Q2evolution at a given value of x=¯x is determined by convolution integrals,and therefore it is affected by the value of the structure function at all values x>¯x.Evolution effects at small x are particularly sensitive to higher order per-turbative corrections,which are enhanced by powers ofαs log2(1/x).It has been checked in ref.9that this is not yet a problem in the x range probed by present experiments.However,the resummation of these contributions13, although unsupported by appropriate factorization theorems,leads to a power-like rise of both the singlet and the non-singlet components of g1as x→0.In the singlet case this rise is so strong as to produce a divergentfirst moment of g1.The impact of these corrections on the evolution of the next-to-leading order best-fit non-singlet parton distributions8,9,10,which already display a strong power-like rise at small x,is rather small14.However it is important3to bear in mind that in the unpolarized case,where factorization theorems do exist,and the double logs are known to cancel down to single logs,there still seems to be some disagreement between the results expected theoretically from resummations and the HERA data on F2.4Polarized parton distributionsAs mentioned in Section2,in refs.8,9,10a next-to-leading orderfit to deep inelastic scattering data has been performed;this procedure requires the de-termination of polarized parton densities in the nucleon.Measurements of g1 are not sensitive to the individual quark distributions,but only to their sum, weighted by their squared charges;for this reason,presently available data do not allow a satisfactory determination of individual quark densities,and some ad hoc assumption on theflavor structure has to be made;for example,in ref.9 all non-singlet quark distributions are assumed to have the same x dependence, while in ref.8an SU(3)-symmetric structure of antiquark distributions is as-sumed.Future data on semi-inclusive deep inelastic scattering15may help to disentangle the distributions of individualflavours.The solution of the coupled Altarelli-Parisi equations in the singlet sector involves the determination of the polarized gluon density∆g,which is therefore measured indirectly through scaling violation,just as in the unpolarized case. On the other hand,the polarized gluon distribution,and in particular the value of itsfirst moment,is particularly important here,because it affects the determination of the singlet axial charge.It is therefore interesting to know to what extent present data allow a determination of∆g.Infig.1I present six different parametrizations of∆g,obtained8,9with the procedure outlined above using available data on polarized deep inelastic scattering with proton and deuteron targets.The three parametrizations of ref.9,labelled by AB,OS and AR,differ because they were obtained in different subtraction(factorization)schemes for collinear divergences;the curves labelled by GS-A,GS-B and GS-C,instead, were all obtained in theMS prescription in dimensional regularization must be supplemented with suitablefinite counterterms in order to recover non-singlet axial current4tions.conservation.In this scheme,adopted in refs.8,10,thefirst moment of the gluon coefficient function C1g vanishes.In a different,widely-adopted class of schemes,onefixes thefinite counterterms in such a way that thefirst mo-ment of the polarized quark distribution is scale independent,which impliesC1g=−αsthan for the others.This suggests that present data are not precise enoughto determine the exact behaviour of∆g in the whole x range.However,I would like to stress that enormous progress has been made in the determi-nation of∆g,and in particular that the situation has significantly improvedsince deuteron data have become available.Furthermore,it is interesting to observe that,using presently published data,thefirst moment of∆g can bedetermined with an accuracy of about50%;the result of ref.9,for example,is ηg≡ 10dx∆g(x,1GeV2)=1.52±0.74,(5) to be contrasted with the fact that proton data alone would even be consis-tent16withηg=0.Thefits of ref.8are consistent with the result in eq.