北师大版七年级上册数学[一元一次方程应用“希望工程”义演与追赶小明(提高版)知识点整理及重点题型]

合集下载

北师大版初中数学七年级上册5.6 应用一元一次方程——追赶小明 课件

北师大版初中数学七年级上册5.6 应用一元一次方程——追赶小明 课件
答:货车每小时行70千米.
课堂检测
5.6 应用一元一次方程——追赶小明/
基础巩固题
1
2.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷, 驾驶员摁一下喇叭,4s后听到回声,已知空气中声音的传播 速度约为340 m/s,这时汽车离山谷多远?
解:72 km/h=20 m/s,设听到回声时,汽车离山谷x m. 由题意,得2x+4×20=340×4, 解得x=640.






巩固练习
5.6 应用一元一次方程——追赶小明/
解:(2) 设y秒后相遇,则可得方程: 4y+6y=100 解得:y=10
相遇问题—相向而行
等量关系:甲所用时间=乙所用时间; 甲的路程+乙的路程=总路程.
探究新知
5.6 应用一元一次方程——追赶小明/
行程问题 ①追及问题:男跑路程AC-女跑路程BC=相距路程AB.
所以,追上小明时,距离学校还有280米.
巩固练习
5.6 应用一元一次方程——追赶小明/
小彬和小强每天早晨坚持跑步,小彬每秒跑4米,小强 每秒跑6米 .
(1)如果小强站在百米跑道的起点处,小彬站在他前 面10米处,两人同时同向起跑,几秒后小强能追上小彬? 请用线段图表示!
4x
6x 解:设x秒后小强追上小彬,
课堂检测
5.6 应用一元一次方程——追赶小明/
拓广探索题
解:将所有时间设为x小时,
(1)60x+40x=300, (2)
解得x=3. 解得x=2.85.
(3)60x=300+40x,
解得x=15.
(4)
解得x=16.
慢车行驶距离为:

北师大版七年级上册数学[一元一次方程应用“希望工程”义演与追赶小明(提高版)知识点整理及重点题型]

北师大版七年级上册数学[一元一次方程应用“希望工程”义演与追赶小明(提高版)知识点整理及重点题型]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习一元一次方程应用(二)----“希望工程”义演与追赶小明(提高)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.要点四、工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.【典型例题】类型一、“希望工程”义演(分配问题)1.(2016春•建湖县校级月考)用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【思路点拨】设用x张做盒身,则用(280﹣x)张做盒底,根据题意可知题目中的等量关系:制盒身铁皮的张数×每张铁皮可制盒身的个数×2=制盒底铁皮的张数×每张铁皮可制盒底的个数,据此解答.【答案与解析】解:设用x张制盒身,则用(280﹣x)张制盒底,由题意得:2×15x=40(280﹣x),解得:x=160,280﹣x=120.答:用160张制盒身,120张制盒底.【总结升华】此题关键是找出题目中列等量关系式的语言:一个盒身与两个盒底配成一套罐头盒.举一反三:【变式】某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案】解:设安排x人挖土,则运土的有(120-x)人,依题意得:5x=3(120-x),解得x=45.120-45=75(人).答:应安排45人挖土,75人运土.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【总结升华】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【总结升华】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km.3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得: x=24答:卡车的速度为24千米/时.【总结升华】采用“线段示意图”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆流问题)5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得. 1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米.【总结升华】这是航行问题,本题需分类讨论,采用“线段示意图”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.5.环形问题6.(2015春•海南校级月考)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?【思路点拨】在环形跑道上两人同向而行相遇属于追及问题,等量关系为:甲路程﹣乙路程=400,两人背向而行属于相遇问题,等量关系为:甲路程+乙路程=400.【答案与解析】解:设二人同时同地同向出发,x 分钟后二人相遇,则:240x ﹣200x=400,解得:x=10.设两人背向而行,y 分钟后相遇,则:240y+200y=400,解得:y=.答:二人同时同地同向出发,10分钟后二人相遇;若背向跑,分钟后相遇. 【总结升华】本题考查环形跑道上的相遇问题和追及问题.相遇问题常用的等量关系为:甲路程+乙路程=环形跑道的长度,追及问题常用的等量关系为:甲路程﹣乙路程=环形跑道的长度.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x-65x =3×90 2707x =而2702072=+9077⨯⨯⨯7360 答:乙第一次追上甲时在AD 边上.类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:3013x =. 答:打开丙管后3013小时可把水放满. 【总结升华】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1. 举一反三:【变式】(2015春•沙坪坝区期末)一件工作,甲单独做15小时完成,乙单独做10小时完成,甲先单独做9小时,后因甲有其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?【答案】解:设乙还要x 小时完成,根据题意得:,解得:x=4.答:余下的任务由乙单独完成,那么乙还要4小时完成.。

