上海市浦东新区2013-2014学年八年级下学期期末质量测试数学试题部分答案
上海市浦东新区八年级下期末数学试卷(有答案)(精品)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.在下列方程中,分式方程是()A. x2=1 B. √x2=1 C. 2x=1 D.√x=12.函数y=-x-3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A. xx//xxB. xx=xxC. ∠xxx=∠xxxD. ∠xxx=∠xxx二、填空题(本大题共14小题,共28.0分)5.方程2x3+54=0的解是______.6.方程√x+2=x的解是x=______.7.如果{x=−1x=2是方程mx2+y2=xy的一个解,那么m=______.8.当k=______时,方程kx+4=3-2x无解.9.当m=______时,函数y=(m-1)x+m是常值函数.10.已知一次函数y=kx+b的图象经过第一象限,且它的截距为-5,那么函数值y随自变量x值的增大而______.11.已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是______.12.已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13.若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.16. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE 折叠,使点C 落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF 等于______度.18. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______.三、计算题(本大题共1小题,共6.0分)19. 解方程:7x x 2−5x −6=1x +1+2.四、解答题(本大题共7小题,共54.0分)20. 解方程组:{x 2+xx −2x 2=0x +3x =8.21. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.22. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ .(1)用向量x⃗⃗⃗⃗ 、x ⃗⃗⃗⃗ 、x ⃗⃗⃗⃗ 表示下列向量:向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______,向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______,向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______; (2)求作:x⃗⃗⃗⃗ +x ⃗⃗⃗⃗ .23. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM 的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD =2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC ∥OA ,∠OAB=∠CAB ,∴∠ABC=∠OAB ,∴∠ABC=∠CAB ,∴AC=BC .设点C 的坐标为(x ,4),则(x-8)2+42=x 2,解得x=5,∴点C 的坐标为(5,4).故答案为(5,4).求出A 、B 两点的坐标,发现OA ≠OB ,∠OAB ≠∠OBA ,所以四边形AOBC 是梯形,且对角线AB 平分∠CAO 时只能BC ∥OA ,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB ,那么AC=BC .设点C 的坐标为(x ,4),列出方程(x-8)2+42=x 2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC 是解题的关键.19.【答案】解:去分母得:7x =x -6+2(x -6)(x +1),整理得:x 2-8x -9=0,解得:x 1=9,x 2=-1,经检验x =9是分式方程的解,x =-1是增根,则原方程的解为x =9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2x =0x +3x =8或{x −x =0x +3x =8, 解这两个方程组得原方程组的解为:{x =8x =−16或{x =2x =2.【解析】因式分解得出x2+xy-2y2=(x+2y)(x-y),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想.21.【答案】解:∵直线y=kx+b与直线y=-1x+k都经过点A(6,-1),3−1=6x+x,∴{−1=−2+xx=1,解得{x=−7x+1,∴两条直线的解析式分别为y=x-7和y=-13x+1与x轴交于点C(3,0),∴直线y=x-7与x轴交于点B(7,0),直线y=-13×4×1=2,∴S△ABC=12即这两条直线与x轴所围成的三角形面积为2.【解析】依据直线y=kx+b与直线y=-x+k都经过点A(6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-x⃗⃗⃗⃗ x⃗⃗⃗⃗ -x⃗⃗⃗⃗ x⃗⃗⃗⃗ -x⃗⃗⃗⃗【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-, 故答案为-,-,-.(2)延长EC 到,使得C=EC ,连接B ,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC 到,使得C=EC ,连接B ,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD 交BC 于E ,∵∠C =90°,∴BC =√xx 2−xx 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答. 25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有400x −50-360x=6, 整理得3x 2-170x -9000=0,解得x 1=90,x 2=-1003(舍去), 经检验,x =90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:√102−ℎ2+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=1(10+24-x)×8,即y=-4x+136(0<x<24)2(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。
上海市浦东新区八年级下期末数学试题(有答案)

上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 在下列方程中,分式方程是( ) A. x 2=1 B. √x 2=1C. 2x =1D. √x =1 2. 函数y =-x -3的图象不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 在下列事件中,确定事件共有( )4. ①买一张体育彩票中大奖;5. ②抛掷一枚硬币,落地后正面朝上;6. ③在只装有2只红球、3只黄球的袋子中,摸出1只白球;7. ④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个8. 在四边形ABCD 中,对角线AC 和BD 相交于点O ,AB =CD ,添加下列条件后能判定这个四边形是平行四边形的是( )A. AD//BCB. AO =COC. ∠ABC =∠ADCD. ∠BAC =∠DCA二、填空题(本大题共14小题,共28.0分)9. 方程2x 3+54=0的解是______.10. 方程√x +2=x 的解是x =______.11. 如果{y =−1x=2是方程mx 2+y 2=xy 的一个解,那么m =______.12. 当k =______时,方程kx +4=3-2x 无解.13. 当m =______时,函数y =(m -1)x +m 是常值函数.14. 已知一次函数y =kx +b 的图象经过第一象限,且它的截距为-5,那么函数值y 随自变量x 值的增大而______.15. 