(5).The uncertainty quoted in eq.(5)will improve very much in the near fu-ture,with the inclusion of recent deuteron data from the SMC Collaboration, and particularly if polarized deep inelastic scattering data will be collected at HERA.This possibility has been discussed during our Workshop17,and it has been concluded that an accuracy of about30%forηg is achieavable at HERA,assuming a luminosity of200pb−1in the polarized configuration.The important point here is that HERA measurements will help in determiningηg because they will allow measurements of g1in the same x-range as previous experiments,but at much larger values of Q2.It is apparent from the above discussion that a direct experimental deter-mination of∆g would be of great interst,because it would provide an indepen-dent check on the results obtained from scaling violation.There are several proposals in this direction.A direct measurements of the polarized gluon distribution can be performed by studying two-jet production with polarized beams at HERA,a process dominated by photon-gluon fusion18for relatively small x.In ref.18the conclusion is reached that a good measurement of∆g for x below0.2is achievable at HERA in the polarized configuration,if the designed conditions of energy and luminosity will be reached.This estimate is based on leading order calculations,since a next-to-leading order calculation of the cross section for polarized dijet production is lacking.A second possibility is the production of heavy quark pairs in photon-proton collisions.This possibility is being consider by the COMPASS collab-oration in the deep-inelastic scattering regime19.It has been recently pointed out20that charm asymmetries can be measured at HERA in the polarized configuration,and that significant constraints on∆g will be put by this kind of measurements.Also in this case,a next-to-leading order calculation is un-fortunately not available.65Conclusion and outlookImportant progress has been made in the study of the structure of polarized nucleons in the recent past.The structure function g1is the quantity which has undergone the most detailed analyses,since it is relatively easily accessible from the experimental point of view.The perturbative study of g1has now reached a level of accuracy which is comparable to the one we are used to in the case of unpolarized structure functions,since both coefficient functions and Altarelli-Parisi kernels are known at next-to-leading order.The results of the different analyses performed are consistent with each other,and indicate that the density of polarized gluons in the nucleons is significantly different from zero.Future data will considerably improve our knowledge of polarized parton distributions;scaling violation will be studied at a higher level of accuracy,and direct measurements of polarized asymmetries are expected in the near future. AcknowledgementsI wish to thank Stefano Forte for his considerable help in summarizing the results presented during the Workshop,and Richard Ball for the pleasant and fruitful work done