北师大版七年级上册数学5.6应用一元一次方程-追赶小明教案

北师大版七年级上册数学5.6应用一元一次方程-追赶小明教案
-学生需要掌握将实际问题抽象成一元一次方程的能力。
-强调速度、时间、距离三者之间的关系,并能够用方程表达。
b.方程的列立与求解:
-重点讲解如何根据问题情境列出正确的一元一次方程。
-强调方程求解的步骤,包括移项、合并同类项、化简等。
c.应用与实践:
-通过多个实际问题的案例分析,使学生熟练运用一元一次方程解决问题。
同学们,今天我们将要学习的是《应用一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同速度下开始走,然后一个人开始追赶另一个人的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在追赶问题中的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调如何正确列立方程和求解方程这两个重点。对于难点部分,比如理解速度差与时间差的关系,我会通过具体的例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题,如追赶小明的各种变体。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过角色扮演和计时,学生可以直观地看到速度和时间差对追赶过程的影响。
其次,在方程的列立和求解过程中,有些同学容易犯错,比如移项时忘记变号,合并同类项出错等。这说明他们在基本的数学运算方面还需要加强练习。我计划在课后为他们提供一些额外的练习题,巩固方程求解的基本技能。
此外,小组讨论环节,同学们的参与度较高,但也有一些小组在讨论过程中偏离了主题。为了提高讨论效率,我将在下次教学中明确讨论要求,并在讨论过程中适时引导,确保每个小组都能围绕主题展开讨论。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。

通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。

本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。

二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。

但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。

此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。

三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。

2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。

四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。

2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。

五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。

2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。

4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。

六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。

2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。

3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。

七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。

提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。

通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。

教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。

二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。

三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。

3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。

四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。

五. 教学方法采用问题驱动法、情境教学法和合作交流法。

通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。

六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。

2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。

例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。

北师大数学七年级上册第五章 应用一元一次方程——“希望工程“义演

北师大数学七年级上册第五章 应用一元一次方程——“希望工程“义演

探究新知
5.5 应用一元一次方程——“关系?
成人票数+学生票数=1000张 (1)
成人票款+学生票款=6950元 (2)
问题2:设售出的学生票为x张,填写下表
学生
成人
票数/张
x
1000-x
票款/元
5x
8(1000-x)
问题3:列方程解应用题,并考虑还有没有另外的 解题方法?
探究新知
5.5 应用一元一次方程——“希望工程”义演/
设所得学生票款为y元,填写下表:
票款/元
学生 成人 y 6950-y
票数/张 y/5 (6950-y)/8
根据相等关系成人票数+学生票数=1000张 , 列方程得: 5y+69580−y=1000
解方程 8y+5(6950-y)=40000
8y+34750-5y=40000
课堂小结
5.5 应用一元一次方程——“希望工程”义演/
实际问题 抽象 数学问题 不
分析 已知量、未知量、 等量关系




合理 解释
解的 合理性
验证
方程 的解
求出
方程
课后作业
5.5 应用一元一次方程——“希望工程”义演/
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
2. 建立方程模型解决实际问题,发展分析问题,解决 问题的能力.
1.借助表格分析复杂问题中的数量关系,从而建立方 程解决实际问题.
探究新知
5.5 应用一元一次方程——“希望工程”义演/
知识点 用一元一次方程解决数量分配问题
某文艺团体为“希望工程”

北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计

北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计

北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计一、教学目的1.了解什么是一元一次方程。

2.掌握应用一元一次方程解决实际问题的方法和技巧。

3.引导学生探究数学问题,培养学生的问题解决能力。

4.培养学生的合作意识和团队精神。

二、教学内容1.一元一次方程的概念。

2.应用一元一次方程解决实际问题。

3.追赶问题的应用。

三、教学重点和难点1.教学重点:应用一元一次方程解决实际问题。

2.教学难点:追赶问题的应用。

四、教学准备1.教师准备:•教学PPT•小黑板、彩笔、橡皮•追赶问题的示意图和解答步骤2.学生准备:•计算器•学习笔记和必备工具五、教学步骤第一步:导入与引入1.教师向学生介绍今天的教学内容,重点是什么,难点是什么。