已知一次函数y =2x +5,当函数值y <0时,自变量x 值的取值范围是______.16. 已知一辆匀速行驶汽车的路程S (千米)与时间t (时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.17.18.19. 若一个多边形的内角和等于外角和,那么这个多边形的边数是______.20. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.21. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.22. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.23. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE 折叠,使点C落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF 等于______度.24.25.26. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______.三、计算题(本大题共1小题,共6.0分)27. 解方程:7x x 2−5x−6=1x+1+2.28.29.30.31.32.33.34. 四、解答题(本大题共7小题,共54.0分)35. 解方程组:{x 2+xy −2y 2=0x+3y=8.36.37.38.39.40.41.42.43. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积. 44.45.46.47.48.49.50.51. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,AF ⃗⃗⃗⃗⃗ =c ⃗ . 52. (1)用向量a ⃗ 、b ⃗ 、c⃗ 表示下列向量:向量CE ⃗⃗⃗⃗⃗ =______,向量BD ⃗⃗⃗⃗⃗⃗ =______,向量DE ⃗⃗⃗⃗⃗⃗ =______; 53. (2)求作:b ⃗ +c ⃗ .54. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM 的长.55.56.57.58.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.59.(1)求证:四边形DEFG是平行四边形;60.(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.61.62.63.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.64.65.66.67.68.69.70.71.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.72.(1)求y关于x的函数解析式,并写出它的定义域;73.(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b <0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD =2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C 的坐标为(5,4).故答案为(5,4).求出A 、B 两点的坐标,发现OA ≠OB ,∠OAB ≠∠OBA ,所以四边形AOBC 是梯形,且对角线AB 平分∠CAO 时只能BC ∥OA ,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB ,那么AC=BC .设点C 的坐标为(x ,4),列出方程(x-8)2+42=x 2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC 是解题的关键.19.【答案】解:去分母得:7x =x -6+2(x -6)(x +1),整理得:x 2-8x -9=0,解得:x 1=9,x 2=-1,经检验x =9是分式方程的解,x =-1是增根,则原方程的解为x =9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2y =0x+3y=8或{x −y =0x+3y=8,解这两个方程组得原方程组的解为:{y =8x=−16或{y =2x=2.【解析】因式分解得出x 2+xy-2y 2=(x+2y )(x-y ),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想. 21.【答案】解:∵直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),∴{−1=−2+k −1=6k+b ,解得{b =−7k=1,∴两条直线的解析式分别为y =x -7和y =-13x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-13x +1与x 轴交于点C (3,0),∴S△ABC=1×4×1=2,2即这两条直线与x轴所围成的三角形面积为2.【解析】依据直线y=kx+b与直线y=-x+k都经过点A(6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-c⃗a⃗-b⃗ a⃗-c⃗【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-,故答案为-,-,-.(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC 到K ,使得CK=EC ,连接BK ,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD 交BC 于E ,∵∠C =90°,∴BC =√AB 2−AC 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答. 25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有400x−50-360x =6,整理得3x 2-170x -9000=0,解得x 1=90,x 2=-1003(舍去),经检验,x =90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x 千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可. 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH ⊥BC 于H .设AH =h .由题意:√102−ℎ2+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),(10+24-x)×8,即y=-4x+136(0<x<24)∴y=12(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。
2013-2014学年沪科版八年级数学下期末检测题及答案解析_PDF压缩

形,它的一组对边分别平行且等于四边形对角线的一半.因为正方形四边相等,邻边垂
直,所以原四边形的对角线相等且互相垂直.故选
D.
11. B 解析: 去掉一个最高分和一个最低分是为了减少特殊数据对平均数的影响
.去
掉一个最高分 95 分,去掉一个最低分 75 分后,剩余的四个分数分别是 77,82, 78,
42
7 2
2
9 ,∴ 这个直角三角形
的斜边长是 3,故选 B.
8. C 解析:∵ AB ∥ EF ,∴ ∠A=∠ 2=50°. ∵ AC ∥ DF ,∴ ∠ 1= ∠ A=50°.故选 C .
9.B 解析: 根据菱形的对角相等得∠ ADC =∠ B=70°.∵ AD =AB =AE ,∴ ∠ AED =
.
14. 三 角 形 的 每 条 边 的 长 都 是 方 程
的 根 ,则 三角 形的 周长 是
_______________ .
15.如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰
长如图所示,依此规律第 10 个图形的周长为
.
16.已知关于 的方程
的一个根是 ,则 _______.
期末检测题
(时间 :120 分钟,满分 :120 分)
一、选择题(每小题 3 分,共 36 分)
1. 若
, 则 的值为(
)
A.
B.8
C. 9
D.
2. 下列方程中,一定有实数解的是(
)