together in the past two years.I would also like to thank the Organizing Committee of DIS’96for the kind and efficient hospitality in Rome.References1.A.Magnon,these Proceedings.2.M Anselmino,P.Gambino and J.Kalinowski,Z.Phys.C64(1994)267;J.Bl¨u mlein and N.Kochelev,these Proceedings.3.J.Kodaira et al.,Phys.Rev.D20(1979)627.4.G.Altarelli ang G.Parisi,Nucl.Phys.B126(1977)298.5.R.Mertig and W.L.van Neerven,Z.Phys.C70(1996)637.6.W.Vogelsang,preprint RAL-TR-96-020,hep-ph/9603366(1996);theseProceedings.7.J.Ellis and M.Karliner,Phys.Lett.B313(1993)131;A.V.Kotikov and D.V.Peshekhonov,these Proceedings.8.T.Gehrmann and W.J.Stirling,Phys.Rev.D53(1996)6100.9.R.D.Ball,S.Forte and G.Ridolfi,Phys.Lett.B378(1996)255.10.M.Gl¨u ck,E.Reya,M.Stratmann and W.Vogelsang,Phys.Rev.D53(1996)4775.11.T.Gehrmann and W.J.Stirling,these Proceedings.712.S.Forte,R.D.Ball and G.Ridolfi,these Proceedings.13.J.Bartels,B.I.Ermolaev and M.G.Ryskin,these Proceedings.14.J.Bl¨u mlein,S.Riemersma and A.Vogt,these Proceedings.15.M.Anselmino,M.Boglione,J.Hansson and F.Murgia,these Proceed-ings.16.R.D.Ball,S.Forte and G.Ridolfi,Nucl.Phys.B444(1995)287.17.J.Lichtenstadt et al.,these Proceedings.18.J.Feltesse,F.Kunne and E.Mirkes,these Proceedings.19.D.Von Harrach,these Proceedings.20.S.Frixione and G.Ridolfi,Phys.Lett.B383(1996)227;M.Stratmann and W.Vogelsang,DO-TH-96/10,RAL-TR-96-033,hep-ph/9605330.8。
物理学专有名词英汉版

激光器laser计算calculated 薄膜films衍射diffraction 等离子体plasma波长wavelength相互作用interaction 相位phase离子ion发射emission 噪声noise系数coefficient光谱spectra色散dispersion电荷charge/electric charge 共振resonance金属metal干涉interference混沌chaotic 晶格lattice金刚石diamond缺陷defects物理实验experiment 观察到observed经典classical 位相phase掺杂doped 量子力学quantum反射reflection量子阱well染料dye碰撞collision激发态excited state孤子soliton光源Optical source光子晶体photonic激光束laser光栅grating探测器detector超导体superconductor扫描scanning冷光luminescence能带band/energy band溅射sputtering多层multilayer干涉仪interferometer展开expansion装置Installation/device 带电charged 规范gauge谐振子/振荡器oscillator电磁波electromagnetic wave 电阻率resistivity格林green光学特性optical property放大器amplifier混频 mixing 谐振腔 resonator导体 conductor 一致 agreement铁磁 ferromagnetic 载流子carrier倍频Frequency doubling 调谐tuning氧化物oxide重复频率 Repeat frequency rate滤波器filter 极化子 polaron 器 synchrotron库仑 coulomb 卡罗carlo压强pressure守恒conservation 衬底上 substrate (基底,基片)自发辐射 spontaneous radiation简并degenerate场分布 field distribution 蓝宝石 sapphire万有引力 gravitational 激光等离子体 Laser plasma受激准分子激光器 Excimer laser吸收谱 absorption spectrum 条纹Stripe/stria 共轭 conjugate ?纠缠态 entangle state组态 configuration ?振子强度 oscillator strength势垒barrier 发散divergence腔内 Intra cavity ? 频谱 Frequency spectrum粗糙度 roughness金刚石薄diamondfilm非弹性 inelastic 焦距 focal 磁化强度 magnetization (intensity )结晶 crystal的infrared多层膜multilayer film自由电子Free electron沉积(物) deposition石英quartz散射dispersion耦合器coupler分数的fractional偏振光polarized light折射refraction叠加态superposition激光光束laser中文英文场论field正电子湮positron窗口window势能函数potential激光能量energy中文英文溶胶-凝胶sol-gel环形腔ring禁带band格林函数green ' s 中文英文普通物理physics核子nucleon掺yb yb离子注入ion反射镜mirror熔体melt相位共轭conjugation 热传导heat中文英文光吸收absorption真空态vacuum场发射emission红外光谱infrared 空位vacancy钙钛矿perovskite腔场cavity偏压bias中文英文磁性能magnetic非线性效nonlinear光子数photon无限infinite有序ordered爱因斯坦einstein演示demonstration 中文英文电弧arc激光作用laser自由能energy最大值maximum误差分析 error加速器 accelerator nd :yag yag外差 heterodyne 中文英文透过率 transmission反铁磁 antiferromagnetic 分岔 bifurcation磁电阻效magnetoresistance发散角 divergence 宇宙线 cosmic法拉第 faraday 中文 英文 霍尔 hall红宝石 ruby 微扰理论 perturbation电场强度 field 时空 space-time约束 confinement 中文英文成像系统 imaging相互作用potential矩阵方法 matrix ktp 晶体 ktp胶子 gluon 激光泵浦 pumped电介质 dielectric中文 英文顺磁 paramagnetic高温超导 superconducting 穆斯堡尔 