并询问之前的学习情况,为接下来的教学做好铺垫。

2.通过实例和图片引入追赶问题的应用。

第二步:基础概念讲解1.介绍一元一次方程的概念,如何表示和解决方程。

2.讲解如何化解包含绝对值的方程。

第三步:追赶问题的讲解1.解释追赶问题的含义,介绍它是怎样发生的。

2.引导学生通过观察和思考,自己提出问题,搜集数据,系统地分析产生追赶问题的原因。

3.通过示例和图片讲解追赶问题的解决方法和步骤。

4.讲解如何应用一元一次方程解决追赶问题,引导学生运用数学知识解决实际问题。

第四步:练习和实战1.通过课堂练习和习题让学生掌握课程知识,并巩固运用技巧。

2.通过设置实际情境,让学生到实地进行模拟实战演练。

第五步:作业布置结合教学内容,布置课后作业,以巩固自己的知识与技能。

六、教学反思通过这堂课的教学,学生掌握了一元一次方程的概念和应用技巧,也算是成功解决了课题中的教学难点——追赶问题应用。

但教学途中也暴露出来的一些问题,比如有的学生还是不能完全掌握知识点,有些操作不够规范等。

这也提醒我们教师不仅要关注班级整体水平的提升,更要关注每个学生的个体能力,为他们提供个性化的教学方案,确保他们都能学有所获,更好地实现知识的掌握。

七年级数学上册一元一次方程应用一元一次方程—希望工程义演新版北师大版(与“数学”相关文档共8张)

七年级数学上册一元一次方程应用一元一次方程—希望工程义演新版北师大版(与“数学”相关文档共8张)
七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版
第第55页页,/共共8页8。页
第第66页页,/共共8页8。页
第第77页页,/共共8页8。页
第第88页页,/共共8页8。页
七年级数学上册5一元一次方程5应用一元一
次方程—希望工程义演新版北师大版
1
第第11页页,/共共8页8。页
第第22页页,/共共8页8。页
七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习一元一次方程应用(二)----“希望工程”义演与追赶小明(提高)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.要点四、工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.【典型例题】类型一、“希望工程”义演(分配问题)1.(2016春•建湖县校级月考)用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【思路点拨】设用x张做盒身,则用(280﹣x)张做盒底,根据题意可知题目中的等量关系:制盒身铁皮的张数×每张铁皮可制盒身的个数×2=制盒底铁皮的张数×每张铁皮可制盒底的个数,据此解答.【答案与解析】解:设用x张制盒身,则用(280﹣x)张制盒底,由题意得:2×15x=40(280﹣x),解得:x=160,280﹣x=120.答:用160张制盒身,120张制盒底.【总结升华】此题关键是找出题目中列等量关系式的语言:一个盒身与两个盒底配成一套罐头盒.举一反三:【变式】某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案】解:设安排x人挖土,则运土的有(120-x)人,依题意得:5x=3(120-x),解得x=45.120-45=75(人).答:应安排45人挖土,75人运土.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【总结升华】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【总结升华】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km.3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得: x=24答:卡车的速度为24千米/时.【总结升华】采用“线段示意图”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆流问题)5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得. 1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米.【总结升华】这是航行问题,本题需分类讨论,采用“线段示意图”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.5.环形问题6.(2015春•海南校级月考)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?【思路点拨】在环形跑道上两人同向而行相遇属于追及问题,等量关系为:甲路程﹣乙路程=400,两人背向而行属于相遇问题,等量关系为:甲路程+乙路程=400.【答案与解析】解:设二人同时同地同向出发,x 分钟后二人相遇,则:240x ﹣200x=400,解得:x=10.设两人背向而行,y 分钟后相遇,则:240y+200y=400,解得:y=.答:二人同时同地同向出发,10分钟后二人相遇;若背向跑,分钟后相遇. 【总结升华】本题考查环形跑道上的相遇问题和追及问题.相遇问题常用的等量关系为:甲路程+乙路程=环形跑道的长度,追及问题常用的等量关系为:甲路程﹣乙路程=环形跑道的长度.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x-65x =3×90 2707x =而2702072=+9077⨯⨯⨯7360 答:乙第一次追上甲时在AD 边上.类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:3013x =. 答:打开丙管后3013小时可把水放满. 【总结升华】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1. 举一反三:【变式】(2015春•沙坪坝区期末)一件工作,甲单独做15小时完成,乙单独做10小时完成,甲先单独做9小时,后因甲有其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?【答案】解:设乙还要x 小时完成,根据题意得:,解得:x=4.答:余下的任务由乙单独完成,那么乙还要4小时完成.。

相关文档
最新文档