A. x2 1 0 B. (2 x 1)2 0 C. (2 x 1)2 3 0 D.
3. 下列二次根式 , 不能与 12 合并的是 ( )
,
x4
1 . ∴ 较小根为 ,即 n
上海市浦东新区八年级下册期末数学试题(有答案)

上海市浦东新区八年级期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 在下列方程中,分式方程是( ) A. x 2=1 B. √x 2=1C. 2x =1D. 2√x =1 2. 函数y =-x -3的图象不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 在下列事件中,确定事件共有( )①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4. 在四边形ABCD 中,对角线AC 和BD 相交于点O ,AB =CD ,添加下列条件后能判定这个四边形是平行四边形的是( )A. AD//BCB. AO =COC. ∠ABC =∠ADCD. ∠BAC =∠DCA 二、填空题(本大题共14小题,共28.0分)5. 方程2x 3+54=0的解是______.6. 方程√x +2=x 的解是x =______.7. 如果{y =−1x=2是方程mx 2+y 2=xy 的一个解,那么m =______.8. 当k =______时,方程kx +4=3-2x 无解.9. 当m =______时,函数y =(m -1)x +m 是常值函数.10. 已知一次函数y =kx +b 的图象经过第一象限,且它的截距为-5,那么函数值y 随自变量x 值的增大而______.11. 已知一次函数y =2x +5,当函数值y <0时,自变量x 值的取值范围是______.12. 已知一辆匀速行驶汽车的路程S (千米)与时间t (时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13. 若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.16. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE 折叠,使点C 落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF 等于______度.18. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______.三、计算题(本大题共1小题,共6.0分)19. 解方程:7x x 2−5x−6=1x+1+2.四、解答题(本大题共7小题,共54.0分)20. 解方程组:{x 2+xy −2y 2=0x+3y=8.21. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.22. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,AF⃗⃗⃗⃗⃗ =c ⃗ . (1)用向量a⃗ 、b ⃗ 、c ⃗ 表示下列向量:向量CE ⃗⃗⃗⃗⃗ =______,向量BD ⃗⃗⃗⃗⃗⃗ =______,向量DE ⃗⃗⃗⃗⃗⃗ =______; (2)求作:b ⃗ +c⃗ .23. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM 的长.24. 已知:如图,在等边三角形ABC 中,过边AB 上一点D 作DE ⊥BC ,垂足为点E ,过边AC 上一点G 作GF ⊥BC ,垂足为点F ,BE =CF ,联结DG .(1)求证:四边形DEFG 是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD =2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).求出A、B两点的坐标,发现OA≠OB,∠OAB≠∠OBA,所以四边形AOBC是梯形,且对角线AB平分∠CAO时只能BC∥OA,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB,那么AC=BC .设点C 的坐标为(x ,4),列出方程(x-8)2+42=x 2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC 是解题的关键.19.【答案】解:去分母得:7x =x -6+2(x -6)(x +1),整理得:x 2-8x -9=0,解得:x 1=9,x 2=-1,经检验x =9是分式方程的解,x =-1是增根,则原方程的解为x =9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2y =0x+3y=8或{x −y =0x+3y=8,解这两个方程组得原方程组的解为:{y =8x=−16或{y =2x=2.【解析】因式分解得出x 2+xy-2y 2=(x+2y )(x-y ),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想. 21.【答案】解:∵直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),∴{−1=−2+k −1=6k+b ,解得{b =−7k=1,∴两条直线的解析式分别为y =x -7和y =-13x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-13x +1与x 轴交于点C (3,0),∴S △ABC =12×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.【解析】依据直线y=kx+b 与直线y=-x+k 都经过点A (6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-c⃗a⃗-b⃗ a⃗-c⃗【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-,故答案为-,-,-.(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD交BC于E,∵∠C=90°,∴BC =√AB 2−AC 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答. 25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有 400x−50-360x =6,整理得3x 2-170x -9000=0,解得x 1=90,x 2=-1003(舍去),经检验,x =90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x 千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可. 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 26.【答案】(1)解:作AH ⊥BC 于H .设AH =h .由题意:√102−ℎ2+10+h =24,整理得:h 2-14h +48=0,解得h =8或6(舍弃),∴y =12(10+24-x )×8,即y =-4x +136(0<x <24)(2)解:①当AP =AD =10时,∵AB =AD =10,∴AP =AB =10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。