mossbauer非弹性散inelastic液态 liquid 中文英文激光波长 wavelength双原子分diatomic熔化 melting光纤通信 optical准分子激excimer衍射分析 diffraction 光谱研究spectra金刚石膜 diamond导率 conductivity 迭加 superposition 中文英文行波 wave原子力显afm反射系数 reflection 对比度contrast 表面粗糙roughness猝灭quenching规范场 gauge归一化 normalized 矩阵法 matrix 奇偶 even 中文 英文 天线antenna脉冲激光laser光电子能photoelectron势函数 potential 高温超导体 superconductors红光 red光声 photoacoustic抛物 parabolic 激光照射 laser对流convection抽运功率 pump 展开法 expansion 中文 英文狭义相对论relativity小信号增gain凝聚态 condensed 传输线 transmission本征 intrinsic 宝石激光器 sapphire曝光 exposure 波分复用 wavelength自由电子fel色散特性 dispersion光速 light荷电charged淀积 deposition近似方法 approximation 溅射法 sputtering受激喇曼raman能量损失 energy 红外吸收infrared换能器 transducer 康普顿compton皮秒 picosecond 总能量 energy基模 mode 价带 valence扫描电子scanning物理课程 physics 失配mismatchcarlo 方carlo固溶体 solid 光纤耦合couplingVibration 振动 Rotation 旋转 Translation 平动Infrared spectroscopy 红外光谱 Bending 弯曲 Dipole 偶Asymmetric 不对称 Stretch 拉伸Rocking 左右摇摆 Wagging 上下摇摆 Twisting 扭转Scissoring 剪刀式摇摆symmetric stretching 对称伸缩 Symmetric 对称Factor influencing 影响因子 Rayleigh 瑞利 Isotropy 各向同性 anisotropy 各向异性Incident electromagnetic wave 入射电磁波 Probing 探索Single molecules 单分子Single nanometer particle 单个纳米粒子Plasma 等离子体Power exhaust 功率损失Alpha particle transport 粒子输运 Excitation 激发 Ionization 电离Recombination 重组Radiant 辐射的,发光的,发热的 decay 腐烂 Impurities 杂质inelastic 非弹性的adjoint 伴随矩阵Gas doping 气体参杂。
放射治疗词汇对照表

energy absorption,能量吸收 energy transfer,能量转移 linear,线性 mass,质量 attenuator,衰减介质 auger,俄歇 auger effect,俄歇效应 auger electron,俄歇电子 autoradiography,自动放射影像 auxiliary system of linac,直线加速器的辅助系统 average life,平均寿命 Avogadro’s number,阿伏伽德罗常数 backscatter factor,反散因子或反散射因子 backscattering,反向散射 badge,剂量章 film,胶片 OSL,光释光 TLD,热释光 barrier,屏蔽 leakage barrier,漏射屏蔽 primary barrier,主防护屏蔽 scatter barrier,散射防护屏蔽 secondary barrier,次防护屏蔽 barrier thickness determination,屏蔽厚度的确定 barrier transmission factor,屏蔽穿透因子 Basic Safety Standards,基本安全标准 BAT system,NOMOS 公司生产的一种 B 型超声引导的图像采集和定位系统 Bateman,人名 Batho power law,Batho 指数法 beam,射束、束流 flatness,平坦度 geometry,几何参数 beam modifiers,射束修饰器 output,输出量 beam profile,射束线(剂量)分布 quality index,辐射质指数 beam transport system,束流输运系统 beam quality specification,射线质指标 for electron beams,电子线的 for kilovoltage beams,千伏级射线的 for megavoltage beam,兆伏级射线的 beam stopper,挡线器 beam symmetry,射线束对称性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -p h /9312289v 1 15 D e c 1993OSU–1101UTHEP–268Comment on:“Nucleon-nucleon scattering lengthsin QCD sum rules”R.J.Furnstahl Department of Physics The Ohio State University,Columbus,Ohio 43210T.Hatsuda Institute of Physics University of Tsukuba,Tsukuba,Ibaraki 305,Japan (December,1993)In a recent Letter [1],Kondo and Morimatsu present a QCD sum rule calculation of nucleon-nucleon scattering lengths.They also relate the empirical scattering lengths to the nucleon mass shift δM in nuclear matter to cast doubt on the “linear density approximation.”In this Comment,we point out flaws in both parts of their analysis.It is useful to start with the (nonrelativistic)optical potential for a nucleon in nuclearmatter in the lowest order of the multiple scattering expansion [2]V (q )∼ k F τ(q ,k )d 3k ,(1)where τ(q ,k )is the effective forward-scattering amplitude for an incoming nucleon with momentum q and a nucleon in nuclear matter with momentum k [2].If |q |≫k F ,one can approximate V (q )by neglecting the momenta of nucleons in the Fermi sea and replacing τ(q ,k )by the amplitude in free space t (q ,k ):V (q )∼t (q ,0)ρ,which is the usual impulse approximation.However,in Ref.[1],q =0is taken after the im-pulse approximation.Applying this approximation with |q |≪k F drastically overestimatesthe mass shift.In[1],the scattering lengths are used to predict Re V(0)≃−600MeV at saturation density.