2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
上海市浦东新区八年级(下)期末数学试卷答案

2013-2014学年上海市浦东新区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分21分)(每题只有一个选项正确)1.(3分)(2014春•浦东新区期末)下列方程中,不是整式方程的是()A.B.=C.x2﹣7=0 D.x5﹣x2=0【分析】找到分母中或根号下含有未知数的方程即可.【解答】解:A、C、D的分母中或根号下均不含未知数,是整式方程;B、分母中含有未知数,不是整式方程,故选:B.【点评】本题考查了方程的知识.方程可分为整式方程,分式方程,无理方程三类;分式方程是分母中含有未知数的方程,无理方程是根号下含有未知数的方程.2.(3分)(2014春•浦东新区期末)下面各对数值中,属于方程x2﹣3y=0的解的一对是()A.B.C.D.【分析】把每个选项中代入方程,看看方程两边是否相等即可.【解答】解:A、把x=0,y=3代入方程x2﹣3y=0得:左边=﹣9,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;B、把x=3,y=0代入方程x2﹣3y=0得:左边=9,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;C、把x=3,y=9代入方程x2﹣3y=0得:左边=﹣18,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;D、把x=3,y=3代入方程x2﹣3y=0得:左边=0,右边=0,即左边=右边,所以是方程x2﹣3y=0的解的一对,故本选项正确;故选D.【点评】本题考查了二元二次方程的解的应用,主要考查学生的计算能力和理解能力.3.(3分)(2014春•浦东新区期末)如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>5 B.x<5 C.x>3 D.x<3.【分析】由图象可知:A(5,0),且当x<5时,y>0,即可得到不等式kx+b>0的解集是x<5,即可得出选项.【解答】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(5,0),根据图象当x<5时,y>0,即:不等式kx+b>0的解集是x<5.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.4.(3分)(2014春•浦东新区期末)下列事件: ①浦东明天是晴天,② 铅球浮在水面上, ③平面中,多边形的外角和都等于360度,属于确定事件的个数是()A.0个B.1个 C.2个 D.3个【分析】确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断.【解答】解:①浦东明天是晴天是不确定事件;②铅球浮在水面上是不可能事件;③是平面中,多边形的外角和都等于360度是必然事件,属于确定事件,确定事件包括必然事件和不可能事件;故选:C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2014春•浦东新区期末)下列各式错误的是()A.+(﹣)=0 B.||=0 C.+=+D.﹣=+(﹣)【分析】A、根据相反向量的和等于,可以判断A;B、根据的模等于0,可以判断B;C、根据交换律可以判断C;D、根据运算律可以判断D.【解答】解:A、+(﹣)=,故A错误;B、||=0,故B正确;C、+=+,故C正确;D、﹣=+(﹣),故D正确.故选:A.【点评】考查了平面向量,关键是熟练掌握向量的计算和性质.6.(3分)(2014春•浦东新区期末)如果菱形的两条对角线长分别是10cm和24cm,那么这个菱形的周长为()A.13cm B.34cm C.52cm D.68cm【分析】根据菱形的性质,菱形两对角线的一半分别为5cm,12cm,再由勾股定理求得斜边,及菱形的边长,最后求得周长.【解答】解:∵菱形的对角线平分,∴菱形两对角线的一半分别为5cm,12cm,∵菱形的对角线互相垂直,∴菱形的边长为13cm,∴周长为:13×4=52(cm),故选:C.【点评】本题考查了菱形的性质及勾股定理的知识,主要利用菱形的对角线互相垂直平分来解决,难度一般.7.(3分)(2014春•浦东新区期末)只利用一副(两块)三角尺不能直接拼出的角度是()A.75°B.105°C.150°D.165°【分析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到的角有:60°﹣45°=15°,60°+45°=105°,60°+90°=150°,90°+45°=135°,90°+30°=120°,30°+45°=75°,据此解答.【解答】解:一副三角板中各个角的度数分别是30°、60°、45°、90°,A、75°的角可由30°和45°的角拼得.B、105°的角可由45°和60°的角拼得,C、150°的角可由60°和90°的角拼得,D、165°的角不能拼得,故选:D.【点评】本题考查了学生用一副三角板中的角进行拼组,能成多少度角的知识.解题的关键是找出一副三角板中的各个角的度数.二、填空题:(本大题共12题,每题2分,满分24分)8.(2分)(2014春•浦东新区期末)如果y=(m+2)x+m﹣1是常值函数,那么m= ﹣2 .【分析】因为y=(m+2)x+m﹣1是常值函数,所以m+2=0,即可求得m的值.【解答】解:由题意得,m+2=0,m=﹣2,故答案为:﹣2.【点评】本题考查了函数的概念﹣常值函数,是指函数值是固定不变的.9.(2分)(2014春•浦东新区期末)已知直线l与直线y=﹣4x平行,且截距为6,那么这条直线l的表达式是y=﹣4x+6 .【分析】设直线l的解析式为y=kx+b,根据两直线平行的问题得到k=﹣4,根据截距的定义得到b=6,然后写出直线l的解析式.【解答】解:设直线l的解析式为y=kx+b,∵直线l与直线y=﹣4x平行,且截距为6,∴k=﹣4,b=6,∴直线l的解析式为y=﹣4x+6.故答案为y=﹣4x+6.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.(2分)(2014春•浦东新区期末)如果一次函数y=kx+b的图象经过第二、三、四象限,那么函数y的值随着自变量x的增大而减小.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0.故y随x的增大二减小.故答案为:减小.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.(2分)(2014春•浦东新区期末)方程=的解是x=﹣3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3x+6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)(2014春•浦东新区期末)方程组的解是,.【分析】把方程①代入方程②即可求出x,把x的值代入方程①求出y即可.【解答】解:把①代入②得:x2+2x﹣1=2,解得:x1=﹣3,x2=1,把x1=﹣3,x2=1分别代入①得:y1=﹣7,y2=1,即方程组的解为:,,故答案为::,.【点评】本题考查了解高次方程组和一元二次方程的应用,解此题的关键是能把方程组转化成一元二次方程.13.(2分)(2014春•浦东新区期末)木盒中有1个红球和2个黄球,这三个球除颜色外其他都相同,从盒子里先摸出一个球,然后放回去摇匀后,再摸出一个球.两次都摸到黄球的概率是.【分析】此题可以采用列表法求解.一共有9种情况,两次取出小球上的数字相同的情况,利用求概率公式计算即可.【解答】解:设红球为1,黄球分别为2,3,列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)∴一共有9种情况,两次取出小球上的数字相同的有4种情况;∴两次取出小球上的数字相同的概率为,故答案为:.【点评】本题考查了用列表法与树状图法求随机事件的概率,列表法可以不重不漏地列举出所有可能发生的情况,用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2014春•浦东新区期末)一个多边形每个内角都等于144度,则这个多边形的边数是10 .【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为:10.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.15.(2分)(2014春•浦东新区期末)如果一个四边形要成为矩形,那么对角线应满足的条件是相等且互相平分.【分析】利用矩形的判定定理直接回答即可.【解答】解:∵对角线相等的平行四边形是矩形,∴如果一个四边形要成为矩形,那么对角线应满足的条件是相等且互相平分,故答案为:相等且互相平分.【点评】本题考查了矩形的判定,解题的关键是弄清矩形的判定定理,难度不大.16.(2分)(2014春•浦东新区期末)已知矩形ABCD的长和宽分别为8和6,那么顶点A到对角线BD的距离等于 4.8 .【分析】本题只要根据矩形的性质,利用面积法来求解即可.【解答】解:因为BC=8,故AD=8,AB=6,则S△ABD=×8×6=24,又因为BD==10,S△ABD=×10AE,故×10AE=24,解得AE=4.8.故答案为:4.8.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.17.(2分)(2014春•浦东新区期末)如果一个四边形的两条对角线长分别为7cm和12cm,那么顺次联结这个四边形各边中点所得四边形的周长是19 cm.【分析】根据三角形中位线定理,新四边形是平行四边形,且一组邻边分别等于原四边形两条对角线的一半.据此可求周长.【解答】解:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF=BD,GH=BD,EH=AC,FG=AC,∴四边形EFGH的周长是:EF+GH+EH+FG=(AC+BD+AC+BD)=AC+BD=7cm+12cm=19cm.故答案为:19.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.18.(2分)(2016•潍坊三模)如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB= 5 .【分析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.【解答】解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.∴AB=DE=CE=BC﹣BE=BC﹣AD=7﹣2=5.故答案为:5.【点评】此题综合考查了平行四边形的判定及性质、平行线的性质、等角对等边的性质,解题的关键是作平行线构造平行四边形.19.(2分)(2014春•浦东新区期末)如图,已知E是▱ABCD的边AB上一点,将△ADE 沿直线DE折叠,点A恰好落在边BC上的点F处,如果△BEF的周长为7,△CDF的周长为15,那么CF的长等于 4 .【分析】由折叠性得AB=EF,DF=AD,易得△BEF的周长+△CDF的周长=▱ABCD的周长,可求出两邻边的和,利用CF=△CDF的周长﹣(AD+DC)即可求出结果.【解答】解:由折叠性得AB=EF,DF=AD,∵△BEF的周长为7,△CDF的周长为15,∴△BEF的周长=EF+BE+BF=AB+BF=7,△CDF的周长=DC+DF+FC=DC+AD+FC=15,∴△BEF的周长+△CDF的周长=▱ABCD的周长=22,∴AD+DC=11,∴CF=△CDF的周长﹣(AD+DC)=15﹣11=4.故答案为:4.【点评】本题主要考查了平行四边形的性质及翻折变换,解题的关键是利用折叠前后图形的形状和大小不变,对应边和对应角相等.三、简答题(本大题共8题,满分55分)20.(4分)(2014春•浦东新区期末)如图,已知向量,,.求作:+﹣.(不要求写作法,但要写出结论)【分析】先根据三角形法则首先作出+,后再利用三角形法则作向量+﹣.【解答】解:(1)利用三角形法则首先作出+,图中;(2)再利用三角形法则作向量+﹣.图中即为所求.【点评】此题考查了平面向量的知识.解题的关键是注意三角形法则的应用.21.(6分)(2014春•浦东新区期末)解方程:x﹣=1.【分析】先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.【解答】解:移项得:=x﹣1,两边平方得:2x+1=(x﹣1)2,x2﹣4x=0,解得:x1=0,x2=4,经检验x=0不是原方程的解,x=4是原方程的解,即原方程的解是x=4.【点评】本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.22.(6分)(2014春•浦东新区期末)解方程组.【分析】设=a,=b,方程组变形为关于a与b的方程组,求出方程组的解得到a 与b的值,即可确定出方程组的解.【解答】解:设=a,=b,方程组变形得:,①+②×3得:8a=4,即a=,将a=代入②得:b=,即=,=,解得:x=2,y=3,经检验都为原方程的解.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)(2014春•浦东新区期末)某长途汽车公司规定:乘客坐车最多可以免费携带20kg重量的行李,如果超过这个重量(但是不能超过50kg),那么需要购买行李票.假设行李票的价格y(元)与行李的重量x(kg)之间是一次函数关系,其图象如图.求:(1)y关于x的函数解析式,并写出它的定义域;(2)携带45kg的行李需要购买多少元行李票?