(δM in Ref.[1]is−Re V(0)here.)If formula(1)is used with q=0,one should conclude instead that V(0)∼ k Fτ(0,k)d3k. Then it is clear that t(0,0),which is determined by the large scattering lengths due to the(near)zero-energy bound states in the s-wave channel,has little to do withδM at nuclear matter density.Instead,the main effect is the average interaction of the zero-momentum“incoming”nucleon with thefinite momentum nucleons in the Fermi sea.The antisymmetrization of the projectile with the target nucleons neglected in(1)also becomes important for small q;detailed calculations show|Re V(0)|<100MeV[2].To obtain a meaningful expression forδM that is linear in the density,one can pull out the average of the effective nucleon-nucleon interaction in medium.Thus,the“linear density approximation”follows naturally from a mean-field treatment of the nucleon optical potential or self-energy in medium.This is compatible withfinite-density QCD sum rules, since an extrapolation from short times implies that mean-field physics should be best re-produced,and the leading condensates are apparently well-approximated as being linear in density[3].For this reason,the sum rule calculations in Ref.[3]focus separately on the Lorentz scalar and vector self-energies,because relativistic phenomenology suggests that the mean-field components dominate.In contrast,δM involves large cancellations between these components,which imply that neglected effects may become important.Despite all this,the QCD sum rule calculation presented in Ref.[1]seems to predict qualitatively correct scattering lengths.We argue that this does not make sense physically; if one applies sum rule methods to calculate scattering lengths,one should not expect to recover details about(near)zero-energy bound states.In fact,the sum rule calculation in Ref.[1]is not correct,and also greatly overestimates the mass shift.The sum rule calculation in Ref.[1]follows from thefinite-density sum rules of Ref.[4] by taking a derivative with respect to the density.However,in Ref.[5],it is shown that the sum rules in Ref.[4]are missing an important element,i.e.,part of the continuum contri-bution,which is asymmetric atfinite density.In some formulations[3,6]this is numericallyunimportant,but in the present case,contributions from the asymmetric continuum are large and completely alter the results[5].As a result,conclusions drawn in Ref.[1]from this sum rule about the size of the implied mass shift and the role of the vector density of quarks are incorrect.In summary,our conclusions are opposite to those of Ref.[1].In a consistent QCD sum rule calculation,nucleon mass shifts in nuclear matter are not overestimated by sum rules that approximate condensates to linear order in the density.Furthermore,empirical nucleon-nucleon scattering lengths have little to do with these mass shifts.Finally,the sum rule calculations of Refs.[1,4],when corrected,give results consistent with Ref.[3],but are much more sensitive to details.PACS numbers:13.75.Cs,11.50.Li,12.38.Lg,21.65.+fREFERENCES[1]Y.Kondo and O.Morimatsu,Phys.Rev.Lett.71,2855(1993).[2]H.Feshbach,Theoretical Nuclear Physics:Nuclear Reactions,(John Wiley&Sons,NewYork,1992).[3]R.J.Furnstahl,D.K.Griegel,and T.D.Cohen,Phys.Rev.C46,1507(1992).[4]Y.Kondo and O.Morimatsu,Institute for Nuclear Study report INS-Rep.-933,(June1992).[5]R.J.Furnstahl,Ohio State University Report#OSU–0901,nucl-th/9311002,(1993).[6]T.Hatsuda,H.Høgaasen,and M.Prakash,Phys.Rev.Lett.66,2851(1991).。