【分析】(1)设y与x之间的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)当x=45时代入(1)的解析式,求出y的值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,所以y与x之间的函数关系式为:y=x﹣20,20<x≤50;(2)当x=45时,y=1×45﹣20=25答:旅客携带45(kg)行李应该购买25元行李票.【点评】本题考查了一次函数运用,利用待定系数法求一次函数的解析式,根据函数的解析式求自变量和函数值的运用,解答时求出函数的解析式是关键.24.(8分)(2014春•浦东新区期末)已知:如图,在△ABC中,AB=AC,过点A作MN∥BC,点D、E在直线MN上,且DA=EA≠BC.求证:四边形DBCE是等腰梯形.【分析】根据全等三角形的判定方法即可证明△ABD≌△ACE,由此可得到BD=CE,再根据等腰梯形的判定问题得证.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠ABC=∠DAB,∠ACB=∠EAC,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),∴DB=EC,∵DA=EA≠BC,∴DE≠BC,∴四边形DBCE是等腰梯形.【点评】本题考查了等腰梯形的判定、全等三角形的判定和性质,题目的综合性较强,难度中等.25.(5分)(2014春•浦东新区期末)某班为了鼓励学生积极开展体育锻炼,打算购买一批羽毛球.体育委员小张到商店发现,用160元可以购买某种品牌的羽毛球若干桶,但商店营业员告诉他,如果再加60元,那么就可以享受优惠价,每桶比原价便宜10元,因此可以多买5桶羽毛球,求每桶羽毛球的原价.【分析】设每桶羽毛球的原价为x元,根据题意可得,加60元比160元多买5桶羽毛球,列方程求解.【解答】解:设每桶羽毛球的原价为x元,由题意得,﹣=5,整理得:x2﹣22x﹣320=0,解得:x=32或x=﹣10(不合题意,舍去),经检验,x=32是原方程的解.答:每桶羽毛球的原价为32元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(8分)(2014春•浦东新区期末)已知:如图,在直角坐标平面中,点A在x轴的负半轴上,直线y=kx+经过点A,与y轴相交于点M,点B是点A关于原点的对称点,过点B的直线BC⊥x轴,交直线y=kx+于点C,如果∠M AO=60°.(1)求这条直线的表达式;(2)将△ABC绕点C旋转,使点A落到x轴上另一点D处,此时点B落在点E处.求点E的坐标.【分析】(1)设A(﹣a,0),则B(a,0),直线BC的解析式为x=a,AB=2a,把点A 代入可得出关于ka的表达式,由∠MAO=60°可表示出C点坐标,再根据点C在直线上可得出k、a的值,进而得出结论;(2)根据题意画出图形,由k=,a=1得出AB,AC,BC的长及C点坐标,过点E作EF⊥x轴于点F,根据△DEC由△ABC旋转而成得出CD=AC,DE=AB,根据相似三角形的判定定理得出△CBD∽△EFD,故==,由此可得出结论.【解答】解:(1)设A(﹣a,0),则B(a,0),直线BC的解析式为x=a,AB=2a,∵点A在直线y=kx+上,∴﹣ka+=0①.∵∠MAO=60°,∴BC=AB=2a×=2a,∴C(a,2a),AC=4a,∵点C在直线AC上,∴ka+=2a②,①②联立得,k=,a=1,∴这条直线的表达式为y=x+;(2)如图所示,∵k=,a=1,∴AB=2,AC=4,BC=2,C(1,2),过点E作EF⊥x轴于点F,∵△DEC由△ABC旋转而成,∴CD=AC=4,DE=AB=2,∵CB⊥AD,∴AB=BD,∴D(3,0),∠ADC=∠CAB=60°.∵∠CDE=∠CAB=60°,∴∠EDF=60°.∵∠EDF=∠CDB,∠CBD=∠EFD,∵DE=AB=2,∴DF=1,EF=,∴OF=1+2+1=4,∴E(4,).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.27.(10分)(2014春•浦东新区期末)已知:如图,正方形ABCD的对角线相交于点O,P是边BC上的一个动点,AP交对角线BD于点E,BQ⊥AP,交对角线AC于点F、边CD于点Q,联结EF.(1)求证:OE=OF;(2)联结PF,如果PF∥BD,求BP:PC的值;(3)联结DP,当DP经过点F时,试猜想点P的位置,并证明你给猜想.【分析】(1)若要证明OE=OF,则问题可转化为两条线段所在的三角形即△OAE和△OBF 全等即可;(2)首先证明四边形BPFE是平行四边形,又因为BQ⊥AP,所以平行四边形BPFE是菱形,进而可求出BP:PC的值;(3)当DP经过点F时,点P在BC中点,通过证明Rt△ABP≌Rt△DCP,由全等三角形的性质:BP=CP,问题得证.【解答】(1)证明:∵BQ⊥AP,∴∠EBF+∠BEP=90°,∵∠OAE+∠OEA=90°,∠BEP=∠OEA,∴∠EBF=∠OAE,在△OAE和△OBF中,∴△OAE≌△OBF(ASA),∴OE=OF.(2)解:∵OE=OF∠EOF=90°,∴∠OEF=∠OFE=45°,同理∠OBC=∠OCB=45°∴∠OEF=∠OBC,∴EF∥BC,∵PF∥BD,∴四边形BPFE是平行四边形,∵BQ⊥AP,∴平行四边形BPFE是菱形,∴BP=PF=PC,即BP:PC=(3)证明:∵△OAE≌△OBF,∴∠1=∠2,∵AC⊥BD,OB=OD,∴BF=DF,∴∠1=∠3,∴∠2=∠3,在△APF和△DPE中,,∴△APF≌△DPE(AAS),∴AP=DP,∵∠ABP=∠DCP=90°,AB=DC,在Rt△ABP和Rt△DCP中,,∴Rt△ABP≌Rt△DCP(HL),∴BP=CP,∴点P在BC中点.【点评】本题考查了正方形的性质、全等三角形的判定和性质以及平行四边形的判定和性质、菱形的判定和性质、解题的关键是熟记各种特殊四边形的判定方法和性质。
上海版2014学年度八年级第二学期期末考试数学试卷(含答案)

上海版2014学年度八年级第二学期期末考试数学试卷 (考试时间90分钟) 2015年6月 一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1、下列函数中,哪个是一次函数……………………………………………………( ▲ )(A )22+=x y ; (B )x y -=; (C )22+=x y ; (D )x y =. 2、方程03=-x x 的根是……………………………………………………………( ▲ )(A )0,-1; (B )-1,+1; (C )0,+1; (D )-1,0,+1.3、正方形的对角线具有的所有..性质是………………………………………………( ▲ ) (A )对角线互相平分; (B )对角线互相平分且相等;(C )对角线互相垂直平分; (D )对角线互相垂直平分且相等.4、下列各式错误的是…………………………………………………………………( ▲ )(A )0)(=-+→→a a ; (B ))()(→→→→→→++=++c b a c b a ;(C )→→→→+=+a b b a ; (D ))(→→→→-+=-b a b a .5、下列成语或词语所反映的事件中,不可能事件的是……………………………( ▲ )(A )探囊取物 (B )水中捞月 (C )平分秋色 (D )十拿九稳6、顺次联结下列各四边形的各边中点,所得的四边形与原四边形形状相同的是( ▲ )(A )矩形 (B )菱形 (C )平行四边形 (D )等腰梯形二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置】7、直线26-=x y 的截距是 ▲ ;8、一次函数43+-=x y 的图像与坐标轴围成的三角形的面积是 ▲ ;9、关于x 的方程b ax =有无数解,则a 、b 满足的条件是 ▲ ;10、关于x 的分式方程111+=-+-x x x x x k 有增根1=x ,那么k 的值是 ▲ ;11、方程11510=--+x x 的解是 ▲ ;12、某校组织学生步行去相距6千米的科技馆春游,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,如果设学生去时的步行速度是x 千米/时,则可根据题目列出方程 ▲ ;13、如果一个正n 边形的内角和小于外角和,那么n 等于 ▲ ;14、已知菱形的边长是6,一个内角是60°,则这个菱形较长..的对角线长为 ▲ ; 15、一个等腰梯形,它的上底是12厘米,下底是22厘米,高和上底一样长,则这个等腰梯形的周长是 ▲ 厘米;16、已知一个梯形的中位线的长为10,高为5,那么这个梯形的面积是 ▲ ;17、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能18、已知,如图,P 是边长为5的正方形ABCD 内一点,AP=3,BP=4,将△ABP 绕点B 旋转后,使P 点落在直线BC 上,点A 落在点A ’上,则线段A ’C 的长度为 ▲ ;三、简答题(本大题共4题,每题5分,满分20分) 【将下列各题的解答过程,做在答题纸相应位置上】19、解方程:2213211x x x x --=--; 20、解方程组:⎩⎨⎧=+-=+.023,12222y xy x y x ;21、如图,已知在梯形ABCD ,AD ∥BC ,点E 在边BC 上,联结DE 、AC ;(1)→AD +→DC = ▲ ;(2)设→→=a AB ,→→=b AC ,试用→→b ,a 表示→BC = ▲ ;(3)请在图中画出表示→→→++DC CE AD 的和向量。
上海市浦东新区2013-2014学年八年级下学期期末质量测试数学试题(答案不全)

浦东新区2013-2014学年度第二学期期末质量测试初二数学(完卷时间:100分钟,满分:100分) 2014.6一、选择题:(本大题共6题,每题3分,满分18分)(每题只有一个选项正确)1.下列方程中,不是整式方程的是…………………………………………………………( )B(A );32532=-x x (B );262x x x =- (C );07322=-x(D );0325=-x x 2.下面各对数值中,属于方程032=-y x 的解的一对是………………………………( )D(A )⎩⎨⎧==;3,0y x (B )⎩⎨⎧==;0,3y x (C )⎩⎨⎧==;9,3y x (D )⎩⎨⎧==.3,3y x 3、如图,已知一次函数b kx y +=的图像经过A 、B 两点,那么不等式0>+b kx 的解集是( )B(A )x>5; (B )x<5;(C )x>3; (D )x<3.4.下列事件:①浦东明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定时间的个数是 ……………………………………( )B(A )0个; (B )1个; (C )2个; (D )3个.5.下列各式错误的是……………………………………………… ( )A(A );0)(=-+m m(B );00= (C );m n n m +=+(D ));(n m n m -+=- 6、如果菱形的两条对角线长分别是10cm 和24cm ,那么这个菱形的周长为( )C(A )13cm; (B )34cm; (C )52cm; (D )68cm,7、只利用一副(两块)三角尺不能直接拼出的角度是………………………………………( )D(A )︒75; (B )︒105; (C )︒150; (D )︒165.二、填空题:(本大题共12题,每题2分,满分24分)8、如果1)2(-++=m x m y 是常值函数,那么=m .9、已知直线l 与直线x y 4-=平行,且截距为6,那么这条直线l 的表达式是________________.10、如果一次函数b kx y +=的图像经过第二、三、四象限,那么函数y 的值随着自变量x 的增大而 .11、方程2342-=-x x x 的解是 . 12、方程组⎩⎨⎧=+-=2,122y x x y 的解是 . 13、木盒中有1个红球和2个黄球,这三个球除颜色外其他都相同,从盒子里先摸出一个球,然后放回去摇匀后,再摸出一个球.两次都摸到黄球的概率是 .14、如果一个多边形的每一个内角都等于144度,那么这个多边形的边数是在____________.15、如果一个四边形要成为矩形,那么对角线应满足的条件是 . 16、已知矩形ABCD 的长和宽分别为8和6,那么顶点A 到对角线BD 的距离等于 .17、如果一个四边形的两条对角线长分别为cm 7和cm 12,那么顺次联结这个四边形各边中点所得四边形的周长是 cm .18、如图,已知在梯形ABCD 中,,7,2,75,30,//==︒=∠︒=∠BC AD C B BC AD那么AB= .19、如图,已知E 是□ ABCD 的边AB 上一点,将ADE ∆沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,如果BEF ∆的周长为7,CDF ∆的周长为15,那么CF 的长等于 .三、简答题(本大题共8题,满分58分)20、(本题满分4分)如图,已知向量c b a 、、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相伴中考路,关注公众号 “上海初升高”
∴∠OEF=∠OBC, ∴EF∥BC, ∵PF∥BD ∴四边形 BPFE 是平行四边形,
∵BQ⊥AP, ∴平行四边形 BPFE 是菱形, ∴BP=PF= 2 PC, 即 BP:PC= 2
2
2
(3)∵△OAE≌△OBF ∴∠1=∠2 ∵AC⊥BD OB=OD ∴BF=DF ∴∠1=∠3
a、b、c
。求作:
a
b
c
。(不要求写作法,但要写出结论)
21、(本题满分 6 分)
解方程: x 2x 1 1
22、(本题满分 6 分)
解方程组
5
x
1
6
y 1 2
1, 1.
x y 1
第3页共6页
相伴中考路,关注公众号 “上海初升高”
23、(本题满分 8 分,其中第(1)小题 5 分,第(2)小题 3 分)某长途汽车公司规定:乘客坐车最多可以免费 携带 20kg 重量的行李,如果超过这个重量(但是不能超过 50kg),那么需要购买行李票。假设行李票的价格 y (元)与行李的重量 x(kg)之间是一次函数关系,其图像如图所示。求(1)y 关于 x 的函数解析式,并写出它 的定义域;(2)携带 45kg 的行李需要购买多少元行李票?
3, 9;
(D)
x y
3, 3.
3、如图,已知一次函数 y kx b 的图像经过 A、B 两点,那么不等式 kx b 0 的解
集是( )B (A)x>5; (C)x>3;
(B)x<5; (D)x<3.
4.下列事件:浦东明天是晴天,铅球浮在水面上,平面中,多边形的外角和都
等于 360 度,属于确定时间的个数是 ……………………………………( )B
24、(本题满分 8 分)已知:如图,在△ABC 中,AB=AC,过点 A 作 MN∥BC,点 D、E 在直线 MN 上,且 DA=EA≠ 1 BC。 2
求证:四边形 DBCE 是等腰梯形。
25、(本题满分 8 分)
第4页共6页
相伴中考路,关注公众号 “上海初升高”
某班为了鼓励学生积极开展体育锻炼,打算购买一批羽毛球。体育委员小张到商店发现,用 160 元可以购买 某种品牌的羽毛球若干桶,但商店营业员告诉他,如果再加 60 元,那么就可以享受优惠价,每桶比原价便宜 10 元,因此可以多买 5 桶羽毛球,求每桶羽毛球的原价。
点 A 落到 x 轴上另一点 D 处,此时点 B 落在点 E 处。求点 E 的坐标。
27、(本题满分 10 分,其中第(1)、(2)小题各 3 分,第(3)小题 4 分)已知:如图,正方形 ABCD 的对角线相 交于点 O,P 是边 BC 上的一个动点,AP 交对角线 BD 于点 E,BQ⊥AP,交对角线 AC 于点 F、边 CD 于点 Q,联结 EF。(1)求证:OE=OF;(2)联结 PF,如果 PF∥BD,求 BP:PC 的值;(3)联结 DP,当 DP 经过点 F 时,试猜想点 P 的位置,并证明你给猜想。 证明:(1)∵BQ⊥AP ∴∠EBF+∠BEP=90°,∵∠OAE+∠OEA=90°, ∠BEP=∠OEA ∴∠EBF=∠OAE. ∠AOE=∠BOF=90°.OA=OB, ∴△OAE≌△OBF, ∴OE=OF. (2)∵OE=OF ∠EOF=90° ∴∠OEF=∠OFE=45°,同理∠OBC=∠OCB=45°
∴∠2=∠3 又∵AF=DE ∠P=∠P ∴△APF≌△DPE ∴AP=DP
∵∠ABP=∠DCP=90° AB=DC ∴Rt△ABP≌Rt△DCP ∴BP=CP
∴点 P 在 BC 中点。
第6页共6页
.
9、已知直线 l 与直线 y 4x 平行,且截距为 6,那么这条直线 l 的表达式是________________.
10、如果一次函数 y kx b 的图像经过第二、三、四象限,那么函数 y 的值随着自变量 x 的增大而
.
11、方程 x 3 的解是 x2 4 x 2
相伴中考路,关注公众号 “上海初升高”
(A)13cm;
(B)34cm;
(C)52cm;
(D)68cm,
7、只利用一副(两块)三角尺不能直接拼出的角度是………………………………………( )D
(A) 75 ; (B)105 ; (C)150 ; (D)165 .
二、填空题:(本大题共 12 题,每题 2 分,满分 24 分)
8、如果 y (m 2)x m 1 是常值函数,那么 m
那么 AB=
.
19、如图,已知 E 是□ ABCD 的边 AB 上一点,将 ADE 沿直线 DE 折叠,点 A 恰好落在边 BC 上的点 F 处,如果 BEF
的周长为 7, CDF 的周长为 15,那么 CF 的长等于
.
三、简答题(本大题共 8 题,满分 58 分考路,关注公众号 “上海初升高”
关注上海初升高,相伴度过中考路
相伴中考路,关注公众号 “上海初升高”
浦东新区 2013-2014 学年度第二学期期末质量测试初二数学
(完卷时间:100 分钟,满分:100 分)
2014.6
一、选择题:(本大题共 6 题,每题 3 分,满分 18 分)(每题只有一个选项正确) 1.下列方程中,不是整式方程的是…………………………………………………………( )B
(A) x2 3x 2 ; 53
(B) 2x 6 x ; x2
(C) 2 x2 7 0; 3
(D) x5 3x2 0;
2.下面各对数值中,属于方程 x2 3y 0 的解的一对是………………………………(
)D
(A)
x y
0, 3;
(B)
x y
3, 0;
(C)
x y
26、(本题满分 8 分,其中第(1)小题 3 分,第(2)小题 5 分)已知:如图,在直角坐标平面中,点 A 在 x 轴
的负半轴上,直线 y kx 3 经过点 A,与 y 轴相交于点 M,点 B 是点 A 关于原点的对称点,过点 B 的直线 BC ⊥x 轴,交直线 y kx 3 于点 C,如果∠MAO=60°.(1)求这条直线的表达式;(2)将△ABC 绕点 C 旋转,使
(A)0 个;
(B)1 个;
(C)2 个;
(D)3 个.
5.下列各式错误的是……………………………………………… ( )A
(A) m (m) 0;
(B) 0 0;
(C) m n n m;
(D) m n m (n);
6、如果菱形的两条对角线长分别是 10cm 和 24cm,那么这个菱形的周长为( )C
15、如果一个四边形要成为矩形,那么对角线应满足的条件是
.
16、已知矩形 ABCD 的长和宽分别为 8 和 6,那么顶点 A 到对角线 BD 的距离等于
.
17、如果一个四边形的两条对角线长分别为 7cm 和12cm ,那么顺次联结这个四边形各边中点所得四边形的周长
是
cm .
18、如图,已知在梯形 ABCD 中, AD// BC,B 30,C 75, AD 2, BC 7,
.
12、方程组
y 2x x2 y
1, 2
的解是
.
13、木盒中有 1 个红球和 2 个黄球,这三个球除颜色外其他都相同,从盒子里先摸出一个球,然后放回去摇匀后,
再摸出一个球.两次都摸到黄球的概率是
.
14、如果一个多边形的每一个内角都等于 144 度,那么这个多边形的边数是在____________.